UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Browse by UCL people

Group by: Type | Date
Number of items: 45.

Article

Anastasiou, Andreas; Barp, Alessandro; Briol, François-Xavier; Ebner, Bruno; Gaunt, Robert E; Ghaderinezhad, Fatemeh; Gorham, Jackson; ... Swan, Yvik; + view all (2023) Stein's method meets computational statistics: A review of some recent developments. Statistical Science , 38 (1) pp. 120-139. 10.1214/22-STS863. Green open access
file

Barp, A; Barp, EG; Briol, FX; Ueltschi, D; (2015) A numerical study of the 3D random interchange and random loop models. Journal of Physics A: Mathematical and Theoretical , 48 (34) , Article 345002. 10.1088/1751-8113/48/34/345002. Green open access
file

Barp, A; Briol, FX; Kennedy, AD; Girolami, M; (2018) Geometry and Dynamics for Markov Chain Monte Carlo. Annual Review of Statistics and Its Application , 5 pp. 451-471. 10.1146/annurev-statistics-031017-100141.

Bharti, A; Adeogun, R; Cai, X; Fan, W; Briol, FX; Clavier, L; Pedersen, T; (2021) Joint Modeling of Received Power, Mean Delay, and Delay Spread for Wideband Radio Channels. IEEE Transactions on Antennas and Propagation 10.1109/TAP.2021.3060099. (In press). Green open access
file

Bharti, A; Briol, FX; Pedersen, T; (2021) A General Method for Calibrating Stochastic Radio Channel Models with Kernels. IEEE Transactions on Antennas and Propagation 10.1109/TAP.2021.3083761. (In press). Green open access
file

Briol, F-X; DiazDelaO, FA; Hristov, PO; (2019) Contributed Discussion [A Bayesian Conjugate Gradient Method]. Bayesian Analysis , 14 (3) pp. 980-984. 10.1214/19-BA1145. Green open access
file

Briol, FX; Cockayne, J; Teymur, O; (2016) Contributed discussion on article by Chkrebtii, Campbell, Calderhead, and Girolami. Bayesian Analysis , 11 (4) pp. 1285-1293. 10.1214/16-BA1017A. Green open access
file

Briol, FX; Oates, CJ; Girolami, M; Osborne, MA; Sejdinovic, D; (2019) Probabilistic integration: A role in statistical computation? Statistical Science , 34 (1) pp. 1-22. 10.1214/18-STS660. Green open access
file

Briol, FX; Oates, CJ; Girolami, M; Osborne, MA; Sejdinovic, D; (2019) Rejoinder: Probabilistic integration: A role in statistical computation? Statistical Science , 34 (1) pp. 38-42. 10.1214/18-STS683. Green open access
file

Kirby, Andrew; Briol, François‐Xavier; Dunstan, Thomas D; Nishino, Takafumi; (2023) Data‐driven modelling of turbine wake interactions and flow resistance in large wind farms. Wind Energy 10.1002/we.2851. (In press). Green open access
file

Matsubara, T; Knoblauch, J; Briol, FX; Oates, CJ; (2024) Generalized Bayesian Inference for Discrete Intractable Likelihood. Journal of the American Statistical Association , 119 (547) pp. 2345-2355. 10.1080/01621459.2023.2257891. Green open access
file

Matsubara, T; Oates, CJ; Briol, FX; (2021) The ridgelet prior: A covariance function approach to prior specification for bayesian neural networks. Journal of Machine Learning Research , 22 pp. 1-57. Green open access
file

Matsubara, Takuo; Knoblauch, Jeremias; Briol, François‐Xavier; Oates, Chris J; (2022) Robust generalised Bayesian inference for intractable likelihoods. Journal of the Royal Statistical Society: Series B 10.1111/rssb.12500. (In press). Green open access
file

Oates, CJ; Cockayne, J; Briol, FX; Girolami, M; (2019) Convergence rates for a class of estimators based on Stein’s method. Bernoulli , 25 (2) pp. 1141-1159. 10.3150/17-BEJ1016. Green open access
file

Wynne, G; Briol, FX; Girolami, M; (2021) Convergence guarantees for gaussian process means with misspecified likelihoods and smoothness. Journal of Machine Learning Research , 22 , Article 123. Green open access
file

Zhu, Harrison; Liu, Xing; Caron, Alberto; Manolopoulou, Ioanna; Flaxman, Seth; Briol, Francois-Xavier; (2020) Contributed Discussion of “Bayesian Regression Tree Models for Causal Inference: Regularization, Confounding, and Heterogeneous Effects”. Bayesian Analysis , 15 (3) pp. 55-58. 10.1214/19-BA1195. Green open access
file

Proceedings paper

Altamirano, M; Briol, FX; Knoblauch, J; (2023) Robust and Scalable Bayesian Online Changepoint Detection. In: Proceedings of the 40th International Conference on Machine Learning. (pp. pp. 642-663). PMLR: Honolulu, Hawaii, USA. Green open access
file

Altamirano, Matias; Briol, François-Xavier; Knoblauch, Jeremias; (2024) Robust and Conjugate Gaussian Process Regression. In: Proceedings of the 41 st International Conference on Machine Learning. ICML: Vienna, Austria. (In press). Green open access
file

Barp, A; Briol, F-X; Duncan, AB; Girolami, MA; Mackey, LW; (2019) Minimum Stein Discrepancy Estimators. In: Wallach, H and Larochelle, H and Beygelzimer, A and d'Alché-Buc, F and Fox, E and Garnett., R, (eds.) Proceedings of Advances in Neural Information Processing Systems 32 (NIPS 2019). NIPS: Massachusetts, USA. Green open access
file

Bharti, A; Naslidnyk, M; Key, O; Kaski, S; Briol, FX; (2023) Optimally-weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference. In: Krause, A and Brunskill, E and Cho, K and Engelhardt, B and Sabato, S and Scarlett, J, (eds.) Proceedings of the 40th International Conference on Machine Learning. (pp. pp. 2289-2312). Proceedings of Machine Learning Research (PMLR): Honolulu, HI, USA. Green open access
file

Bharti, Ayush; Huang, Daolang; Kaski, Samuel; Briol, François-Xavier; (2025) Cost-aware simulation-based inference. In: Li, Yingzhen and Mandt, Stephan and Agrawal, Shipra and Khan, Emtiyaz, (eds.) Proceedings of the 28th International Conference on Artificial Intelligence and Statistics (AISTATS). (pp. pp. 28-36). Proceedings of Machine Learning Research (PMLR): Mai Khao, Thailand. Green open access
file

Briol, FX; Oates, CJ; Cockayne, J; Chen, WY; Girolami, M; (2017) On the sampling problem for Kernel quadrature. In: Proceedings of the 34th International Conference on Machine Learning. (pp. pp. 586-595). PMLR: Sydney, NSW, Australia. Green open access
file

Briol, FX; Oates, CJ; Girolami, M; Osborne, MA; (2015) Frank-Wolfe Bayesian quadrature: Probabilistic integration with theoretical guarantees. In: Advances in Neural Information Processing Systems 28 (NIPS 2015). Neural Information Processing Systems (NIPS) Green open access
file

Chen, Zonghao; Naslidnyk, Masha; Gretton, Arthur; Briol, François-Xavier; (2024) Conditional Bayesian Quadrature. In: Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence. Association for Uncertainty in Artificial Intelligence (AUAI) Green open access
file

Chen, WY; Barp, A; Briol, F-X; Gorham, J; Girolami, M; Mackey, L; Oates, CJ; (2019) Stein Point Markov Chain Monte Carlo. In: Chaudhuri, Kamalika and Salakhutdinov, Ruslan, (eds.) Proceedings of the 36th International Conference on Machine Learning. (pp. pp. 1011-1021). Proceedings of Machine Learning Research: Long Beach, California, USA. Green open access
file

Chen, WY; Mackey, L; Gorham, J; Briol, FX; Oates, CJ; (2018) Stein points. In: Dy, J and Krause, A, (eds.) Proceedings of the 35th International Conference on Machine Learning. (pp. pp. 844-853). PMLR Green open access
file

Dellaporta, Charita; Knoblauch, Jeremias; Damoulas, Theodoros; Briol, François-Xavier; (2022) Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap. In: AISTATS 2022 Accepted Papers. AISTATS (In press). Green open access
file

Duran-Martin, Gerardo; Altamirano, Matias; Shestopaloff, Alexander Y; Sánchez-Betancourt, Leandro; Knoblauch, Jeremias; Jones, Matt; Briol, François-Xavier; (2024) Outlier-robust Kalman Filtering through Generalised Bayes. In: Proceedings of the 41st International Conference on Machine Learning (ICML 2024). ICML: Vienna, Austria. Green open access
file

Key, O; Fernandez, T; Gretton, A; Briol, F-X; (2021) Composite Goodness-of-fit Tests with Kernels. In: NeurIPS 2021 Workshop Your Model Is Wrong: Robustness and Misspecification in Probabilistic Modeling. Green open access
file

Li, K; Giles, D; Karvonen, T; Guillas, S; Briol, FX; (2023) Multilevel Bayesian Quadrature. In: Proceedings of The 26th International Conference on Artificial Intelligence and Statistics. (pp. pp. 1845-1868). Proceedings of Machine Learning Research (PMLR): Valencia, Spain. Green open access
file

Naslidnyk, Masha; Chau, Siu Lun; Briol, François-Xavier; Muandet, Krikamol; (2025) Kernel Quantile Embeddings and Associated Probability Metrics. In: Proceedings of the 42 nd International Conference on Machine Learning. PMLR: Vancouver, Canada. (In press). Green open access
file

Oates, CJ; Niederer, S; Lee, A; Briol, FX; Girolami, M; (2017) Probabilistic models for integration error in the assessment of functional cardiac models. In: Advances in Neural Information Processing Systems 30 (NIPS 2017) Proceedings. (pp. pp. 110-118). Neural Information Processing Systems Foundation, Inc.: Long Beach, CA, USA. Green open access
file

Ott, K; Tiemann, M; Hennig, P; Briol, FX; (2023) Bayesian Numerical Integration with Neural Networks. In: Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023). (pp. pp. 1606-1617). Proceedings of Machine Learning Research (PMLR) Green open access
file

Sun, Z; Barp, A; Briol, FX; (2023) Vector-Valued Control Variates. In: Proceedings of Machine Learning Research. (pp. pp. 32819-32846). ML Research Press: Honolulu, Hawaii. Green open access
file

Sun, Zhua; Oates, Chris J; Briol, François-Xavier; (2023) Meta-learning Control Variates: Variance Reduction with Limited Data. In: Lawrence, Neil, (ed.) Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence. (pp. pp. 2047-2057). PMLR: Pittsburgh, PA, USA. Green open access
file

Xi, X; Briol, FX; Girolami, M; (2018) Bayesian quadrature for multiple related integrals. In: Dy, J and Krause, A, (eds.) Proceedings of the 35th International Conference on Machine Learning. (pp. pp. 8533-8564). PPMLR Green open access
file

Zhu, H; Liu, X; Kang, R; Shen, Z; Flaxman, S; Briol, F-X; (2020) Bayesian Probabilistic Numerical Integration with Tree-Based Models. In: Larochelle, H and Ranzato, M and Hadsell, R and Balcan, M-F and Lin, H-T, (eds.) 34th Conference on Neural Information Processing Systems (NeurIPS 2020). NeurIPS: Vancouver, Canada. Green open access
file

Working / discussion paper

Briol, F-X; Barp, A; Duncan, AB; Girolami, M; (2019) Statistical Inference for Generative Models with Maximum Mean Discrepancy. ArXiv: Ithaca, NY, USA. Green open access
file

Li, Kaiyu; Giles, Daniel; Karvonen, Toni; Guillas, Serge; Briol, François-Xavier; (2022) Multilevel Bayesian Quadrature. arXiv: Ithaca, NY, USA. Green open access
file

Matsubara, Takuo; Knoblauch, Jeremias; Briol, François-Xavier; Oates, Chris J; (2022) Generalised Bayesian Inference for Discrete Intractable Likelihood. arXiv: Ithaca (NY), USA. Green open access
file

Niu, Ziang; Meier, Johanna; Briol, François-Xavier; (2021) Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte Carlo. arXiv: Ithaca, NY, USA. Green open access
file

Si, S; Oates, CJ; Duncan, AB; Carin, L; Briol, F-X; (2020) Scalable Control Variates for Monte Carlo Methods via Stochastic Optimization. ArXiv: Ithaca, NY, USA. Green open access
file

Wenger, Jonathan; Krämer, Nicholas; Pförtner, Marvin; Schmidt, Jonathan; Bosch, Nathanael; Effenberger, Nina; Zenn, Johannes; ... Hennig, Philipp; + view all (2021) ProbNum: Probabilistic Numerics in Python. arXiv: Ithaca (NY), USA. Green open access
file

Zhang, Mingtian; Key, Oscar; Hayes, Peter; Barber, David; Paige, Brooks; Briol, François-Xavier; (2022) Towards Healing the Blindness of Score Matching. arXiv: Ithaca (NY), USA. Green open access
file

Thesis

Briol, François-Xavier; (2018) Statistical computation with kernels. Doctoral thesis (Ph.D), University of Warwick. Green open access
file

This list was generated on Tue Jan 27 20:10:07 2026 GMT.