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Abstract. Control variates are a well-established tool to reduce the
variance of Monte Carlo estimators. However, for large-scale problems
including high-dimensional and large-sample settings, their advantages can
be outweighed by a substantial computational cost. This paper considers
control variates based on Stein operators, presenting a framework that
encompasses and generalizes existing approaches that use polynomials,
kernels and neural networks. A learning strategy based on minimising a
variational objective through stochastic optimization is proposed, leading
to scalable and effective control variates. Novel theoretical results are
presented to provide insight into the variance reduction that can be
achieved, and an empirical assessment, including applications to Bayesian
inference, is provided in support.
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1 Introduction

This paper focuses on the approximation of the integral of an arbitrary function
f : Rd → R with respect to a distribution Π, denoted Π[f ] :=

∫
fdΠ. It will

be assumed that Π admits a smooth and everywhere positive Lebesgue density
π such that the gradient of log π can be pointwise evaluated. This situation is
typical in Bayesian statistics, where Π represents a posterior distribution and, to
circumvent this intractability, Markov chain Monte Carlo (MCMC) methods are
used. Nevertheless, the ergodic average of MCMC output converges at a slow rate
proportional to n−1/2 and, for finite chain length n, there can be considerable
stochasticity associated with the MCMC output.

A control variate (CV) is a variance reduction technique for Monte Carlo
(MC) methods, including MCMC. Given a test function f , the general approach
is to identify another function, g, such that the variance of the estimator with f
replaced by f − g is smaller than that of the original estimator, and such that
Π[g] = 0, so the value of the integral is unchanged. Such a g is called a CV. CVs
are widely-used in statistics and machine learning, including for the simulation
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of Markov processes (Newton, 1994; Henderson and Glynn, 2002), stochastic
optimization (Wang et al., 2013), stochastic gradient MCMC (Baker et al., 2019),
reinforcement learning (Greensmith et al., 2004; Grathwohl et al., 2018; Liu et al.,
2018), variational inference (Paisley et al., 2012; Ranganath et al., 2014, 2016)
and Bayesian evidence evaluation (Oates et al., 2016).

Given a test function f , the problem of selecting an appropriate CV is non-
trivial and a variety of approaches have been proposed. Our discussion focuses
only on the setting where π is provided only up to an unknown normalization
constant; i.e., the setting where MCMC is typically used. The most widely-used
approach to selection of a CV is based on g = ∇ log π and simple (e.g., linear)
transformations thereof (Assaraf and Caffarel, 1999; Mira et al., 2013; Friel et al.,
2014; Papamarkou et al., 2014); note that under weak tail conditions on π, the
CV property Π[g] = 0 is assured. Recently several authors have proposed the
use of more complicated or even non-parametric transformations, such as based
on high order polynomials (South et al., 2019), kernels (Oates et al., 2017, 2019;
Barp et al., 2018) and neural networks (NNs) (Grathwohl et al., 2018; Liu et al.,
2018; Wan et al., 2019). These new approaches have been shown empirically –
and theoretically, in the case of kernels (Barp et al., 2018; Oates et al., 2019)– to
provide substantial reduction in variance for MCMC.

These recent developments are closely related to Stein’s method (Stein, 1972;
Chen et al., 2010; Ross, 2011; Anastasiou et al., 2021), a tool used in probability
theory to quantify how well one distribution Π ′ approximates another distribution
Π. Recall that, given a collection of functions g for which Π[g] = 0 is satisfied,
Stein’s method uses supgΠ

′[g] as a means of quantifying the difference between
Π and Π ′. As a byproduct, researchers in this field have constructed a large range
of functions g that can be used as CVs. Although Stein’s method has recently
been applied to a variety of problems including MCMC convergence assessment
(Gorham and Mackey, 2015, 2017; Gorham et al., 2019), goodness-of-fit testing
(Chwialkowski et al., 2016; Liu et al., 2016; Yang et al., 2018), variational inference
(Ranganath et al., 2014, 2016), estimators for models with intractable likelihoods
(Barp et al., 2019; Liu et al., 2019) and the approximation of complex posterior
distributions (Liu et al., 2016; Liu and Wang, 2016; Liu and Lee, 2017; Chen
et al., 2018, 2019; Riabiz et al., 2020), a unified account of how Stein’s method
can be exploited for the construction of CVs, encompassing existing polynomial,
kernel and NN transformations, has yet to appear.

The organization and contributions of this paper are as follows. The literature
on polynomial, kernel, and NN CVs is reviewed in Section 2. An efficient learning
strategy for CVs based on stochastic optimization is proposed in Section 3. A
theoretical analysis is provided in Section 4, which provides general sufficient
conditions for variance reduction to be achieved. Finally, an empirical assessment
is provided in Section 5 and covers a range of synthetic test problems, as well as
problems arising in the Bayesian inferential context.
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2 Background

In what follows, it is assumed that an approximate sample {xi}ni=1 ⊂ Rd from
Π have been obtained and our goal is to construct an estimator for Π[f ] of the
form 1

n−m
∑n
i=m+1 f(xi)− g(xi) where g is a CV learned using a subset of size

m ≤ n from the {xi}ni=1.
Several approaches have been proposed. One approach is to use a Taylor

expansion of the test function f (Paisley et al., 2012; Wang et al., 2013), or
perhaps a polynomial approximation to f learned from regression (Leluc et al.,
2019). Unfortunately, this will only be a feasible approach when integrating
against simple probability distributions Π for which polynomials can be exactly
integrated, such as a Gaussian. CVs may also be directly available through
problem-specific knowledge (e.g., for certain Markov processes; Newton, 1994;
Henderson and Glynn, 2002), but this is rarely the case in general. Alternatively,
CVs can sometimes be built using known properties of the method used for
obtaining samples; see Andradóttir et al. (1993); Hammer and Tjelmeland (2008);
Dellaportas and Kontoyiannis (2012); Brosse et al. (2018); Belomestny et al.
(2020, 2019) for CVs that are developed with a particular MCMC method in
mind. See also Hickernell et al. (2005) for CVs specialized to quasi-Monte Carlo
(QMC). An obvious drawback to the methods above is that they impose strong
restrictions on the methods that one may use to obtain the {xi}mi=1.

An arguably more general framework, and our focus in this paper, is to first
curate a rich set G of candidate CVs, and then to employ a learning procedure
to approximately select an optimal CV g ∈ G. This should be done according
to a suitable optimality criterion based on f and the given set {xi}mi=1. The
methodological challenges are therefore twofold; first, we must construct G and
second, we must provide a procedure to select a suitable CV from this set. The
construction of a candidate set G has been approached by several authors using
a variety of regression-based techniques:

– Motivated by physical considerations, Assaraf and Caffarel (1999) proposed
to use g = Hu, based on the Schrödinger-type Hamiltonian H = −0.5∆ +
0.5(
√
π)−1∆

√
π, where ∆ is the Laplacian and u is a polynomial of fixed degree.

See also Mira et al. (2013); Friel et al. (2014); Papamarkou et al. (2014).
– An approach called control functionals (CFs) was proposed in Oates et al.
(2017), where the set G consisted of functions of the form g = ∇·u+u ·∇ log π,
where ∇· denotes the divergence operator, ∇ denotes the gradient operator
and u : Rd → Rd is constrained to belong to a suitable Hilbert space of vector
fields on Rd. See also Barp et al. (2018); Oates et al. (2019); South et al. (2020)
for the connection with Stein’s method.

– In more recent work, Wan et al. (2019) extended the CF approach to the case
where a NN is used to provide a parametric family of candidates for the vector
field u. The set of all such functions g generated using a fixed architecture of
NN is taken as G. See also Tucker et al. (2017); Liu et al. (2018).



4 Si, Oates, Duncan, Carin, Briol

Thus, several related options are available for constructing a suitable candidate
set G. However, where existing literature diverges markedly is in the procedure
used to select a suitable CV from this set:
– For approaches based on polynomials, Assaraf and Caffarel (1999) proposed

to select polynomial coefficients θ in order to minimize the sum-of-squares
error

∑m
i=1(f(xi)− gθ(xi))2. Here gθ is used to emphasize the dependence on

coefficients θ of the polynomial. For even moderate degree polynomials, the
combinatorial explosion in the number of coefficients as d grows necessitates
regularized estimation of θ; suitable regularizers are evaluated in Portier and
Segers (2019); South et al. (2019).

– For the CF approaches, regularized estimation is essential since the Hilbert
space is infinite dimensional. Here, Oates et al. (2017) proposed to select g
as a minimal norm element of the Hilbert space for which the interpolation
equations f(xi) = c+ g(xi) are satisfied for all i = 1, . . . ,m and some c ∈ R.
A major drawback of this approach is the O(m3) computational cost.

– The approach based on NN also exploited a sum-of-squares error, but in Wan
et al. (2019) the authors proposed to include an additional regularizer term
λ
∑m
i=1 gθ(xi)

2, for some pre-specified constant λ, to avoid over-fitting of the
NN. Optimization over θ, the parameters of the NN that enter into gθ, was
performed using stochastic gradient descent.

It is therefore apparent that, in existing literature, the construction of the
candidate set G is intimately tied to the approach used to select a suitable element
from it. This makes it difficult to draw meaningful conclusions about which
CVs are most suitable for a given task; from a theoretical perspective, existing
analyses make assumptions that are mutually incompatible and, from a practical
perspective, the different techniques and software involved in implementing
existing methods precludes a straightforward empirical comparison. Our attention
therefore turns next to the construction of a general framework that can be used
to learn a wide range of CVs, including polynomial, kernel and NN, under a single
set of theoretical assumptions and algorithmic parameters, enabling a systematic
assessment of CV methods to be performed.

3 Methods

Here we present a general framework for the construction of CVs: In Section 3.1
the construction of a candidate set G is achieved using Stein operators, which
unifies the CVs proposed in existing contributions such as Assaraf and Caffarel
(1999); Oates et al. (2017); Wan et al. (2019) and covers simultaneously the case
of polynomials, kernels and NNs. Then, in Section 3.2, we present an approach
to selection of a suitable element g ∈ G, based on a variational formulation and
performing stochastic optimization on an appropriate objective functional.

3.1 Classes of Control Variates G
The construction of non-trivial functions g : Rd → R with the property Π[g] = 0
is not straight-forward in the setting where MCMC would be used, since for
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general f the integral Π[f ] cannot be exactly computed. Stein’s method (Stein,
1972) offers a solution to this problem in the case where the gradient of log π
can be evaluated pointwise, which we describe next. A Stein characterization of
a distribution Π consists of a pair (U ,L), where U is a set of functions whose
domain is Rd and L is an operator, such that Π ′ [Lu] = 0 ∀u ∈ U if and only if
the distributions Π ′ and Π are equal. In this case U is called a Stein class and
L is called a Stein operator5. Clearly, if one can identify a Stein characterization
for Π, then one could take G = LU = {Lu : u ∈ U} as a set of candidates CVs.

The literature on Stein’s method provides general approaches to identify a
Stein characterization (Chen et al., 2010; Ross, 2011). In the generator approach, L
is taken to be the infinitesimal generator of a Markov process which is ergodic with
respect to Π (Barbour, 1988). For example, if L is the infinitesimal generator of
an overdamped Langevin diffusion then one obtains the Langevin Stein operator,
which acts on vector fields u on Rd as LLu = ∇ log π ·u+∇·u. This recovers the
operator used in the control functional (CF) approach of Oates et al. (2017), as
well as the operator used in the NN approach of Wan et al. (2019). Alternatively,
we could construct an operator that acts on scalar -valued functions by replacing
the vector field u with the potential ∇u in the previous operator, leading to
the scalar-valued Langevin (SL) Stein operator LSLu = ∆u+∇u · ∇ log π. This
recovers the operator used with polynomials in Assaraf and Caffarel (1999); Mira
et al. (2013). Trivially, a scalar multiple of a Stein operator is a Stein operator, and
one may combine Stein characterizations (Ui,Li) linearly as Lu = L1u1 + L2u2,
u ∈ U1 × U2, so that considerable flexibility can be achieved. We will see in
Section 5 that this can lead to scalable and flexible classes of CVs.

3.2 Selection of a Control Variate g ∈ G

Once a set G of candidate CVs has been constructed, we must consider how to
select a suitable element g ∈ G (or equivalently u ∈ U) that leads to improved
performance of the MC estimator when f is replaced by f − g. In general this
will depend on the specific details of the MC method; for example, in MCMC one
would select g to minimize asymptotic variance (Dellaportas and Kontoyiannis,
2012; Belomestny et al., 2020), while in QMC one would minimize the Hardy-
Krause variation (Hickernell et al., 2005). The situation simplifies considerably
when G contains an element g∗ such that f − g∗ is constant. This optimal
function g∗ = Lu∗, if it exists, is given by the solution of Stein’s equation:
Lu∗(x) = f(x)−Π[f ]. This paper proposes to directly approximate a solution of
this equation (a linear partial differential equation) by casting it in a variational
form and solving over a subset V ⊆ U . The variational characterization that we
use is that J(u∗) = 0, where

J(u) := ‖f − Lu−Π[f ]‖2L2(Π) = VarΠ [f − Lu],

5 To simplify presentation in the paper, we always assume U is a maximal set of
functions for which Lu is well-defined and Π[Lu] = 0.
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with L2(Π) being the space of square-integrable functions with respect to Π. In
the spirit of empirical risk minimization, we propose to minimize an empirical ap-
proximation of this functional, computed based on samples (xi)

m
i=1 that are drawn

either exactly or approximately from Π. There are two natural approximations
that could be considered. The first is based on the variance representation

J(u) = VarΠ [f − Lu] ≈ JV
m(u) (1)

JV
m(u) := 2

m(m−1)
∑
i>j(f(xi)− Lu(xi)− f(xj) + Lu(xj))

2,

providing an approximation of J at cost O(m2), used in Belomestny et al. (2018).
The second is based on the least-squares representation

J(u) = min
c∈R
‖f − Lu− c‖2L2(Π) ≈ minc∈R J

LS
m (c, u), (2)

JLS
m (c, u) := 1

m

∑m
i=1 (f(xi)− Lu(xi)− c)2 ,

providing an approximation of J at cost O(m), used in Assaraf and Caffarel
(1999); Mira et al. (2013); Oates et al. (2017, 2019). These approximations will be
unbiased when the xi are independent draws from Π, but this will not necessarily
hold for the MCMC case. To approximately solve this variational formulation we
consider a parametric subset V ⊆ U , where elements of V can be written as vθ for
some parameter θ ∈ Rp. Depending on the specific nature of the functions gθ, it
can occur that the optimization problem is under-constrained, e.g., when p > m.
Therefore, following Oates et al. (2017); South et al. (2019); Wan et al. (2019), we
also allow for the possibility of additional regularization at the level of θ. Thus we
aim to minimize objectives of the form J̃V

m(θ) + λmΩ(θ) and J̃LS
m (c, θ) + λmΩ(θ)

over c ∈ R and θ ∈ Rp, where J̃V
m(θ) := JV

m(vθ), J̃V
m(c, θ) := JV

m(c, vθ), λm > 0
and Ω(θ) is a regularization term to be specified. To reduce notational overhead,
for the least-squares case we let θ0 := c and simply write J̃LS

m (θ) where θ ∈ Rp+1.
To perform the minimization, we propose to use stochastic gradient descent

(SGD). Thus, to minimize a functional F (θ), we iterate through θ(t+1) = θ(t) −
αt∇̂F (θ(t)), where the learning rate αt decreases as t→∞ and ∇̂F is an unbiased
approximation to ∇F . In our experiments, ∇̂F is constructed using a randomly
chosen subset from (xi)

m
i=1, with this subset being re-sampled at each step of

SGD (i.e., mini-batch SGD) (Polyak and Juditsky, 1992; Zhang, 2004).
This framework is compatible with any parametric function class and has the

potential to provide significant speed-ups, relative to existing methods, due to
the efficiency of SGD. For example, taking V to be the polynomials of degree at
most k in each variable recovers the same class as Assaraf and Caffarel (1999);
Mira et al. (2013); Papamarkou et al. (2014); South et al. (2019), but with a
parameter optimization strategy based on SGD as opposed to exact least squares.
This problem is hence closely related to the ADALINE algorithm of Widrow and
Hoff (1960) with basis functions which integrate to zero.

For SGD with t iterations and mini-batches of size b, our computational cost
will be of order O(dkbt), whereas exact least squares must solve a linear system
of size O(dk), leading to a cost of O(d3k + mdk). Similarly, taking V to be a
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Fig. 1: Scalable Control Variates in High Dimensions. Here we consider the toy
problem of integrating f(x) = x1 + · · ·+ xd against N (0, Id×d). The total sample
size is n = 1000 and m = 500 of these were used as the training set. Here 20
realizations (blue dashed lines) are shown and blue dots represent the mean
absolute error. The red lines represent the performance and computational cost
of solving the corresponding linear system exactly, our benchmark. Similarly, the
green lines represent the MC estimator with no CV used.

linear space spanned by m translates of a kernel recovers the CF method of Oates
et al. (2017). SGD has computational cost of O(mdbt), whereas CFs requires
O(m3 + m2d) due to the need to invert an m-dimensional matrix. Significant
reduction in computational cost can also be obtained for ensembles: a combination
of polynomial and kernel basis functions, as considered in South et al. (2020),
would cost O((md+ dk)bt) compared to the O(m3 + d3k +m2 +mdk) cost when
the linear system is exactly solved. Furthermore, any hyper-parameters, such as
kernel parameters, can be incorporated into the minimization procedure with
SGD, so that nested computational loops are avoided.

Some of these speed-ups are illustrated on a toy example in Figure 1. Even
for this moderately-sized problem, the use of SGD provides significant speed-ups.
Additional experiments with values of m = 5000 in Appendix D.1 show that
larger speed-ups can be obtained for large scale problems.

4 Theoretical Assessment

In this section we present our novel theoretical results for CVs trained using SGD.
All proofs are contained in Appendix A.

The first question is whether it is possible to obtain zero-variance CVs, i.e.
can we find a u ∈ U such that J(u) = VarΠ [f − Lu] = 0. The answer is “yes”
under regularity conditions on Π and L, and whenever V is large enough. In
particular, a fixed parametric class may not be large enough, but we can consider
a nested sequence of sets V1 ⊆ V2 ⊆ . . . such that ∪p∈NVp is dense in U . For
example, Vp could be polynomials of degree p, or NNs with p hidden units.

Proposition 1. Let U be a normed space and L : U → L2(Π) be a bounded
linear operator. Consider a sequence of nested sets V1 ⊆ V2 ⊆ . . . such that
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∪p∈NVp is dense in U . If ∃u ∈ U that solves the Stein equation Lu = f −Π[f ],
then limp→∞ infv∈Vp J(v) = 0.

Of course, the existence of a solution to the Stein equation needs to be verified.
This point has not yet, to the best of our knowledge, been addressed in the
literature on CVs. Our next result below provides regularity conditions for the
existence of a solution when using LSL, the Stein operator used in our experiments.
Denote the Sobolev space W k,p(Π) of functions whose weak derivatives of order
k are in Lp(Π) and the Sobolev space W k,p

loc of functions whose p-th power
weak derivatives of order k are locally integrable; these are formally defined in
Appendix A.1. For a vector-valued function h : Rd → Rp we let ‖h‖Lp(Π) :=

(
∑d
i=1 ‖hi‖2Lp(Π))

1/2.

Proposition 2. Consider the vector space U = W 2,2(Π) ∩W 1,4(Π) equipped
with norm ‖u‖U := max(‖u‖W 1,4(Π), ‖u‖W 2,2(Π)). Then LSL : U → L2(Π) is a
bounded linear operator with ‖LSL‖U→L2(Π) ≤ 2(‖∇ log π‖2L4(Π) + 1)

1
2 .

Furthermore, suppose that

(i)
∫
‖x‖K2 dΠ(x) <∞ for some K > 8,

(ii) (∇ log π)(x) · (x/‖x‖2) ≤ −r‖x‖α2 for some α > −1, r > 0, and all ‖x‖2 > M
for some M > 0,

(iii) |f(x)| ≤ C1 + C2‖x‖β2 for some C1, C2 ≥ 1 and β < K/4− 2.

Then, ∃u ∈ U that solves the Stein equation LSLu = f −Π[f ].

The fact that the space U in Proposition 2 is separable ensures that suitable
approximating sets Vp can be constructed. For example, if {ui}∞i=1 is a spanning
set for U then we may set Vp = span(u1, . . . , up), in which case ∪p∈NVp is dense
in U so the result of Proposition 2 holds.

Notice that a solution to the Stein equation will not be unique, since one
can introduce an additive constant. This motivates, in practice, the use of an
additional regularizer Ω(θ) to ensure uniqueness of the minimum of θ 7→ J(vθ).

In Appendix C of the Electronic Supplement we also recall a standard conver-
gence result for SGD in settings where the objective is convex, focusing on the
case where G is a finite dimensional linear space. This result is thus applicable to
polynomials and kernels, but not NN-based CVs.

5 Empirical Assessment

Here we assess our method on both synthetic problems and on problems arising
in a Bayesian statistical context. Our aim is twofold; (i) to assess whether
our learning procedure provides a speed-up compared to existing approaches,
and (ii) to gain insight into which class of CV may be most appropriate for a
given context. The Stein operator LSL was used for all experiments. For the
polynomial and kernel CVs, the regularizer Ω(θ) = ‖θ‖22 was used, while for
NN CVs the regularizer Ω(θ) =

∑m
i=1 gθ(xi)

2 was used, following Wan et al.
(2019). The regularization strength parameter λ was tuned by cross-validation.
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Integrand f MC Poly. CV Ker. CV Poly.+Ker. CV
Continuous 2.77e-03 3.21e-03 3.28e-04 1.85e-04
Corner Peak 5.76e-03 1.07e-03 9.27e-06 6.05e-06
Discontinuous 2.04e-02 1.32e-02 3.91e-03 2.65e-03
Gaussian Peak 1.47e-03 1.40e-03 1.24e-05 1.05e-05
Oscillatory 4.17e-03 1.06e-03 4.63e-06 3.90e-06

Product Peak 1.37e-03 1.32e-03 2.12e-05 2.52e-06
Time (sec.) 7.10e-02 4.30e+00 2.60e+00 5.70e+00

Table 1: Mean absolute error (based on 20 repetitions) for polynomial-based CV,
kernel-based CV and an ensemble of these, for the Genz benchmark (Genz, 1984).
We took n = 1000,m = 500 and d = 1. The training time presented is for 25
epochs, averaged over repetitions for all integrands.

For some datasets, we employed two ensemble CVs: a sum of kernel and a
polynomial (i.e., kernel + polynomial); and a sum including two kernels with
different hyperparameters and a polynomial (i.e., multiple kernels + polynomial).
Implementation details and further experiments are provided in Appendix D of
the Electronic Supplement.

Genz Test Functions: The Genz functions are a standard benchmark used
to evaluate a numerical integration method (Genz, 1984). These functions f
exhibit discontinuities and sharp peaks, but nevertheless they can be exactly
integrated. The purpose of this first experiment is simply to assess whether any
variance reduction can be achieved using our general framework in challenging
and pathological situations.6 Results are shown in Table 1 for polynomial-based
and kernel-based CVs, as well as an ensemble of both. The CVs are trained
using SGD on the least-squares objective functional with batch size b = 8 for 25
epochs. For each f , the mean absolute error (MAE) of polynomial CVs is always
the largest while the linear combination of kernel and polynomial consistently
performs the best. This is likely due to the increased flexibility of the CV. In all
cases a substantial reduction in MAE was achieved, compared to MC. Full details
and an extensive range of additional experiments are provided in Appendix D.2
of the Electronic Supplement.

Integrating Gaussian Processes: To automatically generate test problems, we
modelled f as a Gaussian process (GP) and sampled (Π[f ], f(x1), . . . , f(xn))
from its Gaussian marginal; here the GP was centred and a squared-exponential
covariance function was used, and the distribution Π was taken to be an L-
component Gaussian mixture model. In this way infinitely many problem instances
can be generated, of a similar nature to those arising in computer experiments

6 We emphasize that MC can be evaluated at negligible cost and we are not advocating
that our methods should be preferred for this task.
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Fig. 2: Integrating Gaussian Processes. Left and centre-left: The mean absolute
error (based on 20 repetitions) of the CV estimators as a function of the training
set size m and dimension d. Centre-right and right: Compute times for polynomial
and kernel CVs as a function of m and d.

(Kennedy and Hagan, 2001) and Bayesian numerical methods (O’Hagan, 1991;
Briol et al., 2019). We compared CVs based on polynomials, kernels, and NNs
(three-layer ResNet with ReLU activation with 50 neurons per layer).

Results are presented in Fig. 2, with implementational details in Appendix D.3
of the Electronic Supplement. The left-most panel presents the performance of
each CV for minimising either J̃V

m or J̃LS
m in d = 1. Polynomials are not flexible

enough for such complex integrands, but kernels and NNs can achieve substantial
reduction in error. However, we found that the “effective” time requires to
implement a NN, including initialization of SGD and selecting an appropriate
learning rate, meant that NN were not time-competitive with the other methods
considered. The center-left panel studies the impact of d on the performance of
each method. The performance of polynomial and kernel CVs degrades rapidly
with d, but this is not the case for NNs. In both panels, J̃LS

m leads to improved
results compared to J̃V

m. The centre-right and right panels report computational
times of linear system and mini-batch SGD as d and m grows. These two panels
verify that mini-batch SGD has linear time complexity as n or d is increased,
whist exact solution of linear systems leads to exponential computational costs
for polynomial and kernel CVs.

Parameter Inference for Ordinary Differential Equations: Here we consider the
problem of inference for parameters α, β, γ, δ of the Lotka–Volterra equations
ẋ = αx−βxy, ẏ = δxy−γy, a popular ecological model for competing populations
(Lotka, 1925; Volterra, 1926). Our experimental set up is identical to that used
in Riabiz et al. (2020). Our task is to compute posterior means of these dynamic
parameters based on datasets of size n arising as a subsample from Metropolis-
adjusted Langevin algorithm output (Roberts and Tweedie, 1996); the full MCMC
output provided the ground truth. Half of the sample was used to train CVs
(m = n

2 ) and a batch size of b = 8 was used over 25 epochs in SGD based on the
least-squares objective functional.
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Fig. 3: Parameter Inference for Ordinary Differential Equations. Each panel
except the rightmost presents the mean absolute error (based on 20 repetitions)
for approximation of posterior expectations of model parameters using MCMC
output. The rightmost panel presents the computing time of training these CVs.
Here “MC” represents the benchmark where no CV is used.

Fig. 3 displays the performance of different CVs under sizes of training dataset.
In each case the standard MC estimate is outperformed, with ensemble of multiple
kernels with a polynomial or the NN performing uniformly best. Due to the
computational cost of training NNs as shown in the rightmost panel, we found
the ensemble to be preferable. The ensemble also leads to a convex objective
which is easier to minimize.

High-dimensional Bayesian Logistic Regression In this final example, we consider
Bayesian logistic regression. We experimented on two different datasets: the Sonar
data and the Madelon data. The Sonar dataset has dimension d = 61, which is
lower than the d = 500 of the Madelon dataset. Results were similar for both
experiments, and the Sonar data is therefore relegated to Appendix D.6 of the
Electronic Supplement.

The Madelon data is an artificial dataset, which was part of the NIPS/NeurIPS
2003 feature selection challenge (Guyon, 2003; Dua and Graff, 2017). This is a
two-class classification problem with 500 continuous input variables. We denote
by β the weight vector that includes all parameters to infer in the Bayesian
logistic regression. MCMC was used to sample from the posterior of β with the
Python interface to Stan (Carpenter et al., 2016). Our task is to approximate
the posterior probability that an unlabeled data point z corresponds to label
1, rather than 0, based on a subset of size m from the MCMC output. Thus
f(β) = (1+exp

(
−z>β

)
)−1. The entire chain was used to establish “ground truth”

for the value of this integral.
In these experiments, JLS

m was used with m = n and batch sizes of b = 8 over
25 epochs of SGD. Fig. 4 compares the performance of different CV methods.
The two ensemble CVs and the NNs perform significantly better than other CVs.
When m < 1000, the NNs and the CV with multiple kernels and a polynomial
have similar performance, better than others. When m ≥ 1000, the ensemble
CV surpasses NNs. One possible explanation is that for all values of m we



12 Si, Oates, Duncan, Carin, Briol

Fig. 4: Madelon Dataset. The mean absolute error (left) and compute times
(right), as a function of the size m of the training set; based on 20 repetitions.

used the same multi-layer perceptron (MLP) with 6 layers and 20 nodes in
each of them. Therefore, the NNs size (capacity) remains the same while the
training data size m increases. Further growing the depth of NN could lead to
an improved performance. Furthermore, the results for polynomials and kernels
demonstrate that our general framework based on SGD can achieve comparable
MAE with exactly solving the linear systems, but with a fraction of the associated
computational overhead. The compute time of NN in Fig. 4 does not capture the
time required to manually calibrate SGD, so that the “effective” compute time is
much higher than reported.

6 Conclusion

This paper outlined a general framework for developing CVs using Stein operators
and SGD. It was demonstrated that (i) the proposed training scheme leads
to speed-ups compared to existing CV methods; (ii) novel CV methods (e.g.,
ensemble methods) can be easily developed; (iii) theoretical analysis can be
performed in quite a general setting that simultaneously encompasses multiple
CV methods. Further research could explore the use of other Stein classes and
operators. In terms of Stein classes, one could consider the use of wavelets, which
are known for their good performance for multi-scale function approximation,
or other NN architectures which could provide further gains in high dimensions.
Stein operators are not unique and one could explore parameterized operators
(Ley and Swan, 2016) and include these parameters in the optimization scheme.
Finally, one could construct novel CVs on other spaces, such as general smooth
manifolds or countable spaces (Barp et al., 2018).
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A Proofs of Theoretical Results

A.1 Some Elements from Functional Analysis

Let X and Y be two normed real vector spaces. A function f : X → Y is
called Lipschitz continuous if there exists a constant L such that, ∀x, x′ ∈ X:
‖f(x)− f(x′)‖Y ≤ L‖x− x′‖X . The smallest such L ≥ 0 is called the Lipschitz
constant of f . The norm of a bounded linear operator L : X → Y is given by:
‖L‖X→Y := inf {c ≥ 0 : ‖Lx‖ ≤ c‖y‖ ∀x ∈ X}. For 1 ≤ p <∞ we denote

Lp(Π) :=
{
f : Rd → R measurable

∣∣∣‖f‖Lp(Π) :=
(∫

Rd |f(x)|pΠ(dx)
) 1

p <∞
}
.

Lploc :=
{
f : Rd → R measurable

∣∣∣ (∫K |f(x)|pdx
) 1

p <∞, ∀compact K ⊂ Rd
}
.

As usual, Lp(Π) can be interpreted as a normed space via identification of
functions that agree Π-almost everywhere on Rd. Using this definition, we can
now also define weighted Sobolev spaces of integer smoothness:

W k,p(Π) :=
{
f ∈ Lp(Π)

∣∣∣Dαf ∈ Lp(Π) ∀|α| ≤ k
}

W k,p
loc :=

{
f ∈ Lploc

∣∣∣Dαf ∈ Lploc ∀|α| ≤ k
}

In this definition, α = (α1, . . . , αd) ∈ Nd0 is a multi-index and Dα denotes
the weak derivative of order α, i.e. Dαf := ∂|α|f/∂xα1

1 . . . ∂xαd

d . Recall that
W k,p(Π) can be interpreted as a normed space with norm ‖u‖Wk,p(Π) :=

(
∑k
i=0

∑
α:|α|=i

∫
|Dαu(x)|pdΠ(x))

1
p , again via identification of functions whose

derivatives up to order |α| ≤ k agree Π-almost everywhere on Rd.

A.2 Proof of Proposition 1

Proof. Let u ∈ U solve the Stein equation Lu = f −Π[f ]. Since L is a bounded
linear operator between normed spaces,

J(v) = ‖f −Π[f ]− Lv‖2L2(Π) = ‖Lu− Lv‖2L2(Π) ≤ ‖L‖2U→L2(Π)‖u− v‖
2
U

where ‖L‖U→L2(Π) <∞. Fix ε > 0. Since u ∈ U and ∪p∈NVp is dense in U , there
exists v ∈ ∪p∈NVp such that ‖u− v‖U < ε. In particular, there exists q ∈ N such
that v ∈ Vq. Moreover, since Vq ⊆ Vp for all q ≤ p, the function p 7→ infv∈Vp J(v)
is non-increasing. Thus

0 ≤ lim
p→∞

inf
v∈Vp

J(v) ≤ inf
v∈Vq

J(v) ≤ ‖L‖2U→L2(Π) inf
v∈Vq

‖u− v‖2U ≤ ‖L‖2U→L2(Π)ε
2.

Since ε > 0 was arbitrary, the right hand side can be made arbitrarily small.
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A.3 Proof of Proposition 2

Proof. First we will show that LSL is a bounded linear operator from U =
W 2,2(Π) ∩W 1,4(Π) to L2(Π). To this end:

‖LSLu− LSLv‖2L2(Π) = ‖∇ log π · ∇(u− v) +∇ · ∇(u− v)‖2L2(Π) (3)

≤ 2
[
‖∇ log π · ∇(u− v)‖2L2(Π) + ‖∇ · ∇(u− v)‖2L2(Π)

]
(4)

≤ 2
[
‖∇ log π‖2L4(Π) ‖∇(u− v)‖2L4(Π) + ‖u− v‖2W 2,2(Π)

]
(5)

≤ 2
(
‖∇ log π‖2L4(Π) + 1

)(
‖u− v‖2W 1,4(Π) + ‖u− v‖2W 2,2(Π)

)
, (6)

≤ 4
(
‖∇ log π‖2L4(Π) + 1

)
max

(
‖u− v‖W 1,4(Π), ‖u− v‖W 2,2(Π)

)2
Equation (3) follows by definition of the Stein operator, Eq. 4 follows from the
fact that (a+b)2 ≤ 2(a2 +b2). Equation (5) follows from the vector-valued Hölder
inequality together with the definition of ‖ · ‖W 2,2(Π). Equation (6) follows from
the definition of ‖ · ‖W 1,4(Π). Thus LSL is a bounded linear operator as claimed,
and moreover ‖LSL‖U→L2(Π) ≤ 2(‖∇ log π‖2L4(Π) + 1)

1
2 .

The second task is to establish that there exists a solution to the Stein
equation LSLu = f −Π[f ]. For this we leverage Pardoux and Vertennikov (2001,
Theorem 1) which states that, if conditions (ii), (iii) hold, there exists a solution
u to the Stein equation which is continuous and belongs to W 2,q

loc for all q > 1.
Moreover, ∀m > β+ 2 there exists Cm such that |u(x)|+ |∇u(x)| ≤ Cm(1 + |x|m)
for all x ∈ Rd. By assumption (i) it follows that u ∈W 1,4(Π). Moreover, since π
was assumed to be smooth (recall, this was assumed at the outset in Section 1),
standard regularity results imply that u is smooth and so, is a classical solution.
We can therefore write

|∆u(x)| ≤ |f(x)|+ |Π(f)|+ |∇ log π(x) · ∇u(x)|, x ∈ Rd,

so that ‖∆u‖L2(Π) ≤ 2‖f‖L2(Π) +‖∇ log π‖L4(Π)‖u‖W 1,4(Π) <∞. It follows that
u ∈W 2,2(Π) ∩W 1,4(Π), as claimed.
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Electronic Supplement
The following document supplements the paper Scalable Control Variates for

Monte Carlo Methods via Stochastic Optimization. In Appendix B, we review
existing methodology for CVs based on polynomials and kernels. Appendix C
discusses stochastic convex optimization in from a theoretical standpoint. Finally,
Appendix D contains a detailed exposition of the experimental setup in the paper
for reproducibility, and provides additional results.

B Additional Background on Control Variates

Let {xi}ni=1 be a set containing approximate samples fromΠ. The classic approach
to CVs is based on data-splitting, such that a CV g is constructed based on a
subset of the samples {xi}mi=1, then a MC estimator based on f − g is evaluated
using the remainder of the samples, {xi}ni=m+1. Thus Π[f ] is approximated using
the CV estimator

1
(n−m)

∑n
i=m+1(f(xi)− g(xi))

where g(·) = g(·;x1, . . . , xm). If the xi are independent samples from Π then
such a CV estimator is unbiased. It is also common practice to use the same set
{xi}ni=1 for both the construction of g and evaluation of the MC estimator; in
this case the estimator is biased in general but may enjoy superior mean square
error.

In this section we recall existing approaches to constructing CVs, providing
references to existing literature where appropriate.

B.1 Control Variates based on Polynomials

As pointed out in the main text, the polynomial CVs of Assaraf and Caffarel
(1999); Mira et al. (2013); Papamarkou et al. (2014); South et al. (2019) are
based on LSL and take the form:

gθ(x) = LSLvθ(x) = ∆xvθ(x) +∇xvθ(x) · ∇x log π(x),

where vθ(x) is a polynomial of order k ∈ N. For first order polynomials (i.e. k = 1

and p = d), we have vθ(x) =
∑d
i=1 θixi where θ = (θ1, . . . , θd) ∈ Rd, and the CV

estimator is of the form: gθ(x) = θ · ∇x log π(x). Note that the constant term
is not included, since this is in the null space of LSL. More generally, for an
arbitrary polynomial of order k,

vθ(x) =
∑p
j=1 θjx

αj1

1 · · ·xαjd

d ,

for some θ = (θ1, . . . , θp) ∈ Rp and where the rows of the matrix α ∈ Zp×d are
multi-indices containing polynomial coefficients such that the polynomial has
total degree k ≥ 1: 1 ≤

∑d
l=1 αjl ≤ p. The total number of polynomials satisfying
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this condition is p =
(
d+k
d

)
− 1. The CVs based on such polynomials take the

form gθ(x) = θ · b(x), where the vector b(x) = (b1(x), . . . , bp(x)) has components:

bj(x) =
[∑d

l=1 max (0, αjl)x
αjl−1
l

∂ log π
∂xl

∏d
z=1,z 6=l x

αjz
z

]
+
[
max (0, αjl(αjl − 1))x

αjl−2
l

∏d
z=1,z 6=l x

αjz
z

]
for j = 1, . . . , p; see Appendix A of South et al. (2019). The value of θ which
minimizes the least-squares objective ĴLS

m is given by θ∗m = V̂ −1m Ĉm with:

V̂m = 1
(m−1)

∑m
i=1

(
b(xi)− 1

m

∑m
i=1 b(xi)

) (
b(xi)− 1

m

∑m
i=1 b(xi)

)>
,

Ĉm = 1
(m−1)

∑m
i=1

(
f(xi)− 1

m

∑m
i=1 f(xi)

) (
b(xi)− 1

m

∑m
i=1 b(xi)

)>
.

The size m of the training dataset is required to be sufficiently large to ensure
that the matrix V̂m is non-singular, otherwise additional regularisation is required
(South et al., 2019). Exact solution of this linear system for θ∗m requires a
computational cost of O(p3), which can be prohibitive since p increases rapidly
with both d and k.

B.2 Control Functionals: Control Variates based on Reproducing
Kernels

CFs are CVs constructed using a nonparametric kernel-based interpolant. Let
k : Rd × Rd → R be a symmetric positive definite kernel with corresponding
reproducing kernel Hilbert space Hk. Oates et al. (2017) noted that, under some
regularity conditions, the kernels

k0(x, y) := ∇x · ∇yk(x, y) +∇xk(x, y) · ∇y log π(y)

+∇yk(x, y) · ∇x log π(x) + k(x, y)∇x log π(x) · ∇y log π(y), (7)

and k+(x, y) := k0(x, y) + σ2 for σ > 0 are also reproducing kernels with
corresponding RKHS respectively denoted Hk0 and Hk+ . More specifically, Hk+
is just Hk0 with the addition of constant functions. The RKHS Hk+ can be used
to approximate the integrand f as follows:

f̃σ ∈ arg min
{
‖h‖H+ s.t. h ∈ H+, h(xi) = f(xi), i = 1, . . . ,m

}
.

Under regularity conditions this provides a unique approximation of the form
(see e.g. Proposition 1 in Briol et al. (2019)):

f̃σ(x) = k+(x,X)k+(X,X)−1f(X),

where we have used the matrix notation [k+(x,X)]i = k+(x, xi), [f(X)]i =
f(xi) and [k+(X,X)]i,j = k+(xi, xj) for i, j ∈ {1, . . . ,m}. The integral of this
approximation can be obtained in closed form:

Π[f̃σ] = σ21>k+(X,X)−1f(X),
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where 1 is the vector (1, . . . , 1)>. Finally, the control functional is therefore given
by gσ(x) = f̃σ(x)−Π[f̃σ], which takes the form:

gσ(x) :=
(
k+(x,X)− σ21>

)
k+(X,X)−1f(X).

To remove the dependence on the regularization due to σ, we let σ →∞ and get
the CV (Oates et al., 2017):

g(x) = k0(x,X)k0(X,X)−1
[
f(X)−

(
1>k0(X,X)−1f(X)
1>k0(X,X)−11

)
1
]
.

Properties of control functional estimators have been detailed in Barp et al.
(2018); Oates et al. (2019, 2017).

B.3 Control Variates Based on Ensembles of Kernels and
Polynomials

In our experiments, we also employed a linear combination (or ensemble) of
CVs, one based on a kernel and the other on a polynomial. Given a training set
X = {xi}mi=1, the CV is given by:

gθ(x) = ∆xΦθ̃(x) +∇xΦθ̃(x) · ∇x log π(x) + θ̄ · k0(x,X)

= θ̃>b(x) + θ̄ · k0(x,X),

where θ = (θ̃, θ̄), θ̃ = (θ1, . . . , θp)
>, θ̄ = (θ̄1, . . . , θ̄m)>, Φθ̃(x) is some polynomial

of order k ∈ N.
This form of CV was proposed in (South et al., 2020) under the semi-

exact control functionals, where the authors derived a closed-form expression
for the parameter vector θ under the requirements that: (i) gθ(xi) = f(xi) for
i = 1, . . . ,m and (ii) gθ = f whenever f belongs to a user-specified finite-
dimensional vector space spanned by b1, . . . , bp. Requirement (ii) is an exactness
condition, which motivated the name semi-exact. Let

B =

1 b1(x1) · · · bp(x1)
...

...
...

...
1 b1(xm) · · · bp(xm)

 .
Then, under regularity conditions, South et al. (2020) showed that θ̃ and θ̄ can
be found by solving: [

k0(X,X) B
B> 0p×p

] [
θ̃
θ̄

]
=

[
f(X)
0p×1

]
,

where 0p×1 is a p× 1 column vector of zeros and 0p×p is a p× p matrix of zeros.
For the experiments in this paper we do not enforce exactness constraints for
mini-batch SGD algorithm; as shown in Figure 8, the performance of ensemble
CVs (a kernel with a polynomial) trained by mini-batch SGD and solving linear
system is comparable.
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C Convex Stochastic Optimization

The following result establishes convergence over a fixed set Vp which is linear,
both in the idealized scenario where we may directly sample from Π and in
the practical scenario where we approximate Π with MCMC. Let σmin(M) and
σmax(M) denote the minimum and maximum singular values of a matrix M .

Proposition 3. Let L : U → L2(Γ ) be a bounded linear operator for some
distribution Γ on Rd and let J̃(θ) := ‖f − θ0 − Lvθ‖2L2(Γ ) for θ ∈ Rp+1. Assume
that ∃u ∈ U solving the Stein equation Lu = f −Π[f ]. Furthermore, assume:

– Model: Any v ∈ Vp can be expressed as vθ =
∑p
i=1 θiui where u1, . . . , up ∈ U .

Furthermore, letting ψ0 := 1 and ψi := Lui, we assume that the {ψi}pi=0 are
linearly independent in L2(Γ ).

– Optimizer: The random variables x(t)i are distributed according to Γ , such
that x(s)i and x(t)j are independent whenever s 6= t. Let θ(t) denote the t-th
iteration of SGD, with stochastic gradient at step t based on batch (x

(t)
i )bi=1.

Let Mi,j := Γ [ψiψj ] and
[
M

(t)
b

]
i,j

:= 1
b

∑b
k=1 ψi

(
x
(t)
k

)
ψj
(
x
(t)
k

)
. Suppose the

learning rate (αt)t∈N satisfies:

αt = β
γ+t , β > 1

2σmin(M) , γ > 0,

α1 ≤ σmin(M
2)

2σmax(M)(σmax(E[(M(1)
b )2])+σmin(M2))

Then, there exists ν ≥ 0 such that

E[J̃(θ(t))] ≤ ν
γ+t + ‖L‖2U→L2(Γ ) infv∈Vp ‖u− v‖2U .

The result is in expectation with respect to the law of x(t)i , and guarantees that
the CVs trained with SGD will converge to the optimal CV of the form g = Lv,
v ∈ Vp. The second term is an upper bound on infv∈Vp J(v), which will be zero
when the assumptions of Proposition 1 or Proposition 2 hold. The case Γ = Π
corresponds to minimization of J(v) over v ∈ Vp using SGD with exact sampling
from Π, while the case Γ = 1

m

∑m
i=1 δ(xi) corresponds to minimization of the

empirical risk J̃(θ) = J̃LS
m (θ) using SGD with mini-batches drawn from the (fixed)

training dataset (xi)
m
i=1. For the later case, the theorem is presented for J̃LS

m , but
a similar proof technique could be used for J̃V

m.
The result does not apply to NNs; indeed, SGD is not expected to converge

to the global minimum of J̃ when a NN is employed since J̃ will be non-convex.
Bounds on the error incurred could however be obtained for alternative algorithms
including stochastic gradient Langevin dynamics (Chau et al., 2019; Raginsky
et al., 2017; Zhang et al., 2019).

C.1 Proof of Proposition 3

The following elementary lemma will be required:
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Lemma 1. Let A and B be positive semi-definite matrices of equal dimension,
such that σmin(A) ≥ σmax(B). Then A−B is also a positive semi-definite matrix.

Proof. Let A and B be d× d dimensional. For any x ∈ Rd we have that

x>(A−B)x = x>Ax− x>Bx ≥ σmin(A)‖x‖22 − σmax(B)‖x‖22
= (σmin(A)− σmax(B))‖x‖22 ≥ 0.

The implication of our linearity assumption on the model is that the parametrized
objective function is a quadratic function in θ ∈ Rp+1; which simplifies the anal-
ysis of SGD.

Proof (Proposition 3). From linearity of L, the objective function that we aim
to minimize is

J̃(θ) = ‖f − θ0 −
∑p
i=1 θiLui‖

2

L2(Γ )
= ‖f −

∑p
i=0 θiψi‖

2

L2(Γ )
,

and we have ψ0 = 1 and ψi = Lui, i = 1, . . . , p. This can be re-expressed in
matrix notation as

J̃(θ) = θ>Mθ − 2a>θ + Γ [f2], (8)

where Mi,j = Γ [ψiψj ] and ai := Γ [fψi]. Our two cases of interest are Γ = Π
and Γ = 1

m

∑m
i=1 δ(xi) for a fixed set {xi}mi=1 ⊂ Rd.

Our aim is to verify the preconditions of Theorem 4.7 in Bottou et al. (2018).
If these are satisfied then we may conclude that, under the assumptions on the
learning rate in the statement of Proposition 3, for some constant ν ≥ 0,

E
[
J̃
(
θ(t)
)]
≤ ν

γ+t + infθ∈Rp+1 J̃(θ).

In particular, since we have assumed that ∃u ∈ U that solves the Stein equation
Lu = f −Π[f ] and that L : U → L2(Γ ) is a bounded linear operator, the same
argument used in the proof of Proposition 1 shows that J̃(θ) ≤ ‖L‖2U→L2(Γ )‖u−
vθ‖2U , so that

E
[
J̃
(
θ(t)
)]
≤ ν

γ+t + ‖L‖2U→L2(Γ ) infv∈Vp ‖u− v‖2U , (9)

as claimed.
Theorem 4.7 in Bottou et al. (2018) requires that J̃(θ) is continuously differ-

entiable with ∇J̃ being Lipschitz. This is satisfies in our context, with Lipschitz
constant 2σmax(M). The two remaining conditions that we must verify in order to
apply Theorem 4.7 of Bottou et al. (2018) are; (i) the strong convexity property

J̃(θ)− J̃(ϑ) ≥ 〈∇J̃(ϑ), θ − ϑ〉+ l
2‖θ − ϑ‖

2
2

for some l > 0, and (ii) the bound

E[‖∇J̃b(θ)‖22] ≤ C1 + C2‖∇J̃(θ)‖22 (10)
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for some constants C1, C2 where ∇J̃b is a stochastic estimate of ∇J̃ based on
b samples from Γ . See the discussion of (4.9) in Bottou et al. (2018) for why
establishing (10) is a sufficient condition for Theorem 4.7.

First we verify condition (i); that the optimization problem is strongly convex
in θ ∈ Rp+1. From direct computation with (8) we obtain that J̃(θ) is strongly
convex if and only if (θ − ϑ)>M(θ − ϑ) ≥ c

2‖θ − ϑ‖
2
2. Since M is positive semi-

definite and the ψi were assumed to be linearly independent in L2(Γ ), the matrix
M is non-singular and σmin(M) > 0. Thus J̃ is strongly convex with strong
convexity constant c = 2σmin(M).

It remains only to verify condition (ii). Let ψ(x) := (ψ0, ψ1(x), . . . , ψp(x))>.
Recall that, in the tth step of SGD, the gradient ∇J̃ is unbiasedly estimated with

∇J̃b(θ) := ∇

[
1
b

∑b
i=1

(
f
(
x
(t)
i

)
− ψ

(
x
(t)
i

)>
θ

)2
]

= − 2
b

∑b
i=1

(
f
(
x
(t)
i

)
− ψ

(
x
(t)
i

)>
θ

)
ψ
(
x
(t)
i

)
,

where the x(t)i are independent samples from Γ . Let f be the vector with entries
fi := f(x

(t)
i ), let ab be the vector with entries ab,j := 1

b

∑b
i=1 f(x

(t)
i )ψj(x

(t)
i ), so

that E[ab] = a, and Ψi,j := ψj(x
(t)
i ). Thus

1
4‖∇J̃b(θ)‖

2
2 = 1

b2 ‖(f − Ψθ)
>Ψ‖22 = 1

b2 (f − Ψθ)>ΨΨ>(f − Ψθ)
= 1

b2

(
θ>Ψ>ΨΨ>Ψθ − 2f>ΨΨ>Ψθ + f>ΨΨ>f

)
= θ>M2

b θ − 2a>b Mbθ + a>b ab

where Mb = 1
bΨ
>Ψ satisfies E[Mb] = M . Similarly,

1
4‖∇J̃(θ)‖22 = θ>M2θ − 2a>Mθ + a>a.

Since (10) is equivalent to non-negativity of

1
4

(
C1 + C2‖∇J̃(θ)‖22 − E[‖∇J̃b(θ)‖22]

)
= θ>(C2M

2 − E[M2
b ])θ − 2(C2a

>M − a>b Mb)θ +
(
1
4C1 + C2a

>a− a>b ab
)
,
(11)

using Lemma 1 we choose to set C2 = σmax(E[M2
b ])/σmin(M2) to ensure that

the matrix C2M
2 − E[M2

b ] is semi-positive definite. Given this choice of C2, it is
possible to take C1 large enough to guarantee that the expression in Equation (11)
is is non-negative ∀θ ∈ Rp+1. This verifies (ii). From Theorem 4.7 in Bottou et al.
(2018), the result follows under the stated assumptions on the learning rate αt.

D Numerical Experiments

Here we discuss further implementation details for each of the examples in the
paper, and also provide additional numerical experiments to complement the
results in the main text.
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For all experiments in this paper, the specific parametric forms of CVs that
were considered were as follows:

1. The second order polynomial class was used for polynomial CVs, i.e.,

Φθ(x) = 1
2x
>Ax+ b>x,

where A ∈ Rd×d is a symmetric matrix, b ∈ Rd, and θ = (A, b).
2. For the kernel CVs, the kernel k0(x, x′) in Equation (7) was used, and we

followed (Oates et al., 2017) in taking

k(x, x′) = (1 + α1‖x‖22 + α1‖x′‖22)−1 exp
{
−(2α2

2)−1‖x− x′‖22
}

(12)

for hyper-parameters α1, α2 > 0 to be specified.
3. The NN CVs were fully connected layers. For the Gaussian process realization

experiment, the NN had 2 layers and each layer had 50 hidden nodes. For
other experiments, the NN had 6 layers and each layer had 20 hidden nodes.
The ReLU activation function was used for all neurons except the output
neuron, where the identity function was employed.

4. The ensemble CV of polynomial and kernel was the sum of a degree 2
polynomial CV and a kernel interpolant CV. In the case of multiple kernels,
the same base kernel was used, but with different choices of hyperparameters.

The hyper-parameters α1 and α2 in the kernel and ensemble CVs were selected
via 5-fold cross-validation. In all experiments, the reported computing timings do
not include the hyper-parameter tuning time. This is still fair to compare various
CVs because all CVs and training methods–SGD and exact solution–necessitate
tuning hyper-parameters.

The remainder of this section is devoted to reporting details of the experiments
that were reported in the main text. In Section D.1 we describe the illustrative
experiment from the main text and also provide additional experiments, not
reported in the main text. Section D.2 contains details for the Genz test function
experiment and reports additional results, not contained in the main text. Section
D.3 contains details for the Gaussian Process experiment. In Section D.4 we
report an additional experiment that considers posterior inference for a model
of atmospheric pollution, not contained in the main text. In Section D.5 we
present the ensemble CV of two kernels and a polynomial used in the last two
experiments of this paper: ordinary differential equations and sonar dataset.

D.1 Numerical Integration of Polynomials

We start by comparing a range of CVs on polynomial integrands which are
integrated against a Gaussian distribution. This is a good benchmark problem
since the integrals can be computed in closed-form, and the performance of each
method can hence be studied precisely.
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Implementation Details Consider an integrand which is a sum of p polyno-
mials:

f(x) =
∑p
j=0

∏d
i=1 αjix

βji

i

where x = (x1, . . . , xd) ∈ Rd, α ∈ Rp×d & β ∈ Np×d (for both matrices, rows
correspond to a polynomial, and each column to a dimension of the space).
We can easily compute the integral of such a polynomial against a Gaussian
distribution N (0, Σ) where Σ = σ2Id×d using well-known Gaussian identities. In
particular, denoting π the pdf of this Gaussian distribution, we have:

Π[f ] =
∫
Rd f(x)π(x)dx =

∑p
j=0

∏d
i=1 αjiδ{βji∈{0,2,4,...}}σ

βji(βji − 1)!!

where δ{βji∈{0,2,4,...}} is an indicator function taking value 1 when βji is pair and
0 otherwise. Also, x!! denotes the double factorial (also called semi-factorial),
which is the product of all integers from 1 to x that have the same parity (odd or
even) as x. We can therefore use integration of polynomials against a Gaussian
distribution as a test-bed for various MC or CV methods.

In this case, we have that ∇x log π(x) = −x2/σ2, and so LSLu = ∆u+∇u ·
∇ log π〉 will itself also be a polynomial whenever u is a polynomial.

Additional Experiments We start by integrating f(x) =
∑d
j=1(1−xj) against

a standard Gaussian: N (0, Id×d). This integrand is particularly well suited for the
polynomial-based CVs of Mira et al. (2013); Papamarkou et al. (2014) since, in
this case, the integrand is itself in the class of functions of the form LSLuθ. We use
n = 104 design points obtained by sampling IID from a N (0, Id×d). A 90/10 split
is used for approximation data and MC data. We compare the polynomial-based
CVs of degree two trained by solving the least-squares through a linear system,
and these same CVs trained by SGD. The experiments are presented in Fig. 1
(top row).

The performance of the SGD CVs is usually worse initially, but approaches that
of the linear system solution as t grows. This holds regardless of the initialization
of SGD (see the blue lines). Such results are not surprising since the objective
function is convex. In low dimensions, the computational cost associated with
solving the linear system is low and there is hence not much point to using SGD.
The main advantage of the SGD approach can be observed for large d, in which
case we obtain a performance close, if not equal, to that of solving the linear
system, but at a small fraction of the cost. This advantage of SGD also increases
with d. Note that early stopping of SGD could provide good performance with a
further reduction of the computational cost.

We also provide additional experiments using kernel-based CVs in Fig. 5
(bottom row). Similar conclusions can be made from these plots. Firstly, in low
dimension, there is not much point using the SGD approach over solving the
exact least squares problem, but as the dimensionality of the problem grows, the
SGD methodology can provide close-to-optimal performance at a fraction of the
cost. Secondly, we once again have that early stopping of the SGD procedure
could provide further significant computational gains.
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Fig. 5: Performance of the polynomial-based CVs (top row) and kernel-based CVs
(bottom row) on polynomial integrands. We compare CVs obtained by solving
linear systems with the CVs trained using SGD. The y-axis gives the mean
absolute error over 20 different datasets, whilst the dotted line gives the cost
of solving the linear system. Here 20 realizations (blue dashed lines) are shown
and blue dots represent the mean absolute error. The red lines represent the
performance and computational cost of solving the corresponding linear system
exactly, our benchmark. Similarly, the green lines represent the MC estimator
with no CV used.

D.2 Genz Test Functions

A popular set of synthetic problems for numerical integration are the Genz test
functions introduced in Genz (1984). These functions, which can all be inte-
grated analytically, were selected to test several difficult scenarios for numerical
integration tools based on functional approximation, such as sharp peaks and
discontinuities. They are usually defined on [0, 1]d, but can easily be transformed
to be defined on the whole of Rd, as we discuss next.

Implementation Details We consider such a transformation here to keep the
setting as close to possible to that of the polynomials. Let h : [0, 1]d → R be such
a test function. Then, using a change of variables, we get:∫

[0,1]d
h(y)dy =

∫
Rd h(Φ(x))φ(x)dx

where Φ(x) is a d-dimensional vector given by Φ(x) = (Φ(x1), . . . , Φ(xd)) where Φ
is the cummulative distribution function of a standard Gaussian distribution and
φ is the corresponding probability density function. We therefore have integration
problems of the form Π[f ] =

∫
Rd f(x)π(x)dx, where f(x) = h(Φ(x)), Π is a
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standard Gaussian, and h is any of the classical Genz functions (Genz, 1984), as
described in the Table 2 below. See https://www.sfu.ca/~ssurjano/integration.
html for implementations of these functions in R or MATLAB.

Genz Function Integrand Integral

Continuous exp

(
−

d∑
i=1

ai|xi − ui|

)
d∏

i=1

a−1
i (2− exp(ai(ui − 1))− exp(−aiui))

Corner Peak

(
1 +

d∑
i=1

aixi

)−d−1 d∑
k=0

∑
I⊆{1,...,d},
|I|=k

(−1)k+d

(
1 +

d∑
i=1

ai −
∑
j∈I

aj

)−1(
d!

d∏
i=1

ai

)−1

Discontinuous

{
0, if xi > ui for any i

exp
(∑d

i=1 aixi
)
, else

d∏
i=1

a−1
i (exp(ai min(1, ui))− 1)

Gaussian Peak exp

(
−

d∑
i=1

a2i (xi − ui)
2

) (√
π

2

)d
(

d∏
i=1

a−1
i

)

×

(
d∏

i=1

Erf(ai(1− ui))− Erf(−aiui)

)

Oscillatory cos

(
2πu1 +

d∑
i=1

aixi

)
d∑

k=0

∑
I⊆{1,...,d},
|I|=k

(−1)k∏d
i=1 ai

g

(
2πu1 +

d∑
i=1

ai −
∑
j∈I

aj

)

where g(x) =


sin(x) if mod(d, 4) = 1

− cos(x) if mod(d, 4) = 2

− sin(x) if mod(d, 4) = 3

cos(x) if mod(d, 4) = 0

Product Peak
d∏

i=1

(
a−2
i + (xi − ui)

2)−1
d∏

i=1

ai (arctan((1− ui)ai)− arctan(−uiai))

Table 2: Genz Test Functions: This table contains 6 test functions defined on
[0, 1]d, as well as their corresponding integrals against a uniform distribution. The
parameter vectors a = (a1, . . . , ad) ∈ Rd>0 and u = (u1, . . . , ud) ∈ [0, 1]d can be
changed to adapt the difficulty of the integration problem. Their default values
are a = (5, . . . , 5) and u = (0.5, . . . , 0.5).

Additional Experiments The main numerical results are presented in the
main text, but we now highlight additional results.

Firstly, results (in d = 1) are provided in Table 3. These results focus on
kernel-based CVs trained with the least-squares objective either by solving the
linear system (as per Oates et al. (2017)), or with SGD with either 2 or 5
epochs. We split the data and assign 50% to constructing the CV and 50% for the
estimator. In all experiments, the CVs provide significant improvement over a MC
estimator. Overall, the linear system approach tends to outperform SGD, but SGD

https://www.sfu.ca/~ssurjano/integration.html
https://www.sfu.ca/~ssurjano/integration.html
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can obtain significant variance reduction at a fraction of the computational cost.
Further results are presented in Table 4 in Appendix D.2, which demonstrates that
the same conclusion holds for higher-dimensional integrands (d = 5, 10, 15, 20),
and that the 50/50 split may be suboptimal. Indeed, it is found that assigning a
greater proportion of the data on the construction of the CV may be preferable,
but that this will generally increase computational cost.

Integrand MC Linear Sys. SGD 2 Epoc. SGD 5 Epoc.
Continuous 2.77e-03 3.04e-04 3.45e-04 3.28e-04
Corner Peak 5.76e-03 7.07e-06 1.69e-05 9.27e-06
Discontinuous 2.04e-02 2.39e-03 6.30e-03 3.91e-03
Gaussian Peak 1.47e-03 8.84e-06 1.10e-04 1.24e-05
Oscillatory 4.17e-03 3.68e-06 1.22e-05 4.63e-06
Product Peak 1.37e-03 1.79e-05 1.48e-04 2.12e-05
Time (sec.) 7.10e-02 5.68e-01 1.90e-01 4.50e-01

Table 3: Performance of kernel CVs for the Genz Functions. We take n =
1000,m = 500. The time presented is an average over repetitions for all six
functions (the difference accross integrand was negligeable).

Secondly, Table 4 provides additional experiments in the case of the Genz
peak function. The table demonstrates that the observation that SGD can provide
results close to those of LS at a fraction of the price is still true regardless of the
dimension.

Dim. MC Linear Sys. SGD 2 Epoc. SGD 5 Epoc.
5 2.85e-03 5.81e-04 6.51e-04 5.84e-04
10 2.29e-03 1.98e-04 2.79e-04 2.70e-04
15 2.10e-03 4.93e-04 1.22e-03 6.14e-03
20 1.73e-03 5.13e-04 6.35e-04 5.90e-04
Time (secs.) 7.00e-02 7.60e-01 3.30e-01 5.95e-01

Table 4: The mean absolute errors and computing times of kernel CVs on Genz
product peak function (with parameters a = (1.0, . . . , 1.0) and u = (0.5, . . . , 0.5)
of the same dimension as the integrand) of four dimensions: 5, 10, 15 and 20.
The total sample size is 1000.

Thirdly, in Table 5, we provide a comparison of the kernel-based CVs for
different splits of the data (for solving Stein’s equation and MC estimation). We
consider four cases: a 50/50 split (i.e. 50% of the data is used for solving Stein’s
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equation, and 50% for MC estimation), a 70/30 split, a 90/10 split and a 100/0
split.

The computational cost and mean absolute error (MAE) both depend on the
number of data points allocated to each task. The larger we make the proportion of
data points allocated to solving Stein’s equation, the more expensive the estimator
becomes, but this usually comes with an increase in accuracy. Assuming that the
number of data points is fixed to n. the user is therefore able to chose this split
according to the computational power available.

Integrand 50/50 70/30 90/10 100/0
Continuous 3.28e-04 4.82e-04 7.40e-04 3.80e-04
Corner Peak 9.27e-06 1.57e-05 3.26e-05 1.02e-05
Discontinuous 3.91e-03 7.29e-03 3.2e-03 3.51e-03
Gaussian Peak 1.24e-05 2.18e-05 2.78e-05 2.05e-04
Oscillatory 4.63e-06 8.47e-06 1.67e-05 3.25e-05
Product Peak 2.12e-05 2.20e-05 3.03e-05 3.63e-05
Time (secs.) 4.70e-01 5.79e-01 6.89e-01 7.40e-01

Table 5: The mean absolute errors of kernel CV methods, as a function of the
train/test data split. The sample size fixed at 1000, and four train/test splits
are used: 50/50, 70/30, 90/10, and 100/0. The computing times for 5 epochs of
mini-batch SGD training are shown in the bottom row.

D.3 Integrating Gaussian Processes

We are integrating realizations of a Gaussian process (GP) (Rasmussen and
Williams, 2006) with mean function m(x) = 0 and kernel function

c(x, y;λ, σ) = λ2 exp
(
−‖x−y‖

2
2

2σ2

)
= λ2(2πσ2)

d
2 φ
(
x|y, σ2, Id×d

)
.

The integral is taken with respect to a mixture of Gaussian distributions with
probability density function: π(x) =

∑L
l=1 ρlφ(x|µl, Σl), where ρ = (ρ1, . . . , ρl) ∈

[0, 1]d is a vector of mixture weights satisfying
∑L
l=1 ρl = 1. For our problems the

mean vectors µ1, . . . , µL are generated at random from a zero-mean Gaussian
distribution with covariance 3Id×d, and random covariance matrices Σ1, . . . , ΣL
are obtained by taking a matrix Al with entries uniformly random on [0, 1), then
setting the covariance Σl = A>l Al. The mixture weights are also simulated. We
simulate the unweighted mixture weights from a uniform distribution between 0
and 1, and then we normalize them to have mixture weights. For this mixture of
Gaussians, the score function is given by:

∇x log π(x) =
∑L

l=1 ρl∇xφ(x|µl,Σl)∑L
l=1 ρlφ(x|µl,Σl)

=
∑L

l=1 ρlφ(x|µl,Σl)Σ
−1
l (x−µl)∑L

l=1 ρlφ(x|µl,Σl)
.
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Fig. 6: Left: Three realizations from a Gaussian Process. Right: Mean absolute
errors of kernel and polynomial CVs evaluated after 33%, 66% and 100% SGD
training.

We note that the integral of the mean function is Π[m] = 0, and the integrated
covariance function is given by:

Π[c(x, ·)] = λ2(
√

2πσ)d
∑L
l=1 ρlφ

(
x|µl, Σl + σ2Id×d

)
.

Finally, the integral of the covariance function with respect to the both variables
is:

ΠΠ[c] = λ2(
√

2πσ)d
∑L
l,m=1 ρlρmφ

(
µl
∣∣µm, Σl +Σm + σ2Id×d

)
.

These identities allow us to easily simulate a draw from a Gaussian process
and its integral jointly. Indeed, under a Gaussian process model, the vector
(f(x1), f(x2), . . . , f(xn), Π[f ]) is jointly distributed as a multivariate Gaussian
distribution with mean (m(x1),m(x2), . . . ,m(xn), Π[m]) and covariance:

c(x1, x1) c(x1, x2) . . . c(x1, xn) Π[c(x1, x)]
c(x2, x1) c(x2, x2) . . . c(x2, xn) Π[c(x2, x)]

...
...

. . .
...

...
c(xn, x1) c(xn, x2) . . . c(xn, xn) Π[c(xn, x)]
Π[c(x, x1)] Π[c(x, x2)] . . . Π[c(x, xn)] ΠΠ[c]

 .

This procedure therefore allows us to create a wide range of examples of varying
complexity, by changing the dimension d of the domain, the number L of mixture
components and the parameters λ and σ of the GP covariance function.

In this experiment, all of the samples xi are included in the training dataset
(i.e. m = n). We investigate the performance of two objective functions: J̃V

m

and J̃LS
m . The main results of this experiment are displayed in Figure 2. When

implementing SGD algorithm, the batch size is 8 and the number of training
epochs is 10 for kernel CV, and 25 for other CVs.
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D.4 Posterior Inference for a Model of Atmospheric Pollutant
Detection

We start with the problem of computing posterior expectations for some Bayesian
inference problem linked to the LIDAR (light detection and ranging) experiment,
which considers the reflection of light emitted by some laser to detect pollutants
in the atmosphere (Ruppert et al., 2003). This dataset consists of m = 221
observations of the distance travelled before the light is reflected (denoted {li}mj=1),
and of the log-ratios of received light from two laser sources (denoted {ri}mj=1).

Following Chen et al. (2018), we consider regression with a mean-zero GP
model: rj = g(lj) + εj , where εj ∼ N (0, α), α = 0.04. The kernel c(l, l′) =
λ21 exp

(
−λ22‖l − l′‖22/2

)
was parameterized with φ1 = log λ1 and φ2 = log λ2, and

a Cauchy prior was placed on φ = (φ1, φ2). Denote by Π the posterior measure
over φ given the observed data.

We are interested in computing posterior moments Π[φ1], Π[φ2], Π[φ21] and
Π[φ22], as well as the marginal log-likelihood Π[p(r|l, φ)]. The posterior marginal
likelihood of the data is defined as the integral of the likelihood p(y|X,φ) with
respect to the posterior on the parameters. This likelihood can be expressed in
log-form as below:

log p(y|X,φ) = − 1
2y
> (Cφ + αIn×n)

−1
y − 1

2 log |Cφ + αIn×n| − n
2 log 2π,

where Cφ denotes the n × n matrix with entries (Cφ)ij = c(xi, xj), where we
have made the dependence explicit on the hyper-parameters φ of the covariance
function.

To do so, we use an adaptive MCMC algorithm to sample from Π. Results
are presented in Figure 7 for CVs based on polynomials, kernels and NNs all
trained with SGD. When implementing SGD algorithm, the batch size is 8 and
the number of training epochs is 10 for kernel CV, and 25 for other CVs. We
notice that the performance can vary significantly based on the Stein space and
operator. This clearly demonstrates the advantages of our general methods which
can be easily adapted to the problem at hand.

Fig. 7: Parameter Inference for Model of Atmospheric Pollutants. We compute
the first two posterior moments of the kernel parameters, as well as the marginal
likelihood.
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D.5 Parameter Inference for Ordinary Differential Equations

In this experiment and the Sonar Dataset experiment, we employ an ensemble
CV of multiple kernels with a polynomial. Similar to ensemble CV of a kernel and
a polynomial, the ensemble CV of multiple kernels and a polynomial employs the
sum of a polynomial CV and two kernel interpolant. We employ two kernels and
a polynomial. The two kernels are of the same form as k0(x, x′) in Equation (7),
but they have different hyper-parameters. When implementing this ensemble CV,
the kernel in Equation (12) is used and it is defined by two hyper-parameters α1

and α2. For two kernels, we chose values of α2 by the median heuristic, setting
one to

` =
√

1
2Median{‖xi − xj‖22 : 1 ≤ i < j ≤ m},

and the other kernel to
√

2`. The other hyper-parameter α1 is the same for
two kernels, and it is tuned via 5-fold cross validation over a grid {1.0e+6,
1.0e+5, 1.0e+4, 1.0e+3, 1.0e+2, 1.0e+1, 1.0, 1.0e-1, 1.0e-2}. For this ensemble
CV of multiple kernels and a polynomial, we do not derive the exact solution of
parameters, but rather we implement our SGD framework to learn this ensemble
CV on a training dataset.

D.6 High-dimensional Bayesian Logistic Regression on Sonar Data

In this final example, we consider Bayesian logistic regression applied to sonar
data from Dua and Graff (2017); Gorman and Sejnowski (1988), as considered in
South et al. (2019). The parameter is the 61-dimensional regression coefficient β
and contains information about the energy frequencies being reflected from either
a metal cylinder (y = 1) or a rock (y = 0). MCMC was used to sample from the
posterior of β as described in South et al. (2019) and the full output constitutes
our ground truth. Our task is to approximate the posterior probability that an
unlabeled data point z corresponds to a metal cylinder, rather than rock, based
on a subset of size m from the MCMC output. Thus, as for the Madelon data,
f(β) = (1 + exp

(
−z>β

)
)−1.

We used the same setting as for the Madelon dataset: all MCMC samples
were included in the training dataset (i.e. m = n), we used batch sizes b = 8 over
25 epochs in SGD and the loss was JLS

m . Figure 8 compares the performance of
different CV methods. The two ensemble CVs and the NNs perform significantly
better than other CVs. When m < 1000, the NNs yield the smallest mean
absolute errors, followed by the CV with multiple kernels and a polynomial.
When m ≥ 1000, the ensemble CV surpasses NNs. One possible explanation is
that for all values of m we used the same multi-layer perceptron (MLP) with 6
layers and 20 nodes in each of them. Therefore, the NNs size (capacity) remains
the same while the training data size m increases. Further growing the depth
of NN could lead to an improved performance. Furthermore, the results for
polynomials and kernels demonstrate that our general framework based on SGD
can achieve comparable MAE with exactly solving the linear systems, but with a
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Fig. 8: Sonar Dataset. The mean absolute error (left) and compute times (right),
as a function of the size m of the training set; based on 20 repetitions.

fraction of the associated computational overhead. The compute time of NN in
Figure 8 does not capture the time required to manually calibrate SGD, so that
the “effective” compute time is much higher than reported.
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