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Abstract

Score-based divergences have been widely used in machine learning and statistics
applications. Despite their empirical success, a blindness problem has been ob-
served when using these for multi-modal distributions. In this work, we discuss the
blindness problem and propose a new family of divergences that can mitigate the
blindness problem. We illustrate our proposed divergence in the context of density
estimation and report improved performance compared to traditional approaches.

1 Introduction

Score-based divergences such as the Fisher Divergence (FD; also known as score-matching diver-
gence) [10, 9] and Kernel Stein Discrepancy (KSD) [13, 3] are widely used in machine learning and
statistics [1, 17]. Their main advantage is that the score function, a derivative of a log-density, can
be evaluated without knowledge of the normalization constant of the density and can be applied to
problems where other classical divergences (e.g. KL divergence) are intractable. Unfortunately, this
advantage can also be a curse in certain scenarios because the score function only provides local
information about the slope of a density, but ignores more global information such as the importance
of a point relative to another. This has led to a blindness problem in many applications of score-based
methods where the densities are multi-modal, including in density estimation [21, 16, 11], MCMC
convergence diagnosis [8], Bayesian inference [14, 5]; see [20] for a detailed discussion.

To illustrate this problem, we recall the definition of FD and an example from [20]. Given two
distributions with differentiable densities p and q supported on a common domain X ⊆ Rd, the FD is

FD(p||q) = 1
2

∫
X p(x)||sp(x)− sq(x)||22dx, (1)

where we denote by sp(x) ≡ ∇x log p(x) and sq(x) ≡ ∇x log q(x) the score functions of p and q
respectively. The classic sufficient conditions [10, 2] for the FD to be a valid statistical divergence
(i.e. FD(p||q) = 0⇔ p = q) are: (i) p and q are differentiable with support X = Rd and (ii) sp, sq
are square integrable, i.e. sp− sq ∈ L2(p), where we denote f ∈ L2(p) ≡

∫
X ||f(x)||22p(x)dx <∞.

The blindness problem of the FD can be illustrated through the following example due to [20]. Let p
and q be a mixtures with the same components but different mixing weights:

p(x) = αpg1(x) + (1− αp)g2(x), q(x) = αqg1(x) + (1− αq)g2(x), (2)

where αp 6= αp, and g1, g2 are Gaussian densities with variance σ2 and means −µ and µ respectively.
Then FD(p||q) → 0 when µ/σ2 → ∞ regardless of the mixture proportions αp and αq. To build
intuition, we let µ = 5, σ = 1, αp = 0.2, αq = 0.8 and plot the densities and score functions of p, q
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(a) Densities of p and q (b) Score functions of p and q (c) FD(p||q) with different αq

Figure 1: We plot the densities and score functions of distributions p and q in Figure (a) and (b).
Figure (c) shows FD(p||q) with αp = 0.2 and αq varies from 0.01 to 0.09 with a grid size 0.01.

in Figure 1a and 1b. We can find the two distributions are very different but their scores are only
different around x = 0, which has a negligible density value under p. We then fix αp = 0.2 and plot
the FD(p||q) as a function of α in Figure 1c. Here we see the FD is 0 constant function, which shows
the FD is ‘blind’ to the value of the mixture weight. See [14] for a similar example for discrete X .

2 Understanding the Blindness Problem

In the example above, blindness is a numerical problem since the problem occurs despite the fact
that the FD is a divergence in that case (i.e. FD(p||q) = 0⇔ p = q since (i) and (ii) are satisfied).
When µ/σ2 →∞, although the Gaussian distributions still have the same support, the regions that
contain most of the mass of g1 and g2 tend to be disjoint, which creates numerical issues. However,
the blindness problem is not simply a numerical problem, as illustrated in the following example.

Consider the case where p and q are mixtures whose identical components have disjoint supports.
For example, let g1 and g2 in Equation 2 have disjoint support sets X1,X2 ⊆ Rd respectively with
X1 ∩ X2 = ∅. Then, g2(x′) = ∇xg2(x′) = 0 for x′ ∈ X1 and g1(x′) = ∇xg1(x′) = 0 for x′ ∈ X2.
In this case, the FD is independent of αq (see Appendix A.1 for a derivation):

FD(p||q) =
αp
2

∫
X1
g1(x)||sg1(x)− sg1(x)||22dx+

1−αp
2

∫
X2
g2(x)||sg2(x)− sg2(x)||22dx = 0. (3)

Therefore, the FD is not a valid divergence here since FD(p||q) = 0 6⇒ p = q. This example guides
us to further study the topology properties of the distributions’ support required by the FD. We first
extend the Fisher divergence to distributions that have support on the connected space.
Theorem 1 (FD on a connected set). Assume two distributions (i) have differentiable densities p and
q with support on a common1 open connected set X ⊆ Rd and (ii) sp − sq ∈ L2(p). Then, the FD is
a valid divergence i.e. FD(p||q) = 0⇔ p = q.

See Appendix A.2 for a proof. Theorem 1 generalizes the classic FD that is defined on distributions
with X = Rd [10, 2] (Rd is a special case of the connected set). Secondly, Theorem 2 shows that
connectedness of the support is a necessary condition to define a valid FD.
Theorem 2 (FD is ill-defined on disconnected sets). Assume two distributions have common support
X consisting of disjoint sets. Then, the FD is not a valid divergence i.e. FD(p||q) = 0 6⇒ p = q.

See Appendix A.3 for a proof. Intuitively, the score function only considers the local derivatives and
contains no information of the global normalization constant. If the domain is disconnected, it cannot
determine how the mass is allocated to different domains. This observation can also be extended
to the KSD by viewing KSD as a kernelized FD and is upper bounded by a scaled FD [13, 3], see
Appendix A.5 for a detailed discussion.

3 Healing the Blindness Problem with the Mixture Fisher Divergence

In this section, we propose a new variant of the FD which is well-defined in the disconnected scenario.
Consider a distribution with density m with support Xm = Rd and define the mixtures

p̃(x) = βp(x) + (1− β)m(x), q̃(x) = βq(x) + (1− β)m(x), (4)
where 0 < β < 1. We then define the Mixture Fisher Divergence (MFD) as

MFDm,β(p||q) ≡ FD(p̃||q̃). (5)
Theorem 3 shows the MFD is well-defined when p and q have support on a disconnected space.

1The common support condition can be relaxed to Xp ⊆ Xq , where Xp,Xq are the support sets of p and q.
2



(a) Densities of p̃ and q̃ (b) Score functions of p̃ and q̃ (c) MFD(p||q) with different αq

Figure 2: We plot the densities (a) and the score functions (b) of p̃ and q̃. Figure (c) shows MFD(p||q)
with αp = 0.2 and αq varies from 0.0 to 1.0 with a grid size 0.01. The star mark shows the minima
of the MFD is achieved when αq = αp = 0.2, we also plot the original FD for a comparison.

Theorem 3 (Validity of the MFD). Consider two distributions with differentiable densities p, q
supported on Xp,Xq ⊆ Rd with sp, sq ∈ L2(p) and a differentiable density m with support Xm =
Rd, sm ∈ L2(p). Then MFD is a valid divergence, i.e. MFD(p||q) = 0⇔ FD(p̃||q̃)⇔ p = q.

See Appendix A.6 for a proof. For MFD, we no longer require that p, q have common connected
support, since Xm = Rd results in p̃, q̃ having connected support Rd2. The requirements of m(x) are
mild and hold for simple choices of distribution e.g. a Gaussian. To avoid the numerical problem
mentioned in Section 1, m(x) should be chosen to effectively connect the different component
distributions. As an example, for the toy problem described in Figure 1 with components N (−5, 1)
and N (−5, 1) we can choose β = 0.5 and m(x) = N (0, 9) that covers both components. Figure 2
shows the densities and their score functions for p̃, q̃. We see that the score functions are different on
the high-density region of p̃. Figure 2c also shows the minimal value of the MFD(p||q) is attained
when αq = αp, which indicates that the proposed MFD heals the blindness problem in this example.

4 Density Estimation with Energy-based Models

Given a dataset Xtrain = {x1, · · · , xN} sampled i.i.d. from an unknown data distribution pd with
support Xpd ⊆ Rd, we would like to learn a model qθ to approximate pd. We are interested in a family
of models which can only be evaluated up to a normalization constant, e.g. an energy-based model
qθ(x) = e−fθ(x)/Z(θ), where fθ is a neural network and Z(θ) =

∫
e−fθ(x)dx. In this case, the

standard Maximum Likelihood Estimation (MLE) is not applicable (since Z(θ) cannot be evaluated
during training) and an alternative form of the FD [10] can be applied (see Appendix A.4 for a
derivation and additional assumptions)

FD(pd||qθ) = 1
2

∫
Xpd

pd(x)
(
||sqθ (x)||22 + 2 Tr(∇xsqθ (x))

)
dx+ const., (6)

where ∇xsqθ (x) = ∇2
x log qθ(x) is the Hessian matrix and the constant represents the terms that

are independent of θ. The integration over pd can be approximated by Monte-Carlo using Xtrain.
Because both sqθ and∇xsqθ only depend on fθ, the normalizer Zq(θ) is not required during training
and we only need to estimate Zq(θ∗) once after training. Therefore, density estimation with FD
in this setting contains two steps: (1) learn θ∗ using Equation 6; (2) estimate Z(θ∗) to obtain the
normalized density qθ(x). This scheme can result in blindness in practice [21].

To heal the blindness, we can apply the proposed MFD. However, if we directly minimize MFD
in step (1), the score sq̃θ (x) = ∇x log (β exp(−fθ(x))/Zq(θ)) + (1− β)m(x)) requires estimating
Zq(θ). This negates the advantage of using score matching because now Zq(θ) must be estimated for
every gradient step during training (similar to MLE). To avoid this, we propose to instead directly
approximate p̃d with an energy-based model q̃θ(x) ≡ e−fθ(x)/Zq̃(θ) and q̃θ can then be trained using

FD(p̃d||q̃θ) = 1
2

∫
Rd p̃d(x)

(
||sq̃θ (x)||22 + 2 Tr (∇xsq̃θ (x))

)
dx+ const., (7)

where the integration over p̃d(x) can be approximated using the samples from the mixture p̃d(x) =
βpd(x) + (1− β)m(x). Therefore, the learning of θ is independent of Zq̃(θ). Optimally we have

2A weaker condition of m can be obtained by requiring the supports of p̃, q̃, which we denote as Xp̃,Xq̃ , to
be connected and Xp̃ ⊆ Xq̃ . We here only study the stronger condition that m(x) has support Rd for simplicity.
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(a) True (b) FD (c) MFD (d) True (e) FD (f) MFD

Figure 3: Density estimation comparisons with FD and MFD for the energy-based model. The
KL(pd||pθ) evaluations are 3.52/0.22 (b/e) for FD and 0.17/0.01 (c/f) for MFD, lower is better.

q̃θ∗(x) = p̃d(x) = βpd(x) + (1−β)m(x). To obtain a model of the underlying true density q∗ = pd,
we need to remove the mixture component from q̃θ∗ , which can be done through a ‘correction step’:

q∗(x) = 1
β (q̃θ∗(x)− (1− β)m(x)) = 1

β

(
e−fθ∗ (x)

Zq̃(θ∗)
− (1− β)m(x)

)
. (8)

This procedure for obtaining q∗ is equivalent to q∗(x) = arg minq MFD(pd(x)||q(x)) and when
MFD(pd(x)||q(x)) = 0, we have q∗(x) = pd(x). Therefore, density estimation with MFD in this
setting contains three steps: (1) learn θ∗ by minimizing Equation 7; (2) estimate Zq̃(θ∗); and (3)
apply the correction step (Equation 8) to obtain qθ∗ . Compared to FD, the additional correction step
has negligible computation cost.

Choice of m and β: As we discussed in Section 3, a good m should have support Rd and be able to
bridge disconnected component distributions. For a given set of data samples {x1, · · · , xN} ∼ pd,
we can simply choosem(x) = N (µ̄, Σ̄), where µ̄ and Σ̄ are the empirical mean and covariance of the
available training data: µ̄ = 1

N

∑N
n=1 xn, Σ̄ = 1

N

∑N
n=1 xnx

T
n , which corresponds to an empirical

moment matching approximation of pd and can thus cover different components. The β is treated as
a hyper-parameter in our method. Intuitively, a large beta means that the proportion of data points
from pd is small, and the model is learning m. On the other hand, a small value means we may still
have the numerical version of the blindness issue. In this experiment, we use β = 0.8 can find it can
empirically heal blindness. We leave the theoretical study of choosing the β into future work.

Demonstration: We apply the proposed method to train a deep energy-based model and examine the
performance against two target densities with multiple isolated components: 1) a weighted mixture
of four Gaussians pd(x) = 0.1g1(x) + 0.2g2(x) + 0.3g3(x) + 0.4g4(x), where g1, g2, g3, g4 are 2D
Gaussians with identity covariance matrix and mean [−5,−5], [−5, 5], [5, 5], [5,−5] respectively; and
2) a mixture of 3 concentric circles as proposed in [21]. We use Simpson’s rule for the 2D numerical
integration to estimate the normalization constant for both methods. The model specifications and
training details can be found in Appendix B. In Figure 3 we plot the ground truth and the estimated
density with classic FD and the proposed MFD methods. We also provide the corresponding KL
evaluation (see Appendix B) between the ground truth density pd and the estimated model pθ. We find
the proposed MFD method can significantly improve performance and heal the blindness problem.

5 Related Work

In addition to the mixture construction, conducting a Gaussian convolution on both pd and qθ can
also bridge the disjoint components and defines a valid divergence [22]. However, the score function
is generally intractable for a deep energy-based model q, see Appendix D for a detailed discussion.

Paper [16] proposes to add Gaussian noise with variance σ2 only to pd and anneal σ2 → 0 during
training. This helps alleviate the blindness problem in the early stage of training but when σ2 ≈ 0,
the blindness phenomenon will be observed again, see Appendix C for an example.

Paper [7] proposes to transform p and q with a common differentiable invertible function before
defining the FD, which is also shown to be equivalent to [2]. However, since the invertible transfor-
mation is a homeomorphism and will not change the topology of its domain [4, 23], the invertible
transformation will not fix the blindness caused by the disconnected support sets in principle.

The blindness problem also exists in other score-based applications. As discussed in Section 3,
directly applying the MFD requires knowing the normalizer, which potentially sheds light on choosing
score-based methods. We leave the case-by-case study of how to heal the blindness to future work.
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A Derivations and Proofs

A.1 Derivation of Equation 3

Let two differentiable densities g1 and g2 have disjoint supports X1 ∩ X2 = ∅ and

p(x) = αpg1(x) + (1− αp)g2(x), q(x) = αqg1(x) + (1− αq)g2(x). (9)

The FD between p and q can be written as

FD(p||q) =
αp
2

∫
X1
g1(x)||sp(x)− sq(x)||22dx+

1−αp
2

∫
X2
g2(x)||sp(x)− sq(x)||22dx. (10)

Since g1 and g2 has disjoint support, so g2 will be a zero function on the support of g1, so g2(x′) =
∇xg2(x′) = 0 for x′ ∈ X1. We then have

sp(x
′) =

αp∇g1(x′)+((((((
(1−αp)∇g2(x′)

αpg1(x′)+((((((1−α)g2(x′)
=

αp∇xg1(x′)
αpg1(x′)

= sg1(x′), (11)

and

sq(x
′) =

αq∇g1(x′)+((((((
(1−αq)∇g2(x′)

αqg1(x′)+((((((1−α)g2(x′)
=

αq∇xg1(x′)
αqg1(x′)

= sg1(x′), (12)

Similarly, for x′ ∈ X2 we have sp(x′) = sq(x
′) = sg2(x′). Therefore, the FD is equivalent to

FD(p||q) =
αp
2

∫
X1
g1(x)||sg1(x)− sg1(x)||22dx+

1−αp
2

∫
X2
g2(x)||sg2(x)− sg2(x)||22dx = 0, (13)

which is independent of αq .

A.2 Proof of Theorem 1

The following two lemmas can be found in Folland [6, Corollary 2.41 and Theorem 2.42]. For
completeness, we also provide simplified proofs.

Lemma 4. Suppose f : X → R is differentiable on an open convex set X ⊆ Rd and ∇xf(x) = 0
for all x ∈ X , then f is a constant on X .

Proof. For any two points x1, x2 ∈ X , we denote the the line segment that connects a, b as Lx1,x2
.

Since X is a convex set, then Lx1,x2
⊆ X . By the Mean Value Theorem (see Folland [6, Theorem

2.39]), there exists a point x3 ∈ Lx1,x2
such that f(x2)−f(x1) = ∇xf(x3)(x2−x1). Since x3 ∈ S,

so∇xf(x3) = 0 thus f(x2) = f(x1). Therefore, f has to be a constant function.

Lemma 5. Suppose f : X → R is differentiable on a connected open set X ⊆ Rd and ∇xf(x) = 0
for all x ∈ X , then f is a constant on X .

Proof. For any point a ∈ X , we define X1 = {x ∈ X : f(x) = f(a)} and X2 = {x ∈ X : f(x) 6=
f(a)}, so X = X1 ∪ X2 by construction. For every x ∈ X1, there is a ball B ∈ S centred at x. Since
B is convex, we have B ∈ X1 by Lemma 4. Therefore, every point x ∈ X1 is an interior point of X1,
so X1 is an open set. The image of X2 under f : R \ {f(a)} is an open set, so X2 is a open set since
f is a continuous function (see Folland [6, Theorem 1.33]). We thus have both X1 and X2 are open
sets and X1 is non-empty (it contains a). Since any connected space cannot be written as an union
of two disjoint non-empty sets (see Tao [18, Definition 2.4.1]), so X = X1 ∪ X2 indicates X2 = ∅.
Therefore, f is a constant function.

We can then prove the Theorem 1. For two a.c. distributions that are supported on a connected space
X ⊆ Rd with differentiable density p and q. Then FD(p||q) = 0⇔ ∇x log p(x) = ∇x log q(x) for
x ∈ S. We define function f(x) = log p(x)− log q(x), so f(x) differentiable on X and∇xf(x) = 0.
By Lemma 5, we have f as a constant function (we denote as c) so we have p = q exp(c). Since p
and q are densities, we have

∫
q(x) exp(c)dx = 1⇔ c = 0. Therefore, FD(p||q) = 0⇔ p = q.

7



A.3 Proof of Theorem 2

Since we can always represents a distribution with disjoint support set as a mixture distribution with
components supported on several connected subsets, we can then prove the theorem by Proposition 1.

Proposition 1 (FD is ill-defined on disconnected sets). Let a set of a.c. distributions have differ-
entiable densities {g1, · · · , gK} with mutual disjoint (disconnected) support sets {X1, · · · ,XK}:
Xi
⋂
Xj = ∅ for any i 6= j and each support Xi is connected. Let two densities p =

∑
k α

k
pgk and

q =
∑
k α

k
qgk with positive coefficients

∑
k α

k
p = 1 and

∑
k=1 α

k
q = 1. Then FD(p||q) = 0 ⇔

αkp = αkqe
ck , where {c1, · · · , cK} is a set of constants with constraints

∑
k e

ck = 1.

We can decompose FD(p||q) = 1
2

∑K
k=1 α

k
p

∫
Xk gk(x)||sp(x)−sq(x)||22dx. Since αkp and gk are pos-

itive, FD(p||q) = 0⇒
∫
Xk gk(x)||sp(x)− sq(x)||22dx = 0 for any k, so∇x log p(x) = ∇x log q(x)

for x ∈
⋃K
k=1 Xk. Since Xk is connected, by Lemma 5, we have for x ∈ Xk, log p(x)− log q(x) =

ck ⇔ p(x) = q(x)eck ⇔ αkpgk(x) = αkqgk(x)eck ⇔ αkp = αkqe
ck , where {c1, · · · , cK} is a set of

constants. Since
∑
k α

k
p =

∑
k α

k
qe
ck = 1 and

∑
k α

k
q = 1, we then have the constrain

∑
k e

ck = 1.

A.4 Derivation of Score Matching

Let pd and qθ are differentiable densities with a common support X ⊆ Rd and assume qθ is twice
differentiable, we can rewrite the FD as [10]

FD(pd(x)||qθ(x)) = 1
2

∫
X pd(x)||spd(x)− sqθ(x)||22dx (14)

= 1
2

∫
X pd(x)

(
s2pd(x) + s2qθ (x)− 2spd(x)sqθ (x)

)
dx (15)

= 1
2

∫
X pd(x)

(
s2qθ (x)− 2spd(x)sqθ (x)

)
dx+ const., (16)

where the constant terms are independent of the model parameters θ. Using the log-trick, we have∫
X pd(x)spd(x)spθ (x)dx =

∫
X ∇xpd(x)sqθ (x)dx. (17)

For simplicity, we assume X = R and pd(x)spθ (x) vanishes at −∞ and∞, using integration by
parts, we have ∫

X ∇xpd(x)sqθ (x)dx = pd(x)sqθ (x)
∣∣∣+∞
−∞︸ ︷︷ ︸

=0

−
∫
X pd(x)∇xsqθ (x)dx. (18)

In general, this holds for X = Rd and lim||x||→∞ pd(x)sqθ (x) = 0 or X ⊆ Rd is a compact subset
of Rd and f(x)p(x) = 0 for x ∈ ∂X where ∂X is the piecewise smooth boundary of X (by the
divergence theorem [6, Theorem 5.34]), also see [13] for a similar discussion. Therefore, we have

FD(pd(x)||qθ(x)) = 1
2

∫
X pd(x)

(
s2qθ (x) + 2∇xsqθ (x)

)
dx.. (19)

A.5 Kernelized Stein Discrepancy Extensions

For two a.c. distributions p and q, the Kernelized Stein Discrepancy [13, 3] can be defined as (see
[13, Definition 3.2])

KSD(p||q) = Ex,x′∼p [(sp(x)− sq(x))k(x, x′)(sp(x
′)− sq(x′))] , (20)

where k is an integrally strictly positive kernel (see [13, Definition 3.1]) and x, x′ are i.i.d. samples
from p(x). The KSD(p||q) = 0 if and only if sp = sq (see [13, 3]). Therefore, when p and q are
supported on a connected open set, by Lemma 5, we have KSD(p||q) = 0 ⇔ sp = sq ⇔ p = q.
When p and q are supported on a disconnected space, we have KSD(p||q) = 0 6⇒ p = q. This is
because the KSD can be upper bounded by a (positively) scaled FD [13, Theorem 5.1]:

|KSD(p||q)| ≤
√

Ex,x′∼p[k(x, x′)2]× FD(p||q), (21)

we then have FD(p||q) = 0 ⇒ KSD(p||q) = 0. When p and q are supported on a disconnected
space, we have FD(p||q) = 0 6⇒ p = q (Theorem 2), so KSD(p||q) = 0 6⇒ p = q.
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A.6 Proof of Theorem 3

Since the support of m as Xm = Rd then p̃ and q̃ have the same support X = Rd. For the score
functions, we also have∫

X ||sp̃(x)||22p̃(x)dx =
∫
X ‖∇x log(βp(x) + (1− β)m(x))‖22 p̃(x)dx (22)

=
∫
X

∥∥∥β∇xp(x)+(1−β)∇xm(x)
βp(x)+(1−β)m(x)

∥∥∥2
2
p̃(x)dx (23)

≤
∫
X

∥∥∥ β∇xp(x)
βp(x)+(1−β)m(x)

∥∥∥2
2
p̃(x)dx+

∫
X

∥∥∥ (1−β)∇xm(x)
βp(x)+(1−β)m(x)

∥∥∥2
2
p̃(x)dx (24)

≤
∫
X ||sp||

2
2p̃(x)dx+

∫
X ||sm||

2
2p̃(x)dx ≤

∫
X ||sp||

2
2p(x)dx+

∫
X ||sm||

2
2p(x)dx <∞, (25)

so sp̃ ∈ L2(p̃) and similarly sq̃ ∈ L2(p̃). Therefore, the FD between p̃ and q̃ is a valid divergence i.e.
FD(p̃||q̃) = 0 ⇔ p̃ = q̃ ⇔ βp(x) + (1 − β)m(x) = βq(x) + (1 − β)m(x) ⇔ p(x) = q(x), thus
MFD(p||q) = 0⇔ FD(p̃||q̃) = 0⇔ p = q.

B Experiment Details

For both experiments, we sample 100k data from pd as our training datasets. The energy network
fθ(x) is a 3-layer feedforward network with 200 hidden units and swish activation functions [15]. We
train the model for 30k iterations with the Adam optimizer [12] and batch-size 300. For the numerical
integration we use Simpson’s rule provided in the package [19]. We use a Monte-Carlo approximation
to estimate the KL divergence evaluations K̂L(pd(x)||qθ(x)) = 1

K

∑K
k=1 log pd(xk)− log pθ(xk),

where we use K = 10000.

C Data Noise Annealing Doesn’t Help

In this section, we empirically show that only adding noise to the data and annealing the noise to
0 during training won’t fix the blindness problem in practice. We use a deep energy-based model
with a 3-layer feedforward neural network with 30 hidden units and tanh activation function to learn
the toy mixture of two Gaussian distributions described in Section 1. We train the model with Adam
optimizer with a learning rate 3e−4 for 10k iterations and batch size 300. We add convolutional
Gaussian noise to the data samples with a standard deviation of 3.0 and anneal to 0 by multiplying by
0.9999 at each iteration. The noise at the end of training has a standard deviation less than 0.001. In
Figure 4 we plot the learned density during training. We find that when the noise is big the model can
identify the correct mixture co-efficient, but when the noise is close to 0, the model fails to capture
the correct mixing proportions. We also plot the density estimation results with vanilla FD and the
proposed MFD in Figure 5a and 5b and we find that the density estimation with MFD achieves the
best performance.

Figure 4: FD with training data noise annealing
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(a) FD (b) MFD

Figure 5: Density Estimation with FD and MFD.

D Spread Fisher Divergence

For two distributions with densities pd(x) and qθ(x) with supports Xpd ,Xqθ ⊆ Rd, we can choose
k(x̃|x) = N(x, σ2) and let

p̃d(x̃) =
∫
Xpd

k(x̃|x)pd(x)dx q̃θ(x̃) =
∫
Xqθ

k(x̃|x)qθ(x)dx (26)

We follow the spread f -divergence [22] and define the Spread Fisher Divergence (F̃D) as

F̃Dk(pd||qθ) ≡ FD(p̃d||q̃θ), (27)

The convolution transform makes p̃d and q̃θ have support Xp̃d = Xq̃θ = Rd (which is a connected
space) and F̃Dk(pd||qθ) ≡ FD(p̃d||q̃θ) is a valid discrepancy, i.e. F̃Dk(pd||qθ) = 0⇔ p̃d = q̃θ ⇔
pd = qθ. The spread Fisher divergence is also well-defined for the singular distributions (distributions
that are not a.c. w.r.t Lebesgue measure), see [22] for a detailed discussion.

Similar to the FD, we can rewrite the F̃D as

F̃Dk(pd||pθ) = 1
2

∫
Rd p̃d(x̃) ‖sp̃d(x̃)− sq̃θ (x̃)‖22 dx̃ (28)

= 1
2

∫
Rd p̃d(x̃)

(
s2q̃θ (x̃) + 2∇x̃sq̃θ (x̃)

)
dx̃+ const., (29)

where the constant terms are independent of the model parameters. For an energy-based model
qθ(x) = e−fθ(x)/Z(θ), the spread model q̃θ(x̃) = 1

Z(θ)
√
2πσ2

∫
e−fθ(x)−

1
2σ2

(x̃−x)2dx has an in-

tractable score. Additionally, unlike the mixture construction, if we directly assume q̃θ(x̃) =
e−fθ(x̃)/Z(θ), the underlying ‘correct’ model qθ(x) can not be recovered from q̃θ(x̃) even if we
know Z(θ). Therefore, the F̃D is not directly applicable in this case.
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