Browse by UCL people
Group by: Type | Date
Number of items: 50.
2024
Chen, Xi;
Sokal, Alan D;
(2024)
Total positivity of some polynomial matrices that enumerate labeled trees and forests II. Rooted labeled trees and partial functional digraphs.
Advances in Applied Mathematics
, 157
, Article 102703. 10.1016/j.aam.2024.102703.
(In press).
|
Deb, B;
Sokal, AD;
(2024)
A Remark on Continued Fractions for Permutations and D-Permutations with a Weight −1 per Cycle.
Electronic Journal of Combinatorics
, 31
(2)
, Article P2.14. 10.37236/12149.
|
Sokal, AD;
(2024)
Multiple orthogonal polynomials,
d-orthogonal polynomials, production matrices, and branched continued fractions.
Transactions of the American Mathematical Society Series B
, 11
(23)
pp. 762-797.
10.1090/btran/133.
|
2023
Pétréolle, M;
Sokal, AD;
Zhu, B-X;
(2023)
Lattice Paths and Branched Continued Fractions: An Infinite Sequence of Generalizations of the Stieltjes-Rogers and Thron-Rogers Polynomials, with Coefficientwise Hankel-Total Positivity.
Memoirs of the American Mathematical Society
, 291
(1450)
10.1090/memo/1450.
|
Sokal, Alan;
(2023)
“White Empiricism” and “The Racialization of Epistemology in Physics”: A Critical Analysis*.
Journal of Controversial Ideas
, 3
(2)
, Article 1. 10.35995/jci03020001.
|
Sokal, Alan;
(2023)
The implicit epistemology of White Fragility.
Journal of Philosophy of Education
, 57
(2)
pp. 517-552.
10.1093/jopedu/qhad025.
|
2022
Kufel, Dominik;
Sokal, Alan D;
(2022)
Skier and loop-the-loop with friction.
American Journal of Physics
, 90
(8)
, Article 573. 10.1119/5.0095150.
|
Salas, Jesús;
Sokal, Alan D;
(2022)
Ergodicity of the Wang–Swendsen–Kotecký algorithm on several classes of lattices on the torus.
Journal of Physics A: Mathematical and Theoretical
, 55
(41)
, Article 415004. 10.1088/1751-8121/ac92ae.
|
Sokal, AD;
(2022)
An elementary proof of Takagi's theorem on the differential composition of polynomials.
The American Mathematical Monthly
, 129
(4)
pp. 381-384.
10.1080/00029890.2022.2027719.
|
Sokal, AD;
Zeng, J;
(2022)
Some multivariate master polynomials for permutations, set partitions, and perfect matchings, and their continued fractions.
Advances in Applied Mathematics
, 138
, Article 102341. 10.1016/j.aam.2022.102341.
|
Sokal, Alan D;
(2022)
A simple algorithm for expanding a power series as a continued fraction.
Expositiones Mathematicae
10.1016/j.exmath.2022.12.001.
(In press).
|
Sokal, Alan D;
(2022)
When does a hypergeometric function pFq belong to the Laguerre–Pólya class LP⁺?
Journal of Mathematical Analysis and Applications
, 515
(2)
, Article 126432. 10.1016/j.jmaa.2022.126432.
|
Sokal, Alan D;
(2022)
Multiple Laguerre polynomials: Combinatorial model and Stieltjes moment representation.
Proceedings of the American Mathematical Society
, 150
(2022)
pp. 1997-2005.
10.1090/proc/15775.
|
Sokal, Alan D;
(2022)
Multiple orthogonal polynomials, d-orthogonal polynomials, production matrices, and branched continued fractions.
arXiv.org: Ithaca (NY), USA.
|
Sokal, Alan D;
(2022)
Total positivity of some polynomial matrices that enumerate labeled trees and forests I: forests of rooted labeled trees.
Monatshefte für Mathematik
10.1007/s00605-022-01687-0.
(In press).
|
2021
Chen, Xi;
Deb, Bishal;
Dyachenko, Alexander;
Gilmore, Tomack;
Sokal, Alan D;
(2021)
Coefficientwise Total Positivity of Some Matrices Defined by Linear Recurrences.
Séminaire Lotharingien de Combinatoire
, 85B
, Article 30.
|
Fallat, S;
Johnson, CR;
Sokal, AD;
(2021)
Corrigendum to “Total positivity of sums, Hadamard products and Hadamard powers: Results and counterexamples” [Linear Algebra Appl. 520 (2017) 242–259] (Linear Algebra and its Applications (2017) 520 (242–259), (S0024379517300411), (10.1016/j.laa.2017.01.013)).
[Corrigendum].
Linear Algebra and Its Applications
, 613
pp. 393-396.
10.1016/j.laa.2020.12.019.
|
Pétréolle, M;
Sokal, AD;
(2021)
Lattice paths and branched continued fractions II. Multivariate Lah polynomials and Lah symmetric functions.
European Journal of Combinatorics
, 92
, Article 103235. 10.1016/j.ejc.2020.103235.
|
Salas, J;
Sokal, AD;
(2021)
The graham–knuth–patashnik recurrence: symmetries and continued fractions.
Electronic Journal of Combinatorics
, 28
(2)
, Article P2.18. 10.37236/9766.
|
2020
Price, AE;
Sokal, AD;
(2020)
Phylogenetic trees, augmented perfect matchings, and a thron-type continued fraction (T-fraction) for the ward polynomials.
Electronic Journal of Combinatorics
, 27
(4)
, Article P4.6. 10.37236/9571.
|
Sokal, AD;
(2020)
A remark on the enumeration of rooted labeled trees.
Discrete Mathematics
, 343
(7)
, Article 111865. 10.1016/j.disc.2020.111865.
|
Sokal, AD;
(2020)
Wall's continued-fraction characterization of Hausdorff moment sequences: A conceptual proof.
Proceedings of the American Mathematical Society
, 148
(5)
pp. 2111-2116.
10.1090/proc/14884.
|
Sokal, AD;
(2020)
How to generalize (and not to generalize) the Chu-Vandermonde identity.
American Mathematical Monthly
, 127
(1)
pp. 54-62.
10.1080/00029890.2020.1668707.
|
2018
Lv, JP;
Deng, Y;
Jacobsen, JL;
Salas, J;
Sokal, AD;
(2018)
Duality and the universality class of the three-state Potts antiferromagnet on plane quadrangulations.
[Rapid communication].
Physical Review E
, 97
(4)
10.1103/PhysRevE.97.040104.
|
Sokal, AD;
(2018)
The Euler and Springer Numbers as Moment Sequences.
Expositiones Mathematicae
10.1016/j.exmath.2018.08.001.
(In press).
|
2017
Caracciolo, S;
Sokal, AD;
Sportiello, A;
(2017)
Spanning forests and OSP(N|2M) -invariant σ-models.
Journal of Physics A: Mathematical and Theoretical
, 50
(11)
10.1088/1751-8121/aa59bc.
|
Fallat, S;
Johnson, CR;
Sokal, AD;
(2017)
Total positivity of sums, Hadamard products and Hadamard powers: Results and counterexamples.
Linear Algebra and Its Applications
, 520
pp. 242-259.
10.1016/j.laa.2017.01.013.
|
2015
Royle, GF;
Sokal, AD;
(2015)
Linear Bound in Terms of Maxmaxflow for the Chromatic Roots of Series-Parallel Graphs.
SIAM Journal on Discrete Mathematics
, 29
(4)
pp. 2117-2159.
10.1137/130930133.
|
2014
Brown, NJL;
Sokal, AD;
Friedman, HL;
(2014)
The Persistence of Wishful Thinking.
American Psychologist
, 69
(6)
pp. 629-632.
10.1037/a0037050.
|
Brown, NJL;
Sokal, AD;
Friedman, HL;
(2014)
Positive Psychology and Romantic Scientism.
[Editorial comment].
American Psychologist
, 69
(6)
pp. 636-637.
10.1037/a0037390.
|
Kotecky, R;
Sokal, AD;
Swart, JM;
(2014)
Entropy-Driven Phase Transition in Low-Temperature Antiferromagnetic Potts Models.
Communications in Mathematical Physics
, 330
(3)
pp. 1339-1394.
10.1007/s00220-014-2005-1.
|
|
Scott, AD;
Sokal, AD;
(2014)
Complete monotonicity for inverse powers of some combinatorially defined polynomials.
Acta Mathematica
, 213
(2)
pp. 323-392.
10.1007/s11511-014-0121-6.
|
2013
Brown, NJL;
Sokal, AD;
Friedman, HL;
(2013)
The Complex Dynamics of Wishful Thinking The Critical Positivity Ratio.
American Psychologist
, 68
(9)
pp. 801-813.
10.1037/a0032850.
|
Caracciolo, S;
Sokal, AD;
Sportiello, A;
(2013)
Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians.
Advances in Applied Mathematics
, 50
(4)
pp. 474-594.
10.1016/j.aam.2012.12.001.
|
2011
Deng, YJ;
Huang, Y;
Jacobsen, JL;
Salas, J;
Sokal, AD;
(2011)
Finite-Temperature Phase Transition in a Class of Four-State Potts Antiferromagnets.
PHYS REV LETT
, 107
(15)
, Article 150601. 10.1103/PhysRevLett.107.150601.
|
Sokal, A;
(2011)
Beyond the Hoax: A Response to Emily A. Schultz.
Reviews in Anthropology
, 40
(2)
pp. 169-173.
10.1080/00938157.2011.572477.
|
2010
Sokal, AD;
(2010)
The multivariate Tutte polynomial (alias Potts model) for graphs and matroids.
In: Webb, BS, (ed.)
Surveys in Combinatorics 2005.
(pp. 173-226).
Cambridge: Cambridge, UK.
|
2008
Kotecky, R;
Salas, J;
Sokal, AD;
(2008)
Phase transition in the three-state Potts antiferromagnet on the diced lattice.
PHYS REV LETT
, 101
(3)
, Article 030601. 10.1103/PhysRevLett.101.030601.
|
2007
Deng, Y;
Garoni, TM;
Sokal, AD;
(2007)
Dynamic critical behavior of the worm algorithm for the Ising model.
Phys.Rev.Lett.
, 99
(11)
, Article 110601. 10.1103/PhysRevLett.99.110601.
|
Deng, YJ;
Garoni, TM;
Guo, WN;
Blote, HWJ;
Sokal, AD;
(2007)
Cluster simulations of loop models on two-dimensional lattices.
PHYS REV LETT
, 98
(12)
, Article 120601. 10.1103/PhysRevLett.98.120601.
|
Deng, YJ;
Garoni, TM;
Machta, J;
Ossola, G;
Polin, M;
Sokal, AD;
(2007)
Critical behavior of the Chayes-Machta-Swendsen-Wang dynamics.
PHYS REV LETT
, 99
(5)
, Article 055701. 10.1103/PhysRevLett.99.055701.
|
Deng, YJ;
Garoni, TM;
Sokal, AD;
(2007)
Dynamic critical behavior of the worm algorithm for the ising model.
PHYS REV LETT
, 99
(11)
, Article 110601. 10.1103/PhysRevLett.99.110601.
|
Deng, YJ;
Garoni, TM;
Sokal, AD;
(2007)
Critical speeding-up in the local dynamics of the random-cluster model.
PHYS REV LETT
, 98
(23)
, Article 230602. 10.1103/PhysRevLett.98.230602.
|
Deng, YJ;
Garoni, TM;
Sokal, AD;
(2007)
Ferromagnetic phase transition for the spanning-forest model (q -> 0 limit of the Potts model) in three or more dimensions.
PHYS REV LETT
, 98
(3)
, Article 030602. 10.1103/PhysRevLett.98.030602.
|
2004
Caracciolo, S;
Jacobsen, JL;
Saleur, H;
Sokal, AD;
Sportiello, A;
(2004)
Fermionic field theory for trees and forests.
PHYS REV LETT
, 93
(8)
, Article 080601. 10.1103/PhysRevLett.93.080601.
|
Sokal, AD;
(2004)
Chromatic roots are dense in the whole complex plane.
COMB PROBAB COMPUT
, 13
(2)
221 - 261.
10.1017/S0963548303006023.
|
2001
Sokal, AD;
(2001)
Bounds on the complex zeros of (Di)Chromatic polynomials and Potts-model partition functions.
COMB PROBAB COMPUT
, 10
(1)
41 - 77.
|
1996
Caracciolo, S;
Edwards, RG;
Pelissetto, A;
Sokal, AD;
(1996)
Caracciolo et al. Reply:.
Phys.Rev.Lett.
, 76
(7)
1179 -1179.
10.1103/PhysRevLett.76.1179.
|
1994
Caracciolo, S;
Edwards, RG;
Ferreira, SJ;
Pelissetto, A;
Sokal, AD;
(1994)
Extrapolating Monte Carlo Simulations to Infinite Volume: Finite-Size Scaling at ξ/L ≫1.
Physical Review Letters
, 74
(15)
2969 - 2972.
10.1103/PhysRevLett.74.2969.
|
1993
Lubin, M;
Sokal, AD;
(1993)
Comment on ``Antiferromagnetic Potts Models''.
Phys.Rev.Lett.
, 71
(11)
1778 -1778.
10.1103/PhysRevLett.71.1778.
|