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We study three combinatorial models for the lower-triangular 
matrix with entries tn,k =

(
n
k

)
nn−k: two involving rooted 

trees on the vertex set [n + 1], and one involving partial 
functional digraphs on the vertex set [n]. We show that 
this matrix is totally positive and that the sequence of its 
row-generating polynomials is coefficientwise Hankel-totally 
positive. We then generalize to polynomials tn,k(y, z) that 
count improper and proper edges, and further to polynomials 
tn,k(y, φ) in infinitely many indeterminates that give a weight 
y to each improper edge and a weight m! φm for each vertex 
with m proper children. We show that if the weight sequence φ
is Toeplitz-totally positive, then the two foregoing total-
positivity results continue to hold. Our proofs use production 
matrices and exponential Riordan arrays.
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1. Introduction and statement of results

It is well known [31,45] that the number of rooted trees on the vertex set [n + 1] def=
{1, . . . , n +1} is tn = (n +1)n; and it is also known (though perhaps less well so) [5,6,42]
that the number of rooted trees on the vertex set [n + 1] in which exactly k children of 
the root are lower-numbered than the root is

tn,k =
(
n

k

)
nn−k . (1.1)

The first few tn,k and tn are

n \ k 0 1 2 3 4 5 6 7 8 (n + 1)n

0 1 1
1 1 1 2
2 4 4 1 9
3 27 27 9 1 64
4 256 256 96 16 1 625
5 3125 3125 1250 250 25 1 7776
6 46656 46656 19440 4320 540 36 1 117649
7 823543 823543 352947 84035 12005 1029 49 1 2097152
8 16777216 16777216 7340032 1835008 286720 28672 1792 64 1 43046721

[32, A071207 and A000169].
There is a second combinatorial interpretation of the numbers tn,k, also in terms of 

rooted trees: namely, tn,k is the number of rooted trees on the vertex set [n +1] in which 
some specified vertex i has k children.1

1 This fact ought to be well known, but to our surprise we have been unable to find any published reference. 
Let us therefore give two proofs:

First proof. Let T •
n denote the set of rooted trees on the vertex set [n], and let degT (i) denote the number 

of children of the vertex i in the rooted tree T . Rooted trees T ∈ T •
n+1 are associated bijectively to Prüfer 

sequences (s1, . . . , sn) ∈ [n + 1]n, in which each index i ∈ [n + 1] appears degT (i) times [45, pp. 25–26]. 
There are 

(n
k

)
nn−k sequences in which the index i appears exactly k times.

Second proof. There are fn,k =
(n
k

)
k nn−k−1 k-component forests of rooted trees on n labeled vertices 

(see the references cited in [43, footnote 1]). By adding a new vertex 0 and connecting it to the roots of 
all the trees, we see that fn,k is also the number of unrooted trees on n + 1 labeled vertices in which some 
specified vertex (here vertex 0) has degree k. Now choose a root: if this root is 0, then vertex 0 has k
children; otherwise vertex 0 has k − 1 children. It follows that the number of rooted trees on n + 1 labeled 
vertices in which some specified vertex has k children is fn,k + nfn,k+1 =

(n
k

)
nn−k.

The second proof was found independently by Ira Gessel (private communication).
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And finally, there is a third combinatorial interpretation of the numbers tn,k [10]
that is even simpler than the preceding two. Recall first that a functional digraph is a 
directed graph in which every vertex has out-degree 1; the terminology comes from the 
fact that such digraphs are in obvious bijection with functions f from the vertex set to 
itself [namely, −→ij is an edge if and only if f(i) = j]. Let us now define a partial functional 
digraph to be a directed graph in which every vertex has out-degree 0 or 1; and let us 
write PFDn,k for the set of partial functional digraphs on the vertex set [n] in which 
exactly k vertices have out-degree 0. (So PFDn,0 is the set of functional digraphs.) 
A digraph in PFDn,k has n − k edges. It is easy to see that |PFDn,k| = tn,k: there are (
n
k

)
choices for the out-degree-0 vertices, and nn−k choices for the edges emanating from 

the remaining vertices.
We will use all three combinatorial models at various points in this paper.
The unit-lower-triangular matrix (tn,k)n,k≥0 has the exponential generating function

∞∑
n=0

n∑
k=0

tn,k
tn

n! x
k = exT (t)

1 − T (t) (1.2)

where

T (t) def=
∞∑

n=1
nn−1 tn

n! (1.3)

is the tree function [9].2 An equivalent statement is that the unit-lower-triangular 
matrix (tn,k)n,k≥0 is the exponential Riordan array [1,11,13,38] R[F, G] with F (t) =∑∞

n=0 n
n tn/n! = 1/[1 − T (t)] and G(t) = T (t); we will discuss this connection in Sec-

tion 4.1.
The principal purpose of this paper is to prove the total positivity of some matrices 

related to (and generalizing) tn and tn,k. Recall first that a finite or infinite matrix of 
real numbers is called totally positive (TP) if all its minors are nonnegative, and strictly 
totally positive (STP) if all its minors are strictly positive.3 Background information on 
totally positive matrices can be found in [16,18,26,34]; they have applications to many 
areas of pure and applied mathematics. See [43, footnote 4] for many references.

Our first result is the following:

Theorem 1.1.

(a) The unit-lower-triangular matrix T = (tn,k)n,k≥0 is totally positive.

2 In the analysis literature, expressions involving the tree function are often written in terms of the 
Lambert W function W (t) = −T (−t), which is the inverse function to w �→ wew [9,25].
3 Warning: Many authors (e.g. [16–19]) use the terms “totally nonnegative” and “totally positive” for what 

we have termed “totally positive” and “strictly totally positive”, respectively. So it is very important, when 
seeing any claim about “totally positive” matrices, to ascertain which sense of “totally positive” is being 
used! (This is especially important because many theorems in this subject require strict total positivity for 
their validity.) We follow the terminology of Karlin [26] and Pinkus [34].
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(b) The Hankel matrix H∞(t(0)) = (tn+n′,0)n,n′≥0 is totally positive.

It is known [19,34] that a Hankel matrix of real numbers is totally positive if and only 
if the underlying sequence is a Stieltjes moment sequence, i.e. the moments of a positive 
measure on [0, ∞). And it is also known that (nn)n≥0 is a Stieltjes moment sequence.4 So 
Theorem 1.1(b) is equivalent to this known result. But our proof here is combinatorial 
and linear-algebraic, not analytic.

However, this is only the beginning of the story, because our main interest [40,41,44]
is not with sequences and matrices of real numbers, but rather with sequences and 
matrices of polynomials (with integer or real coefficients) in one or more indeterminates 
x: in applications they will typically be generating polynomials that enumerate some 
combinatorial objects with respect to one or more statistics. We equip the polynomial 
ring R[x] with the coefficientwise partial order: that is, we say that P is nonnegative 
(and write P � 0) in case P is a polynomial with nonnegative coefficients. We then say 
that a matrix with entries in R[x] is coefficientwise totally positive if all its minors are 
polynomials with nonnegative coefficients; and we say that a sequence a = (an)n≥0 with 
entries in R[x] is coefficientwise Hankel-totally positive if its associated infinite Hankel 
matrix H∞(a) = (an+n′)n,n′≥0 is coefficientwise totally positive.

Returning now to the matrix T = (tn,k)n,k≥0, let us define its row-generating poly-
nomials in the usual way:

Tn(x) =
n∑

k=0

tn,k x
k . (1.4)

From the definition (1.1) we obtain the explicit formula

Tn(x) = (x + n)n . (1.5)

Our second result is then:

Theorem 1.2. The polynomial sequence T =
(
Tn(x)

)
n≥0 is coefficientwise Hankel-totally 

positive.

4 The integral representation [3] [25, Corollary 2.4]

nn

n!
=

1
π

π∫
0

( sin ν

ν
e
ν cot ν

)n

dν

shows that nn/n! is a Stieltjes moment sequence. Moreover, n! =
∫∞
0 xn e−x dx is a Stieltjes moment 

sequence. Since the entrywise product of two Stieltjes moment sequences is easily seen to be a Stieltjes 
moment sequence, it follows that nn is a Stieltjes moment sequence. But we do not know any simple 
formula (i.e. one involving only a single integral over a real variable) for its Stieltjes integral representation.
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Theorem 1.2 strengthens Theorem 1.1(b), and reduces to it when x = 0. The proof of 
Theorem 1.2 will be based on studying the binomial row-generating matrix TBx, where 
Bx is the weighted binomial matrix

(Bx)ij =
(
i

j

)
xi−j . (1.6)

The important fact is that, for any matrix A, the zeroth column of the binomial row-
generating matrix ABx consists of the row-generating polynomials of A.

But this is not the end of the story, because we want to generalize these polynomials 
by adding further variables. Given a rooted tree T and two vertices i, j of T , we say that 
j is a descendant of i if the unique path from the root of T to j passes through i. (Note 
in particular that every vertex is a descendant of itself.) Now suppose that the vertex set 
of T is totally ordered (for us it will be [n + 1]), and let e = ij be an edge of T , ordered 
so that j is a descendant of i. We say that the edge e = ij is improper if there exists a 
descendant of j (possibly j itself) that is lower-numbered than i; otherwise we say that 
e = ij is proper. We denote by imprope(T ) [resp. prope(T )] the number of improper 
(resp. proper) edges in the tree T .

We now introduce these statistics into our second combinatorial model. Let T 〈i;k〉
n

denote the set of rooted trees on the vertex set [n] in which the vertex i has k children. 
For the identity |T 〈i;k〉

n+1 | = tn,k, we can use any i ∈ [n + 1]; but for the following we 
specifically want to take i = 1. With this choice we observe that the k edges from the 
vertex 1 to its children are automatically proper. We therefore define

tn,k(y, z) =
∑

T∈T 〈1;k〉
n+1

yimprope(T )zprope(T )−k . (1.7)

Clearly tn,k(y, z) is a homogeneous polynomial of degree n − k with nonnegative integer 
coefficients; it is a polynomial refinement of tn,k in the sense that tn,k(1, 1) = tn,k. 
(Of course, it was redundant to introduce the two variables y and z instead of just 
one of them; we did it because it makes the formulae more symmetric.) The first few 
polynomials tn,k(y, 1) are

n \ k 0 1 2 3 4
0 1
1 y 1
2 y + 3y2 1 + 3y 1
3 2y + 10y2 + 15y3 2 + 10y + 15y2 3 + 6y 1
4 6y + 40y2 + 105y3 + 105y4 6 + 40y + 105y2 + 105y3 11 + 40y + 45y2 6 + 10y 1

The coefficient matrix of the zeroth-column polynomials tn,0(y, 1) is [32, A239098/
A075856]. This table also suggests the following result, for which we will give a bijective 
proof:
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Proposition 1.3. For n ≥ 1, tn,0(y, z) = y tn,1(y, z).

In Section 4.2 we will show that the unit-lower-triangular matrix T(y, z) =(
tn,k(y, z)

)
n,k≥0 is an exponential Riordan array R[F, G], and we will compute F (t)

and G(t).
We now generalize (1.4) by defining the row-generating polynomials

Tn(x, y, z) =
n∑

k=0

tn,k(y, z)xk (1.8)

or in other words

Tn(x, y, z) =
∑

T∈T •
n+1

xdegT (1)yimprope(T )zprope(T )−degT (1) (1.9)

where degT (1) is the number of children of the vertex 1 in the rooted tree T . Note that 
Tn(x, y, z) is a homogeneous polynomial of degree n in x, y, z, with nonnegative integer 
coefficients; it reduces to Tn(x) when y = z = 1. Our third result is then:

Theorem 1.4.

(a) The unit-lower-triangular polynomial matrix T(y, z) =
(
tn,k(y, z)

)
n,k≥0 is coefficien-

twise totally positive (jointly in y, z).
(b) The polynomial sequence T =

(
Tn(x, y, z)

)
n≥0 is coefficientwise Hankel-totally pos-

itive (jointly in x, y, z).

Theorem 1.4 strengthens Theorems 1.1(a) and 1.2, and reduces to them when y = z =
1. The proof of Theorem 1.4(b) will be based on studying the binomial row-generating 
matrix T(y, z)Bx, using the representation of T(y, z) as an exponential Riordan array.

Finally, let us consider our third combinatorial model, which is based on partial func-
tional digraphs. Recall that a functional digraph (resp. partial functional digraph) is 
a directed graph in which every vertex has out-degree 1 (resp. 0 or 1). Each weakly 
connected component of a functional digraph consists of a directed cycle (possibly of 
length 1, i.e. a loop) together with a collection of (possibly trivial) directed trees rooted 
at the vertices of the cycle (with edges pointing towards the root). The weakly connected 
components of a partial functional digraph are trees rooted at the out-degree-0 vertices 
(with edges pointing towards the root) together with components of the same form as in 
a functional digraph. We say that a vertex of a partial functional digraph is recurrent
(or cyclic) if it lies on one of the cycles; otherwise we call it transient (or acyclic). If 
j and k are vertices of a digraph, we say that k is a predecessor of j if there exists a 
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directed path from k to j (in particular, every vertex is a predecessor of itself).5 Note 
that “predecessor” in a digraph generalizes the notion of “descendant” in a rooted tree, if 
we make the convention that all edges in the tree are oriented towards the root. Indeed, 
if j is a transient vertex in a partial functional digraph, then the predecessors of j are 
precisely the descendants of j in the rooted tree (rooted at either a recurrent vertex 
or an out-degree-0 vertex) to which j belongs. On the other hand, if j is a recurrent 
vertex, then the predecessors of j are all the vertices in the weakly connected component 
containing j.

Now consider a partial functional digraph on a totally ordered vertex set (which for 
us will be [n]). We say that an edge 

−→
ji (pointing from j to i) is improper if there exists 

a predecessor of j (possibly j itself) that is ≤ i; otherwise we say that the edge 
−→
ji is

proper. When j is a transient vertex, this coincides with the notion of improper/proper 
edge in a rooted tree. When j is a recurrent vertex, the edge 

−→
ji is always improper, 

because one of the predecessors of j is i. (This includes the case i = j: a loop is always 
an improper edge.) We denote by imprope(G) [resp. prope(G)] the number of improper 
(resp. proper) edges in the partial functional digraph G. We then define the generating 
polynomial

t̃n,k(y, z) =
∑

G∈PFDn,k

yimprope(G)zprope(G) . (1.10)

Since G ∈ PFDn,k has n −k edges, t̃n,k(y, z) is a homogeneous polynomial of degree n −k

with nonnegative integer coefficients. By bijection between our second and third combi-
natorial models, we will prove:

Proposition 1.5. tn,k(y, z) = t̃n,k(y, z).

The row-generating polynomials (1.8)/(1.9) thus have the alternate combinatorial 
interpretation

Tn(x, y, z) =
∑

G∈PFDn

xdeg 0(G)yimprope(G)zprope(G) (1.11)

where deg 0(G) is the number of out-degree-0 vertices in G.
We also have an interpretation of the polynomials tn,k(y, z) in our first combi-

natorial model (rooted trees in which the root has k lower-numbered children); but 
since this interpretation is rather complicated, we refer the reader to the Appendix of
arXiv:2302.03999v1.

But this is still not the end of the story, because we can add even more variables into 
our second combinatorial model — in fact, an infinite set. Given a rooted tree T on a 

5 In a functional digraph, Dumont and Ramamonjisoa [15, p. 11] use the term “ascendance”, and the 
notation A(j), to denote the set of all predecessors of j.
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totally ordered vertex set and vertices i, j ∈ T such that j is a child of i, we say that j
is a proper child of i if the edge e = ij is proper (that is, j and all its descendants are 
higher-numbered than i). Now let φ = (φm)m≥0 be indeterminates, and let tn,k(y, φ) be 
the generating polynomial for rooted trees T ∈ T 〈1;k〉

n+1 with a weight y for each improper 
edge and a weight φ̂m

def= m! φm for each vertex i �= 1 that has m proper children:

tn,k(y,φ) =
∑

T∈T 〈1;k〉
n+1

yimprope(T )
n+1∏
i=2

φ̂pdegT (i) (1.12)

where pdegT (i) denotes the number of proper children of the vertex i in the rooted tree 
T . We will see later why it is convenient to introduce the factors m! in this definition. 
Observe also that the variables z are now redundant and therefore omitted, because 
they would simply scale φm → zmφm. And note finally that, in conformity with (1.7), 
we have chosen to suppress the weight φ̂k that would otherwise be associated to the 
vertex 1. We call the polynomials tn,k(y, φ) the generic rooted-tree polynomials, and 
the lower-triangular matrix T(y, φ) =

(
tn,k(y, φ)

)
n,k≥0 the generic rooted-tree matrix. 

Here φ = (φm)m≥0 are in the first instance indeterminates, so that tn,k(y, φ) belongs to 
the polynomial ring Z[y, φ]; but we can then, if we wish, substitute specific values for φ
in any commutative ring R, leading to values tn,k(y, φ) ∈ R[y]. (Similar substitutions can 
of course also be made for y.) When doing this we will use the same notation tn,k(y, φ), 
as the desired interpretation for φ should be clear from the context. The polynomial 
tn,k(y, φ) is homogeneous of degree n in φ; it is also quasi-homogeneous of degree n − k

in y and φ when φm is assigned weight m and y is assigned weight 1. By specializing 
tn,k(y, φ) to φm = zm/m! and hence φ̂m = zm, we recover tn,k(y, z).

We remark that the matrix T(y, φ), unlike T(y, z), is not unit-lower-triangular: rather, 
it has diagonal entries tn,n(y, φ) = φn

0 , corresponding to the tree in which 1 is the root 
and has all the vertices 2, . . . , n +1 as children. More generally, the polynomial tn,k(y, φ)
is divisible by φk

0 , since the vertex 1 always has at least k leaf descendants. So we 
could define a unit-lower-triangular matrix T�(y, φ) =

(
t�n,k(y, φ)

)
n,k≥0 by t�n,k(y, φ) =

tn,k(y, φ)/φk
0 . (Alternatively, we could simply choose to normalize to φ0 = 1.)

In Section 4.3 we will show that T(y, φ) is an exponential Riordan array R[F, G], and 
we will compute F (t) and G(t).

Also, generalizing Proposition 1.3, we will prove:

Proposition 1.6. For n ≥ 1, tn,0(y, φ) = y tn,1(y, φ).

We can also define the corresponding polynomials t̃n,k(y, φ) in the partial-functional-
digraph model, as follows: If G is a partial functional digraph on a totally ordered vertex 
set, and i is a vertex of G, we define the proper in-degree of i, pindegG(i), to be the 
number of proper edges −→ji in G. We then define
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t̃n,k(y,φ) =
∑

G∈PFDn,k

yimprope(G)
n∏

i=1
φ̂pindegG(i) . (1.13)

Then, generalizing Proposition 1.5, we will prove:

Proposition 1.7. tn,k(y, φ) = t̃n,k(y, φ).

Now define the row-generating polynomials

Tn(x, y,φ) =
n∑

k=0

tn,k(y,φ)xk (1.14)

or in other words

Tn(x, y,φ) =
∑

T∈T •
n+1

xdegT (1)yimprope(T )
n+1∏
i=2

φ̂pdegT (i) . (1.15)

The main result of this paper is then the following:

Theorem 1.8. Fix 1 ≤ r ≤ ∞. Let R be a partially ordered commutative ring, and let 
φ = (φm)m≥0 be a sequence in R that is Toeplitz-totally positive of order r. Then:

(a) The lower-triangular polynomial matrix T(y, φ) =
(
tn,k(y, φ)

)
n,k≥0 is coefficientwise 

totally positive of order r (in y).
(b) The polynomial sequence T =

(
Tn(x, y, φ)

)
n≥0 is coefficientwise Hankel-totally pos-

itive of order r (jointly in x, y).

(The concept of Toeplitz-total positivity in a partially ordered commutative ring will 
be explained in detail in Section 2.1. Total positivity of order r means that the minors of 
size ≤ r are nonnegative.) Specializing Theorem 1.8 to r = ∞, R = Q and φm = zm/m!
(which is indeed Toeplitz-totally positive: see (2.1) below), we recover Theorem 1.4. The 
method of proof of Theorem 1.8 will, in fact, be the same as that of Theorem 1.4, suitably 
generalized.

We now give an overview of the contents of this paper. The main tool in our proofs will 
be the theory of production matrices [12,13] as applied to total positivity [44], combined 
with the theory of exponential Riordan arrays [1,11,13,38]. Therefore, in Section 2 we 
review some facts about total positivity, production matrices and exponential Riordan 
arrays that will play a central role in our arguments. This development culminates in 
Corollary 2.18; it is the fundamental theoretical result that underlies all our proofs. In 
Section 3 we give bijective proofs of Propositions 1.3, 1.5, 1.6 and 1.7. In Section 4 we 
show that the matrices T, T(y, z) and T(y, φ) are exponential Riordan arrays R[F, G], 
and we compute their generating functions F and G. In Section 5 we combine the results 
of Sections 2 and 4 to complete the proofs of Theorems 1.1, 1.2, 1.4 and 1.8.
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This paper is a sequel to our paper [43] on the total positivity of matrices that enu-
merate forests of rooted labeled trees. The methods here are basically the same as in 
this previous paper, but generalized nontrivially to handle exponential Riordan arrays 
R[F, G] with F �= 1. Zhu [47,48] has employed closely related methods. See also Gilmore 
[21] for some total-positivity results for q-generalizations of tree and forest matrices, 
using very different methods.

A fuller version of the present paper can be found at arXiv:2302.03999v1: it contains 
proofs of some known results, which were included there to make the paper self-contained 
but which are omitted here to save space; it contains alternate proofs of Propositions 4.1
and 5.4; and it also contains an Appendix providing an interpretation of the polynomials 
tn,k(y, z) in our first combinatorial model.

2. Preliminaries

Here we review some definitions and results from [33,43,44] that will be needed in the 
sequel. We also include a brief review of exponential Riordan arrays [1,11,13,38] and La-
grange inversion [20]. Omitted proofs can be found in [43] and at arXiv:2302.03999v1.

The treatment of exponential Riordan arrays in Section 2.4 contains one novelty: 
namely, the rewriting of the production matrix in terms of new series Φ and Ψ (see 
(2.14) ff. and Proposition 2.14). This is the key step that leads to Corollary 2.18.

2.1. Partially ordered commutative rings and total positivity

In this paper all rings will be assumed to have an identity element 1 and to be 
nontrivial (1 �= 0).

A partially ordered commutative ring is a pair (R, P) where R is a commutative ring 
and P is a subset of R satisfying

(a) 0, 1 ∈ P.
(b) If a, b ∈ P, then a + b ∈ P and ab ∈ P.
(c) P ∩ (−P) = {0}.

We call P the nonnegative elements of R, and we define a partial order on R (compatible 
with the ring structure) by writing a ≤ b as a synonym for b − a ∈ P. Please note 
that, unlike the practice in real algebraic geometry [4,28,30,35], we do not assume here 
that squares are nonnegative; indeed, this property fails completely for our prototypical 
example, the ring of polynomials with the coefficientwise order, since (1 −x)2 = 1 −2x +
x2 �� 0.

Now let (R, P) be a partially ordered commutative ring and let x = {xi}i∈I be a 
collection of indeterminates. In the polynomial ring R[x] and the formal-power-series 
ring R[[x]], let P[x] and P[[x]] be the subsets consisting of polynomials (resp. series) 
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with nonnegative coefficients. Then (R[x], P[x]) and (R[[x]], P[[x]]) are partially ordered 
commutative rings; we refer to this as the coefficientwise order on R[x] and R[[x]].

A (finite or infinite) matrix with entries in a partially ordered commutative ring is 
called totally positive (TP) if all its minors are nonnegative; it is called totally positive 
of order r (TPr) if all its minors of size ≤ r are nonnegative. It follows immediately 
from the Cauchy–Binet formula that the product of two TP (resp. TPr) matrices is TP 
(resp. TPr).6 This fact is so fundamental to the theory of total positivity that we shall 
henceforth use it without comment.

We say that a sequence a = (an)n≥0 with entries in a partially ordered commutative 
ring is Hankel-totally positive (resp. Hankel-totally positive of order r) if its associ-
ated infinite Hankel matrix H∞(a) = (ai+j)i,j≥0 is TP (resp. TPr). We say that a
is Toeplitz-totally positive (resp. Toeplitz-totally positive of order r) if its associated 

infinite Toeplitz matrix T∞(a) = (ai−j)i,j≥0 (where an
def= 0 for n < 0) is TP (resp. 

TPr).7

When R = R, Hankel- and Toeplitz-total positivity have simple analytic characteri-
zations. A sequence (an)n≥0 of real numbers is Hankel-totally positive if and only if it is 
a Stieltjes moment sequence [19, Théorème 9] [34, section 4.6]. And a sequence (an)n≥0

of real numbers is Toeplitz-totally positive if and only if its ordinary generating function 
can be written as

∞∑
n=0

ant
n = Ceγttm

∞∏
i=1

1 + αit

1 − βit
(2.1)

with m ∈ N, C, γ, αi, βi ≥ 0, 
∑

αi < ∞ and 
∑

βi < ∞: this is the celebrated Aissen–
Schoenberg–Whitney–Edrei theorem [26, Theorem 5.3, p. 412]. However, in a general 
partially ordered commutative ring R, the concepts of Hankel- and Toeplitz-total posi-
tivity are more subtle.

We will need a few easy facts about the total positivity of special matrices:

Lemma 2.1 (Bidiagonal matrices). Let A be a matrix with entries in a partially ordered 
commutative ring, with the property that all its nonzero entries belong to two consecutive 
diagonals. Then A is totally positive if and only if all its entries are nonnegative.

Lemma 2.2 (Toeplitz matrix of powers). Let R be a partially ordered commutative ring, 
let x ∈ R, and consider the infinite Toeplitz matrix

6 For infinite matrices, we need some condition to ensure that the product is well-defined. For instance, 
the product AB is well-defined whenever A is row-finite (i.e. has only finitely many nonzero entries in each 
row) or B is column-finite.
7 When R = R, Toeplitz-totally positive sequences are traditionally called Pólya frequency sequences

(PF), and Toeplitz-totally positive sequences of order r are called Pólya frequency sequences of order r
(PFr). See [26, chapter 8] for a detailed treatment.
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Tx
def= T∞(xN) =

⎡
⎢⎢⎢⎢⎣

1
x 1
x2 x 1
x3 x2 x 1
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦ . (2.2)

Then every minor of Tx is either zero or else a power of x. Hence Tx is TP ⇐⇒ Tx is 
TP1 ⇐⇒ x ≥ 0.

In particular, if x is an indeterminate, then Tx is totally positive in the ring Z[x]
equipped with the coefficientwise order.

Lemma 2.3 (Binomial matrix). In the ring Z, the binomial matrix B =
((

n
k

))
n,k≥0 is 

totally positive. More generally, the weighted binomial matrix Bx,y =
(
xn−kyk

(
n
k

))
n,k≥0

is totally positive in the ring Z[x, y] equipped with the coefficientwise order.

Finally, let us observe that the sufficiency half of the Aissen–Schoenberg–Whitney–
Edrei theorem holds (with a slight modification to avoid infinite products) in a general 
partially ordered commutative ring. We give two versions, depending on whether or not 
it is assumed that the ring R contains the rationals:

Lemma 2.4 (Sufficient condition for Toeplitz-total positivity). Let R be a partially ordered 
commutative ring, let N be a nonnegative integer, and let α1, . . . , αN , β1, . . . , βN and C
be nonnegative elements in R. Define the sequence a = (an)n≥0 in R by

∞∑
n=0

ant
n = C

N∏
i=1

1 + αit

1 − βit
. (2.3)

Then the Toeplitz matrix T∞(a) is totally positive.

Of course, it is no loss of generality to have the same number N of alphas and betas, 
since some of the αi or βi could be zero.

Lemma 2.5 (Sufficient condition for Toeplitz-total positivity, with rationals). Let R be 
a partially ordered commutative ring containing the rationals, let N be a nonnegative 
integer, and let α1, . . . , αN , β1, . . . , βN , γ and C be nonnegative elements in R. Define 
the sequence a = (an)n≥0 in R by

∞∑
n=0

ant
n = C eγt

N∏
i=1

1 + αit

1 − βit
. (2.4)

Then the Toeplitz matrix T∞(a) is totally positive.
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2.2. Production matrices

Let P = (pij)i,j≥0 be an infinite matrix with entries in a commutative ring R. In order 
that powers of P be well-defined, we shall assume that P is either row-finite (i.e. has 
only finitely many nonzero entries in each row) or column-finite.

Let us now define an infinite matrix A = (ank)n,k≥0 by

ank = (Pn)0k (2.5)

(in particular, a0k = δ0k). Writing out the matrix multiplications explicitly, we have

ank =
∑

i1,...,in−1

p0i1 pi1i2 pi2i3 · · · pin−2in−1 pin−1k , (2.6)

so that ank is the total weight for all n-step walks in N from i0 = 0 to in = k, in which 
the weight of a walk is the product of the weights of its steps, and a step from i to j
gets a weight pij . Yet another equivalent formulation is to define the entries ank by the 
recurrence

ank =
∞∑
i=0

an−1,i pik for n ≥ 1 (2.7)

with the initial condition a0k = δ0k.
We call P the production matrix and A the output matrix, and we write A = O(P ). 

Note that if P is row-finite, then so is O(P ); if P is lower-Hessenberg, then O(P ) is lower-
triangular; if P is lower-Hessenberg with invertible superdiagonal entries, then O(P )
is lower-triangular with invertible diagonal entries; and if P is unit-lower-Hessenberg 
(i.e. lower-Hessenberg with entries 1 on the superdiagonal), then O(P ) is unit-lower-
triangular. In all the applications in this paper, P will be lower-Hessenberg.

Now let Δ = (δi+1,j)i,j≥0 be the matrix with 1 on the superdiagonal and 0 elsewhere. 
Then for any matrix M with rows indexed by N, the product ΔM is simply M with its 
zeroth row removed and all other rows shifted upwards. (Some authors use the notation 

M
def= ΔM .) The recurrence (2.7) can then be written as

ΔO(P ) = O(P )P . (2.8)

It follows that if A is a row-finite matrix that has a row-finite inverse A−1 and has first 
row a0k = δ0k, then P = A−1ΔA is the unique matrix such that A = O(P ). This holds, 
in particular, if A is lower-triangular with invertible diagonal entries and a00 = 1; then 
A−1 is lower-triangular and P = A−1ΔA is lower-Hessenberg. And if A is unit-lower-
triangular, then P = A−1ΔA is unit-lower-Hessenberg.

We shall repeatedly use the following easy fact:



14 X. Chen, A.D. Sokal / Advances in Applied Mathematics 157 (2024) 102703
Lemma 2.6 (Production matrix of a product). Let P = (pij)i,j≥0 be a row-finite matrix 
(with entries in a commutative ring R), with output matrix A = O(P ); and let B =
(bij)i,j≥0 be a lower-triangular matrix with invertible (in R) diagonal entries. Then

AB = b00 O(B−1PB) . (2.9)

That is, up to a factor b00, the matrix AB has production matrix B−1PB.

2.3. Production matrices and total positivity

Let P = (pij)i,j≥0 be a matrix with entries in a partially ordered commutative ring 
R. We will use P as a production matrix; let A = O(P ) be the corresponding output 
matrix. As before, we assume that P is either row-finite or column-finite.

When P is totally positive, it turns out [44] that the output matrix O(P ) has two
total-positivity properties: firstly, it is totally positive; and secondly, its zeroth column is 
Hankel-totally positive. Here we state these results without proof; full proofs, as well as 
some historical remarks and examples, can be found in [43] and at arXiv:2302.03999v1.

Theorem 2.7 (Total positivity of the output matrix). Let P be an infinite matrix that is 
either row-finite or column-finite, with entries in a partially ordered commutative ring 
R. If P is totally positive of order r, then so is A = O(P ).

Theorem 2.8 (Hankel-total positivity of the zeroth column). Let P = (pij)i,j≥0 be an 
infinite row-finite or column-finite matrix with entries in a partially ordered commutative 
ring R, and define the infinite Hankel matrix of the zeroth column of the output matrix 
O(P ): H∞(O0(P )) = ((Pn+n′)00)n,n′≥0. If P is totally positive of order r, then so is 
H∞(O0(P )).

One might hope that Theorem 2.8 could be strengthened to show not only Hankel-
TP of the zeroth column of the output matrix A = O(P ), but in fact Hankel-TP of the 
row-generating polynomials An(x) for all x ≥ 0 (at least when R = R) — or even more 
strongly, coefficientwise Hankel-TP of the row-generating polynomials. Alas, this hope 
is vain, for these properties do not hold in general:

Example 2.9 (Failure of Hankel-TP of the row-generating polynomials). Let P = e00 +Δ
be the upper-bidiagonal matrix with 1 on the superdiagonal and 1, 0, 0, 0, . . . on the 
diagonal; by Lemma 2.1 it is TP. Then A = O(P ) is the lower-triangular matrix will 
all entries 1, so that An(x) =

∑n
k=0 x

k. Since A0(x) A2(x) −A1(x)2 = −x, the sequence 
(An(x))n≥0 is not even log-convex (i.e. Hankel-TP2) for any real number x > 0. �

Nevertheless, in one important special case — namely, exponential Riordan arrays 
R[1, G] — the total positivity of the production matrix does imply the coefficientwise 
Hankel-TP of the row-generating polynomials of the output matrix: this was shown [43, 



X. Chen, A.D. Sokal / Advances in Applied Mathematics 157 (2024) 102703 15
Theorem 2.20]. That result will be generalized here, in Corollary 2.18, to provide a more 
general sufficient (but not necessary) condition for the coefficientwise Hankel-TP of the 
row-generating polynomials of the output matrix.

2.4. Exponential Riordan arrays

Let R be a commutative ring containing the rationals, and let F (t) =
∑∞

n=0 fnt
n/n!

and G(t) =
∑∞

n=1 gnt
n/n! be formal power series with coefficients in R; we set g0 = 0. 

Then the exponential Riordan array [1,11,13,38] associated to the pair (F, G) is the 
infinite lower-triangular matrix R[F, G] = (R[F, G]nk)n,k≥0 defined by

R[F,G]nk = n!
k! [tn]F (t)G(t)k . (2.10)

That is, the kth column of R[F, G] has exponential generating function F (t)G(t)k/k!. 
Equivalently, the bivariate exponential generating function of R[F, G] is

∞∑
n,k=0

R[F,G]nk
tn

n! x
k = F (t) exG(t) . (2.11)

The diagonal elements of R[F, G] are R[F, G]nn = f0g
n
1 , so the matrix R[F, G] is invert-

ible in the ring RN×N
lt of lower-triangular matrices if and only if f0 and g1 are invertible 

in R.
The following is an easy computation:

Lemma 2.10 (Product of two exponential Riordan arrays). We have

R[F1, G1]R[F2, G2] = R[(F2 ◦G1)F1, G2 ◦G1] . (2.12)

In particular, if we let R[F2, G2] be the weighted binomial matrix Bξ = R[eξt, t]
defined by (1.6), we obtain:

Corollary 2.11 (Binomial row-generating matrix of an exponential Riordan array). We 
have

R[F,G]Bξ = R[eξGF,G] . (2.13)

Similarly, letting R[F1, G1] be the weighted binomial matrix Bξ, we obtain:

Corollary 2.12 (Left binomial transform of an exponential Riordan array). We have

Bξ R[F,G] = R[eξtF,G] . (2.14)
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The production matrix of an exponential Riordan array R[F, G] is as follows: Let 
a = (an)n≥0 and z = (zn)n≥0 be sequences in a commutative ring R, with ordinary 
generating functions A(s) =

∑∞
n=0 ans

n and Z(s) =
∑∞

n=0 zns
n. We then define the

exponential AZ matrix associated to the sequences a and z by

EAZ(a, z)nk = n!
k! (zn−k + k an−k+1) , (2.15)

or equivalently (if R contains the rationals)

EAZ(a, z) = DT∞(z)D−1 + DT∞(a)D−1 Δ (2.16)

where D = diag
(
(n!)n≥0

)
. We also write EAZ(A, Z) as a synonym for EAZ(a, z).

Theorem 2.13 (Production matrices of exponential Riordan arrays). Let L be a lower-
triangular matrix (with entries in a commutative ring R containing the rationals) with 
invertible diagonal entries and L00 = 1, and let P = L−1ΔL be its production matrix. 
Then L is an exponential Riordan array if and only if P is an exponential AZ matrix.

More precisely, L = R[F, G] if and only if P = EAZ(A, Z), where the generating 
functions 

(
F (t), G(t)

)
and 

(
A(s), Z(s)

)
are connected by

G′(t) = A(G(t)) , F ′(t)
F (t) = Z(G(t)) (2.17)

or equivalently

A(s) = G′(Ḡ(s)) , Z(s) = F ′(Ḡ(s))
F (Ḡ(s))

(2.18)

where Ḡ(s) is the compositional inverse of G(t).

See arXiv:2302.03999v1 for the proof, which mostly follows [1, pp. 217–218]. We refer 
to A(s) =

∑∞
n=0 ans

n and Z(s) =
∑∞

n=0 zns
n as the A-series and Z-series associated to 

the exponential Riordan array R[F, G].

Remark. The identity A(s) = G′(Ḡ(s)) can equivalently be written as A(s) = 1/(Ḡ)′(s). 
This is useful in comparing our work with that of Zhu [47,48], who uses the latter 
formulation. �

Let us now show how to rewrite the production matrix (2.16) in a new way, which 
will be useful in what follows. Define

Ψ(s) def= F (Ḡ(s)) , (2.19)
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so that F (t) = Ψ(G(t)) and Ψ(0) = F (0) = 1. Then a simple computation using 
(2.17)/(2.18) shows that

Z(s) = Ψ′(s)
Ψ(s) A(s) . (2.20)

And let us define Φ(s) def= A(s)/Ψ(s). Then the pair (Φ, Ψ) is related to the pair (A, Z)
by

A(s) = Φ(s) Ψ(s) (2.21a)

Z(s) = Φ(s) Ψ′(s) (2.21b)

And conversely, given any pair (A, Z) of formal power series (over a commutative ring R

containing the rationals) such that A(0) is invertible in R, there is a unique pair (Φ, Ψ)
satisfying (2.21) together with the normalization Ψ(0) = 1, namely

Ψ(s) = exp
[∫

Z(s)
A(s) ds

]
(2.22a)

Φ(s) = A(s) exp
[
−
∫

Z(s)
A(s) ds

]
(2.22b)

[Here the integral of a formal power series is defined by

∫ ( ∞∑
n=0

αns
n

)
ds

def=
∞∑

n=0
αn

sn+1

n + 1 . (2.23)

It is the unique formal power series with zero constant term whose derivative is the 
given series.] We refer to Φ(s) and Ψ(s) as the Φ-series and Ψ-series associated to the 
exponential Riordan array R[F, G].

Rewriting the production matrix (2.16) in terms of the pair (Φ, Ψ) provides a beautiful 
— and as we shall see, very useful — factorization. For reasons that shall become clear 
shortly (see Lemma 2.17 below), it is convenient to study the more general quantity 
EAZ(A, Z + ξA):

Proposition 2.14. Let R be a commutative ring containing the rationals, let Φ(s) =
∞∑

n=0
φns

n and Ψ(s) =
∞∑

n=0
ψns

n be formal power series with coefficients in R, and let 

A(s) and Z(s) be defined by (2.21). Now let ξ be any element of R (or an indetermi-
nate). Then

EAZ(A,Z + ξA) = [DT∞(φ)D−1] (Δ + ξI) [DT∞(ψ)D−1] (2.24)

where D = diag
(
(n!)n≥0

)
.
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To prove Proposition 2.14, we need a lemma. Given a sequence ψ = (ψn)n≥0 in 
R with ordinary generating function Ψ(s) =

∑∞
n=0 ψns

n, we define ψ′ = (ψ′
n)n≥0 by 

ψ′
n = (n + 1)ψn+1, so that Ψ′(s) =

∑∞
n=0 ψ

′
ns

n. We then have:

Lemma 2.15. Let ψ and ψ′ be as above, and let D = diag
(
(n!)n≥0

)
. Then

T∞(ψ′) + T∞(ψ)D−1ΔD = D−1ΔDT∞(ψ) . (2.25)

Proof. All three matrices in (2.25) are lower-Hessenberg, and their (n, k) matrix elements 
are (for 0 ≤ k ≤ n + 1)

(n− k + 1)ψn−k+1 + kψn−(k−1) = (n + 1)ψ(n+1)−k . � (2.26)

Remarks.

1. The identity (2.25) can also be written as [D−1ΔD, T∞(ψ)] = T∞(ψ′), where 

[A, B] def= AB − BA is the matrix commutator. Thus, [D−1ΔD, · ] is the “differ-
entiation operator” for Toeplitz matrices. Note that D−1ΔD is the matrix with 
1, 2, 3, . . . on the superdiagonal and zeroes elsewhere.

2. Lemma 2.15 was found independently by Ding, Mu and Zhu [14, proof of Theo-
rem 2.1]. �

Proof of Proposition 2.14. From (2.16) we have

EAZ(A,Z + ξA) = DT∞(z + ξa)D−1 + DT∞(a)D−1 Δ . (2.27)

The definitions (2.21) imply

T∞(a) = T∞(φ)T∞(ψ) (2.28a)

T∞(z + ξa) = T∞(φ)T∞(ψ′) + ξ T∞(φ)T∞(ψ) (2.28b)

Hence

EAZ(A,Z + ξA)

= D
[
T∞(φ)T∞(ψ′) + ξ T∞(φ)T∞(ψ)

]
D−1 + DT∞(φ)T∞(ψ)D−1 Δ

(2.29a)

= DT∞(φ)
[
ξT∞(ψ) + T∞(ψ′) + T∞(ψ)D−1ΔD

]
D−1 (2.29b)

= DT∞(φ)
[
ξT∞(ψ) + D−1ΔDT∞(ψ)

]
D−1 (2.29c)

= [DT∞(φ)D−1] (Δ + ξI) [DT∞(ψ)D−1] , (2.29d)

where the next-to-last step used Lemma 2.15. �
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As an immediate consequence of Proposition 2.14, we have:

Corollary 2.16. Fix 1 ≤ r ≤ ∞. Let R be a partially ordered commutative ring containing 
the rationals, and let φ = (φn)n≥0 and ψ = (ψn)n≥0 be sequences in R that are Toeplitz-
totally positive of order r. Let ξ be an indeterminate. With the definitions (2.21), the 
matrix EAZ(A, Z + ξA) is totally positive of order r in the ring R[ξ] equipped with the 
coefficientwise order.

Proof. By Lemma 2.1, the matrix Δ + ξI is totally positive (of order ∞) in the ring 
Z[ξ] equipped with the coefficientwise order. By hypothesis the matrices T∞(φ) and 
T∞(ψ) are totally positive of order r in the ring R; so Lemma 2.20 implies that also 
DT∞(φ) D−1 and DT∞(ψ) D−1 are totally positive of order r in R. The result then 
follows from Proposition 2.14 and the Cauchy–Binet formula. �
Remark. The hypothesis that the ring R contains the rationals can be removed, by 
using Lemma 2.20 (see Section 2.5) together with the reasoning used in the proof of 
Theorem 1.8 (see Section 5.3). �

It is worth observing that the converse to Corollary 2.16 is false: see Example 2.26 in
arXiv:2302.03999v1. So the condition of Corollary 2.16 is sufficient but not necessary 
for its conclusion.

Finally, a central role will be played in this paper by a simple but remarkable identity 
for B−1

ξ EAZ(a, z) Bξ, where Bξ is the ξ-binomial matrix defined in (1.6) and EAZ(a, z)
is the exponential AZ matrix defined in (2.15)/(2.16).

Lemma 2.17 (Identity for B−1
ξ EAZ(a, z) Bξ). Let a = (an)n≥0, z = (zn)n≥0 and ξ be 

indeterminates. Then

B−1
ξ EAZ(a, z)Bξ = EAZ(a, z + ξa) . (2.30)

The special case z = 0 of this lemma was proven in [33, Lemma 3.6]; a simpler proof 
was given in [43, Lemma 2.16]. Here we have given the easy generalization to include z. 
Two proofs can be found in arXiv:2302.03999v1: a first proof by direct computation 
from the definition (2.15)/(2.16), and a second proof using exponential Riordan arrays.

Combining Lemma 2.6 and Theorem 2.8 with Corollary 2.16 and Lemma 2.17, and 
recalling that the zeroth column of the matrix R[F, G]Bx consists of the row-generating 
polynomials of R[F, G], we obtain:

Corollary 2.18. Fix 1 ≤ r ≤ ∞. Let R be a partially ordered commutative ring contain-
ing the rationals, and let φ = (φn)n≥0 and ψ = (ψn)n≥0 be sequences in R that are 
Toeplitz-totally positive of order r. Then the exponential Riordan array R[F, G] defined 
by (2.17)/(2.21) has the following two properties:
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(a) The lower-triangular matrix R[F, G] is totally positive of order r.
(b) The sequence of row-generating polynomials of R[F, G] is coefficientwise Hankel-

totally positive of order r.

Corollary 2.18 will be the main theoretical tool in this paper.

Remarks.

1. The special case Ψ = 1 (i.e., F = 1) of Corollary 2.18(b) was proven in [43, Theo-
rem 2.20] and was the fundamental theoretical tool of that paper.

2. Another special case of Proposition 2.14 and Corollaries 2.16 and 2.18 was employed 
recently by Ding, Mu and Zhu [14, proof of Theorem 2.1] to study some far-reaching 
generalizations of the Eulerian polynomials.

3. Example 2.26 in arXiv:2302.03999v1 shows that the condition of Corollary 2.18 is 
sufficient but not necessary for its two conclusions. �

Finally, it is worth singling out a subclass of Riordan arrays that will occur in the 
cases to be studied in the present paper:

Lemma 2.19. Consider an exponential Riordan array R[F, G] with F (0) = 1 and cor-
responding series A(s), Z(s), Φ(s), Ψ(s). Then, for any constant c, the following are 
equivalent:

(a) R[F, G]n,0 = c R[F, G]n,1 for all n ≥ 1.
(b) EAZ(A, Z)n,0 = c EAZ(A, Z)n,1 for all n ≥ 0.
(b′) EAZ(A, Z) = EAZ(A, Z) ΔT (c e00 + Δ) where e00 denotes the matrix with an en-

try 1 in position (0, 0) and all other entries zero.
(c) Ψ(s) = 1/(1 − cs).

Proof. (a) ⇐⇒ (c): (a) holds if and only if F (t) = 1 + cF (t)G(t), or in other words 
F (t) = 1/[1 − cG(t)], or in other words Ψ(s) = 1/(1 − cs).

(b) ⇐⇒ (c): By (2.15), (b) holds if and only if zn = c(zn−1 + an), or in other words 
Z(s) = c[sZ(s) + A(s)], or in other words

Ψ′(s)
Ψ(s) = Z(s)

A(s) = c

1 − cs
. (2.31)

Since Ψ(0) = 1, this is equivalent to Ψ(s) = 1/(1 − cs).
(b′) =⇒ (b): The zeroth column of the matrix c e00+Δ equals c times its first column; 

so for any matrix M , the zeroth column of the matrix M (c e00 + Δ) equals c times its 
first column.

(b) =⇒ (b′): The matrix EAZ(A, Z) ΔT is obtained from EAZ(A, Z) by removing its 
zeroth column; it is lower-triangular. And since, by hypothesis, the zeroth column of 
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EAZ(A, Z) is c times its first column, EAZ(A, Z) can be recovered from EAZ(A, Z) ΔT

by right-multiplying by c e00 + Δ. �
The case c = 0 (that is, Ψ = 1 and hence F = 1) corresponds to the associated 

subgroup (or Lagrange subgroup) of exponential Riordan arrays; it arose in our earlier 
work [33,43] on generic Lah and rooted-forest polynomials. Using criterion (a), we can 
already see that the matrix T defined in (1.1) will correspond to c = 1, while the matrices 
T(y, z) and T(y, φ) defined in (1.7)/(1.12) will correspond, according to Propositions 1.3
and 1.6, to c = y. Of course, in order to apply Lemma 2.19 we will first need to prove 
that these matrices are indeed exponential Riordan arrays: that will be done in Section 4. 
But we can see now that, once we do this, the Ψ-series will be Ψ(s) = 1/(1 − cs).

2.5. A lemma on diagonal scaling

Given a lower-triangular matrix A = (ank)n,k≥0 with entries in a commutative ring 
R, let us define the matrix A� = (a�nk)n,k≥0 by

a�nk = n!
k! ank ; (2.32)

this is well-defined since ank �= 0 only when n ≥ k, in which case n!/k! is an integer.
If R contains the rationals, we can of course write A� = DAD−1 where D =

diag
(
(n!)n≥0

)
. And if R is a partially ordered commutative ring that contains the ra-

tionals and A is TPr, then we deduce immediately from A� = DAD−1 that also A� is 
TPr. The following simple lemma [33, Lemma 3.7] shows that this conclusion holds even 
when R does not contain the rationals:

Lemma 2.20. Let A = (aij)i,j≥0 be a lower-triangular matrix with entries in a partially 
ordered commutative ring R, and let d = (di)i≥1. Define the lower-triangular matrix 
A�d = (a�dij )i,j≥0 by

a�dij = dj+1dj+2 · · · di aij . (2.33)

Then:

(a) If A is TPr and d are indeterminates, then A�d is TPr in the ring R[d] equipped 
with the coefficientwise order.

(b) If A is TPr and d are nonnegative elements of R, then A�d is TPr in the ring R.

The special case A�d = A� corresponds to taking di = i.
Lemma 2.20 will be important to proving Theorem 1.8 in the case where the ring R

does not contain the rationals (see Section 5.3).
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2.6. Lagrange inversion

We will use Lagrange inversion in the following form [20]: If φ(u) is a formal power 
series with coefficients in a commutative ring R containing the rationals, then there exists 
a unique formal power series f(t) with zero constant term satisfying

f(t) = t φ(f(t)) , (2.34)

and it is given by

[tn] f(t) = 1
n

[un−1]φ(u)n for n ≥ 1 ; (2.35)

and more generally, if H(u) is any formal power series, then

[tn]H(f(t)) = 1
n

[un−1]H ′(u)φ(u)n for n ≥ 1 . (2.36)

3. Bijective proofs

In this section we give bijective proofs of Propositions 1.3, 1.5, 1.6 and 1.7. This section 
can be skipped on a first reading, as it is not needed for proving the main theorems of 
the paper.

3.1. Proof of Propositions 1.3 and 1.6

Here we will prove Proposition 1.3, which asserts that the polynomials tn,k(y, z)
defined in (1.7) satisfy tn,0(y, z) = y tn,1(y, z) for all n ≥ 1; and more generally 
Proposition 1.6, which asserts that the polynomials tn,k(y, φ) defined in (1.12) satisfy 
tn,0(y, φ) = y tn,1(y, φ) for all n ≥ 1.

We will prove these results by constructing, for each n ≥ 1, a bijection from the set 
T 〈1;1〉
n+1 of rooted trees on the vertex set [n +1] in which the vertex 1 has exactly one child, 

to the set T 〈1;0〉
n+1 of rooted trees on the vertex set [n + 1] in which vertex 1 is a leaf, with 

the properties that

(a) the number of improper edges is increased by 1, and
(b) for each m, the number of vertices with m proper children is preserved, provided 

that in T ∈ T 〈1;1〉
n+1 one ignores the vertex 1 (which has one child).

This construction is illustrated in Fig. 1. Since the weight in (1.12) is y for each im-
proper edge and φ̂m = m! φm for each vertex i �= 1 with m proper children, this proves 
tn,0(y, φ) = y tn,1(y, φ). Specializing to φm = zm/m! then yields tn,0(y, z) = y tn,1(y, z).
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Fig. 1. Bijection between T and T ′.

Proof of Proposition 1.6. Fix n ≥ 1, and let T be a rooted tree on the vertex set [n + 1]
in which r is the root and the vertex 1 has precisely one child a. Let Ta be the subtree 
rooted at a, and let Tr the subtree obtained from T by removing Ta and the edge 1a. 
The vertex 1 is a leaf in Tr.

Now we create a new tree T ′, rooted at a, as follows: we start with Ta and then graft 
Tr by making r a child of a. In the tree T ′, the vertex 1 is a leaf. The map T → T ′ map 
is a bijection, since this construction can be reversed. (The vertex r can be identified in 
T ′ as the child of a that has 1 as a descendant.)

Clearly, all the proper (resp. improper) edges in T are still proper (resp. improper) in 
T ′, except that:

(i) The edge 1a in T is proper, which is deleted in T ′; and
(ii) The edge ar in T ′ is new and improper, since the vertex 1 is a descendant of r.

In particular, the number of vertices with m proper children is the same in T and T ′, 
provided that in T one ignores the vertex 1. �
3.2. Proof of Propositions 1.5 and 1.7

Now we will prove Proposition 1.5, which asserts the equality of the polynomials 
tn,k(y, z) defined in (1.7) using rooted trees and the polynomials t̃n,k(y, z) defined in 
(1.10) using partial functional digraphs. We will then show that the same argument 
proves the more general Proposition 1.7, which asserts the equivalence of the polynomials 
tn,k(y, φ) defined in (1.12) and the polynomials t̃n,k(y, φ) defined in (1.13).

We recall that T •
n denotes the set of rooted trees on the vertex set [n], while T 〈1;k〉

n

denotes the subset in which the vertex 1 has k children. Similarly, PFDn denotes the 
set of partial functional digraphs on the vertex set [n], while PFDn,k denotes the subset 
in which there are exactly k vertices of out-degree 0.

To prove Proposition 1.5, we will construct, for each fixed n, a bijection φ : T •
n+1 →

PFDn with the following properties:
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Fig. 2. (a) Tree T in the second model, where r = v1 = 6, vmax = 9, σ = 638951 = (169)(3)(58), and 
vertex 1 has two children. The backbone edges are shown in red and are improper; the other improper 
edges are shown in black; the proper edges are shown in blue. (b1,b2) Partial functional digraphs DP and 
D′. Improper edges arising from the cycles of the permutation σ are shown in red; the other improper edges 
are shown in black; the proper edges are shown in blue. (c1,c2) Partial functional digraphs G′ and G in the 
third model, where the two vertices 10 and 12 (resp. 9 and 11) have out-degree 0. Improper edges arising 
from the cycles of the permutation σ are shown in red; the other improper edges are shown in black; the 
proper edges are shown in blue. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

(a) φ maps T 〈1;k〉
n+1 onto PFDn,k.

(b) φ preserves the number of improper edges.
(c) φ|T 〈1;k〉

n+1
reduces the number of proper edges by k.

We observe that (c) is an immediate consequence of (a) and (b), since trees in T •
n+1 have 

n edges, while digraphs in PFDn,k have n − k edges.

Proof of Proposition 1.5. (The reader may wish to follow, along with this proof, the 
example shown in Fig. 2.)
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Let T be a rooted tree on the vertex set [n + 1] in which the vertex 1 has k children. 
Note that the k edges from vertex 1 to its children are all proper. Now let P = v1 · · · v	+1

(	 ≥ 0) be the unique path in T from the root v1 = r to the vertex v	+1 = 1; we call 
it the “backbone”. (Here 	 = 0 corresponds to the case in which vertex 1 is the root.) 
Removing from T the edges of the path P , we obtain a collection of (possibly trivial) 
trees T1, . . . , T	+1 rooted at the vertices v1, . . . , v	+1.

Now regard P as a permutation σ (written in word form) of its elements written in in-
creasing order.8 In particular, σ(1) = r and σ(vmax) = 1 where vmax = max(v1, . . . , v	+1). 
Let DP be the digraph whose vertex set is {v1, . . . , v	+1}, with edges −→ij whenever 
j = σ(i). Then DP consists of disjoint directed cycles (possibly of length 1); it is the 
representation in cycle form of the permutation σ.

Now let D′ be the digraph obtained from DP by attaching the trees T1, . . . , T	+1

to DP (identifying vertices with the same label) and directing all edges of those trees 
towards the root. Then D′ is a functional digraph on the vertex set [n +1]. Furthermore, 
the map T → D′ is a bijection, since all the above steps can be reversed.

Now let G′ be the digraph obtained from D′ by deleting the vertex 1 and the k tree 
edges incident on vertex 1, and contracting the edges −−−→vmax1 and 

−→1r into a single edge 
−−−→vmaxr. Then G′ is a digraph on the vertex set {2, . . . , n +1} in which every vertex has out-
degree 1 except for the k children of vertex 1 in T , which have out-degree 0. Relabeling 
all vertices i → i − 1, we obtain a partial functional digraph G = φ(T ) ∈ PFDn,k.

The step from D′ to G can also be reversed: given a partial functional digraph G =
PFDn,k, we relabel the vertices i → i +1 and then insert the vertex 1 immediately after 
the largest cyclic vertex of G (if any; otherwise 1 becomes a loop in D′); all the vertices 
of out-degree 0 in G are made to point to the vertex 1 in D′.

It follows that the map φ : T → G is a bijection from T •
n+1 to PFDn that maps T 〈1;k〉

n+1
onto PFDn,k.

Clearly, in the rooted tree T , all the edges in the path P = v1 · · · v	+1 are improper, 
since each vertex in P has v	+1 = 1 as its descendant. These 	 edges correspond, after 
relabeling, to 	 + 1 cyclic edges in the functional digraph D′. These latter edges in turn 
correspond, after removal of vertex 1 and contraction of its edges, to 	 cyclic edges in 
the partial functional digraph G′ (and hence also G). Because they are cyclic edges, 
they are necessarily improper. All the other improper/proper edges in T coincide with 
improper/proper edges −→ij in the partial functional digraph G′ (and hence G) where i is 
a transient vertex. �
Remark. The first part of this proof (namely, the map T → D′) is the well-known 
bijection from doubly-rooted trees to functional digraphs on the same vertex set [27, 
pp. 224–225] [45, p. 26]. In our application we need the second step to remove the 

8 That is, let v′
1 < . . . < v′

�+1 be the elements of the set S = {v1, . . . , v�+1} written in increasing order. 
Then σ is the permutation of S defined by σ(v′

i) = vi.
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vertex 1 and thereby obtain a map from rooted trees on the vertex set [n + 1] to partial 
functional digraphs on the vertex set [n]. �

Proof of Proposition 1.7. In the preceding proof, each vertex i �= 1 in the rooted tree T
corresponds to a vertex i − 1 in the partial functional digraph G = φ(T ). And for each 
proper child j of i in T , the proper edge ij in T corresponds to a proper edge 

−−−−−−−→
j − 1 i− 1

in G; and those are the only proper edges in G. Therefore, if the vertex i �= 1 in T has 
m proper children, then the vertex i − 1 in G has m proper incoming edges. This proves 
that tn,k(y, φ) = t̃n,k(y, φ). �
4. The matrices T, T(y,z) and T(y,φ) as exponential Riordan arrays

In this section we show that the matrices T, T(y, z) and T(y, φ) are exponential 
Riordan arrays R[F, G], and we compute their generating functions F and G as well as 
their A-, Z-, Φ- and Ψ-series.

4.1. The matrix T

Proposition 4.1. Define

tn,k =
(
n

k

)
nn−k . (4.1)

Then the unit-lower-triangular matrix T = (tn,k)n,k≥0 is the exponential Riordan array 
R[F, G] with F (t) =

∑∞
n=0 n

n tn/n! and G(t) =
∑∞

n=1 n
n−1 tn/n!.

Before proving Proposition 4.1, let us use it to compute the A-, Z-, Φ- and Ψ-series:

Corollary 4.2. The exponential Riordan array T = R[F, G] has

A(s) = es

1 − s
, Z(s) = es

(1 − s)2 (4.2)

and

Φ(s) = es , Ψ(s) = 1
1 − s

. (4.3)

Proof. We observe that G(t) is the tree function T (t) [9], which satisfies the functional 
equation T (t) = teT (t). Furthermore, we have F (t) = 1/[1 − T (t)]: this well-known 
fact can be proven using the Lagrange inversion formula [see (4.4) below specialized 
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to x = 0] or by various other methods.9 We now apply Theorem 2.13 to determine 
the functions A(s) and Z(s). Implicit differentiation of the functional equation yields 
T ′(t) = eT (t)/[1 − T (t)], which implies that A(s) = es/(1 − s). On the other hand, it 
follows immediately from the relation between F and G that Ψ(s) = 1/(1 − s). This 
implies that Φ(s) = es and Z(s) = es/(1 − s)2. �

We have five proofs of Proposition 4.1: a direct algebraic proof using Lagrange inver-
sion and an Abel identity; an inductive algebraic proof, using a different Abel identity; 
a third algebraic proof using the A- and Z-sequences of an ordinary Riordan array; a 
combinatorial proof using exponential generating functions based on the interpretation 
of tn,k as counting partial functional digraphs; and a bijective combinatorial proof based 
on the interpretation of tn,k as counting rooted labeled trees according to the number of 
children of the root that are lower-numbered than the root. Here we give only the first 
proof; the other four proofs can be found in arXiv:2302.03999v1. In Section 4.2 we will 
give yet another combinatorial proof (also using exponential generating functions), this 
time based on the interpretation of tn,k as counting rooted labeled trees according to 
the number of children of a specified vertex i; but this proof will be given in the more 
general context of the polynomials tn,k(y, z).

First Proof of Proposition 4.1. The tree function T (t) satisfies the functional equation 
T (t) = teT (t). We use Lagrange inversion (2.36) with φ(u) = eu and H(u) = exu/(1 −u): 
this gives

[tn] exT (t)

1 − T (t) = 1
n

[un−1]
(

x

1 − u
+ 1

(1 − u)2

)
e(x+n)u (4.4a)

= 1
n

n−1∑
k=0

(x + k + 1) (x + n)n−1−k

(n− 1 − k)! (4.4b)

= 1
n!

n−1∑
k=0

(
n− 1
k

)
k! (x + k + 1) (x + n)n−1−k

(n− 1 − k)! (4.4c)

= (x + n)n

n! , (4.4d)

where the last step used an Abel identity [37, p. 21, eq. (25) with n → n −1 and x → x +1]. 
In view of (1.5), this proves (1.2), which by (2.11) proves that T = R[F, G]. �
9 Algebraic proof. F (t) = 1 + tT ′(t) = 1 + teT (t)

1 − T (t)
= 1 + T (t)

1 − T (t)
=

1
1 − T (t)

, where the first equality 

used the power series defining F (t) and T (t), the second equality used the identity T ′(t) = eT (t)

1 − T (t)
arising 

from implicit differentiation of the functional equation, and the third equality used the functional equation.
Combinatorial proof. This follows from the identity of combinatorial species: endofunctions = permutations 
◦ rooted trees [2, pp. 41, 43]. See also [45, Exercise 5.32(b)] for a related combinatorial proof.
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4.2. The matrix T(y,z)

We now prove that the matrix T(y, z) = (tn,k(y, z))n,k≥0 is an exponential Riordan 
array R[F, G], and we compute F and G. Most of this computation was done a quarter-
century ago by Dumont and Ramamonjisoa [15]: their arguments handled the case k = 0, 
and we extend those arguments slightly to handle the case of general k. Our presentation 
follows the notation of [43].

Let T •
n denote the set of rooted trees on the vertex set [n]; let T [i]

n denote the subset 
of T •

n in which the root vertex is i; and let T 〈i;k〉
n denote the subset of T •

n in which the 
vertex i has k children. Given a tree T ∈ T •

n , we write imprope(T ) for the number of 
improper edges of T . Now define the generating polynomials

Rn(y, z) =
∑

T∈T •
n

yimprope(T )zn−1−imprope(T ) (4.5)

Sn(y, z) =
∑

T∈T [1]
n+1

yimprope(T )zn−imprope(T ) (4.6)

An,k(y, z) = tn,k(y, z) =
∑

T∈T 〈1;k〉
n+1

yimprope(T )zn−k−imprope(T ) (4.7)

in which each improper (resp. proper) edge gets a weight y (resp. z) except that in An,k

the k proper edges connecting the vertex 1 to its children are unweighted. And then 
define the exponential generating functions

R(t; y, z) =
∞∑

n=1
Rn(y, z) tn

n! (4.8)

S(t; y, z) =
∞∑

n=0
Sn(y, z) tn

n! (4.9)

Ak(t; y, z) =
∞∑

n=0
An,k(y, z)

tn

n! (4.10)

We will then prove the following key result, which is a slight extension of [15, Proposi-
tion 7] to handle the case k �= 0:

Proposition 4.3. The series R, S and Ak satisfy the following identities:

(a) S(t; y, z) = exp
[
zR(t; y, z)

]
(b) Ak(t; y, z) = R(t; y, z)k/k!

1 − yR(t; y, z)

(c) d R(t; y, z) = A0(t; y, z) S(t; y, z)

dt
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and hence

(d) d

dt
R(t; y, z) =

exp
[
zR(t; y, z)

]
1 − yR(t; y, z)

Solving the differential equation of Proposition 4.3(d) with the initial condition 
R(0; y, z) = 0, we obtain:

Corollary 4.4. The series R(t; y, z) satisfies the functional equation

y − z + yzR = (y − z + z2t) ezR (4.11)

and hence has the solution

R(t; y, z) = 1
z

[
T
((

1 − z

y
+ z2

y
t
)
e
−
(
1 − z

y

))
−

(
1 − z

y

)]
(4.12)

where T (t) is the tree function (1.3).

Comparing Proposition 4.3(b) with the definition (2.10) of exponential Riordan arrays, 
we conclude:

Corollary 4.5. The matrix T(y, z) is the exponential Riordan array R[F, G] where

F (t) = 1
1 − yR(t; y, z) , G(t) = R(t; y, z) (4.13)

and R(t; y, z) is given by (4.12).

And comparing Proposition 4.3(b,d) with the definitions (2.17)/(2.19)/(2.21) of the 
A-series, Z-series, Φ-series and Ψ-series of an exponential Riordan array, we conclude:

Corollary 4.6. The exponential Riordan array T(y, z) has

A(s) = ezs

1 − ys
, Z(s) = yezs

(1 − ys)2 (4.14)

and

Φ(s) = ezs , Ψ(s) = 1
1 − ys

. (4.15)

The proof of Proposition 4.3 follows the elegant argument of Jiang Zeng that was 
presented in [15, section 7], and extends it in part (b) to handle k �= 0:
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Proof of Proposition 4.3. (a) Consider a tree T ∈ T [1]
n+1, and suppose that the root 

vertex 1 has k (≥ 0) children. All k edges emanating from the root vertex are proper 
and thus get a weight z each. Deleting these edges and the vertex 1, one obtains an 
unordered partition of {2, . . . , n +1} into blocks B1, . . . , Bk and a rooted tree Tj on each 
block Bj . Standard enumerative arguments then yield the relation (a) for the exponential 
generating functions.

(b) Consider a tree T ∈ T 〈1;k〉
n+1 with root r, and let r1, . . . , rl+1 (l ≥ 0) be the path 

in T from the root r1 = r to the vertex rl+1 = 1. (Here l = 0 corresponds to the 
case in which the vertex 1 is the root.) All l edges of this path are improper, and all 
k edges from the vertex 1 to its children are proper (and unweighted). Deleting these 
edges and the vertex 1, one obtains a partition of {2, . . . , n +1} into an ordered collection 
of blocks B1, . . . , Bl and an unordered collection of blocks B′

1, . . . , B
′
k, together with a 

rooted tree on each block. Standard enumerative arguments then yield the relation (b) 
for the exponential generating functions.

(c) In a tree T ∈ T •
n , focus on the vertex 1 (which might be the root, a leaf, both or 

neither). Let T ′ be the subtree rooted at 1, and let T ′′ be the tree obtained from T by 
deleting all the vertices of T ′ except the vertex 1 (it thus has the vertex 1 as a leaf). The 
vertex set [n] is then partitioned as {1} ∪ V ′ ∪ V ′′, where {1} ∪ V ′ is the vertex set of 
T ′ and {1} ∪ V ′′ is the vertex set of T ′′; and T is obtained by joining T ′ and T ′′ at the 
common vertex 1. Standard enumerative arguments then yield the relation (c) for the 
exponential generating functions. �
Remarks.

1. Dumont and Ramamonjisoa also gave [15, sections 2–5] a second (and very interest-
ing) proof of the k = 0 case of Proposition 4.3, based on a context-free grammar [7]
and its associated differential operator.

2. We leave it as an open problem to find a direct combinatorial proof of the functional 
equation (4.11), without using the differential equation of Proposition 4.3(d).

3. The polynomials Rn(y, z) enumerate rooted trees according to the number of im-
proper and proper edges; they are homogenized versions of the celebrated Ramanujan 
polynomials [8,15,22–24,29,36,39,43,46] [32, A054589].

4. The polynomials Rn and An,0 also arise [24] as derivative polynomials for the tree 
function: in the notation of [24] we have Rn(y, 1) = Gn(y − 1) and An,0(y, 1) =
y Fn(y − 1) for n ≥ 1. The formula (4.12) is then equivalent to [24, Theorem 4.2, 
equation for Gn]. �

4.3. The matrix T(y,φ)

We now show how Proposition 4.3 can be generalized to incorporate the additional 
indeterminates φ = (φm)m≥0. We define T •

n , T [i]
n and T 〈i;k〉

n as before, and then define 
the obvious generalizations of (4.5)–(4.7):
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Rn(y,φ) =
∑

T∈T •
n

yimprope(T )
n+1∏
i=1

φ̂pdegT (i) (4.16)

Sn(y,φ) =
∑

T∈T [1]
n+1

yimprope(T )
n+1∏
i=1

φ̂pdegT (i) (4.17)

An,k(y,φ) = tn,k(y,φ) =
∑

T∈T 〈1;k〉
n+1

yimprope(T )
n+1∏
i=2

φ̂pdegT (i) (4.18)

where pdegT (i) denotes the number of proper children of the vertex i in the rooted tree 
T , and φ̂m = m! φm. (Note that in Rn and Sn we give weights to all the vertices, while 
in An,k we do not give any weight to the vertex 1.10) We then define the exponential 
generating functions

R(t; y,φ) =
∞∑

n=1
Rn(y,φ) tn

n! (4.19)

S(t; y,φ) =
∞∑

n=0
Sn(y,φ) tn

n! (4.20)

Ak(t; y,φ) =
∞∑

n=0
An,k(y,φ) tn

n! (4.21)

Let us also define the generating function

Φ(s) def=
∞∑

m=0
φm sm =

∞∑
m=0

φ̂m
sm

m! . (4.22)

We then have:

Proposition 4.7. The series R, S and Ak defined in (4.19)–(4.21) satisfy the following 
identities:

(a) S(t; y, φ) = Φ
(
R(t; y, φ)

)
(b) Ak(t; y, φ) = R(t; y, z)k/k!

1 − yR(t; y,φ)
(c) d

dt
R(t; y, φ) = A0(t; y, φ) S(t; y, φ)

and hence

10 This differs from the convention used in [43, eq. (3.24)], where An = An,0 included a factor φ0 = φ̂0
associated to the leaf vertex 1.
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(d) d

dt
R(t; y, φ) =

Φ
(
R(t; y,φ)

)
1 − yR(t; y,φ)

Proof. The proof is identical to that of Proposition 4.3, with the following modifications:
(a) Consider a tree T ∈ T [1]

n+1 in which the root vertex 1 has k children. Since all k
edges emanating from the root vertex are proper, we get here a factor φ̂k/k! in place of 
the zk/k! that was seen in Proposition 4.3. Therefore, the function ezs in Proposition 4.3
is replaced here by the generating function Φ(s).

(b) No change is needed.
(c) No change is needed. (The tree T ′′ has vertex 1 as a leaf, but in An,0 the vertex 1 

is anyway unweighted.) �
Comparing Proposition 4.7(b) with the definition (2.10) of exponential Riordan arrays, 

we conclude:

Corollary 4.8. The matrix T(y, φ) is the exponential Riordan array R[F, G] where

F (t) = 1
1 − yR(t; y,φ) , G(t) = R(t; y,φ) (4.23)

and R(t; y, φ) is the solution of the differential equation of Proposition 4.7(d) with initial 
condition R(0; y, φ) = 0.

We observe that (4.23) is identical in form to (4.13); only R is different.
Comparing Proposition 4.7(b,d) with the definitions (2.17)/(2.19)/(2.21) of the A-

series, Z-series, Φ-series and Ψ-series of an exponential Riordan array, we conclude:

Corollary 4.9. The exponential Riordan array T(y, φ) has

A(s) = Φ(s)
1 − ys

, Z(s) = yΦ(s)
(1 − ys)2 (4.24)

and

Ψ(s) = 1
1 − ys

(4.25)

where Φ(s) is given by (4.22).

We see that Ψ(s) is the same here as in (4.15); only Φ is different. Proposition 4.7
and Corollaries 4.8–4.9 reduce to Proposition 4.3 and Corollaries 4.5–4.6 if we take 
φm = zm/m! and hence φ̂m = zm, Φ(s) = ezs.
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5. Proof of Theorems 1.1, 1.2, 1.4 and 1.8

In this section we will prove Theorems 1.1, 1.2, 1.4 and 1.8. The proofs are now very 
easy: we combine the general theory of total positivity in exponential Riordan arrays 
developed in Section 2 (culminating in Corollary 2.18) with the specific computations of 
Φ- and Ψ-series carried out in Section 4.

It suffices of course to prove Theorem 1.8, since Theorems 1.1, 1.2 and 1.4 are contained 
in it as special cases: take φm = zm/m! to get Theorem 1.4; then take y = z = 1 to get 
Theorems 1.1 and 1.2. However, we find it instructive to work our way up, starting with 
Theorems 1.1 and 1.2 and then gradually adding extra parameters.

5.1. The matrix T

Proof of Theorems 1.1 and 1.2. In order to employ the theory of exponential Riordan 
arrays, we work here in the ring Q, even though the matrix elements actually lie in Z.

By Corollary 4.2, the exponential Riordan array T has Φ(s) = es and Ψ(s) = 1/(1 −s). 
By Lemma 2.5, the corresponding sequences φ and ψ (namely, φm = 1/m! and ψm = 1) 
are Toeplitz-totally positive in Q. Corollary 2.18 then yields Theorems 1.1(a) and 1.2. 
Theorem 1.1(b) is obtained from Theorem 1.2 by specializing to x = 0. �

Since this proof employed the production-matrix method (hidden inside Corol-
lary 2.18), it is worth making explicit what the production matrix is:

Proposition 5.1 (Production matrix for T). The production matrix P = T−1ΔT is the 
unit-lower-Hessenberg matrix

P = B1 ΔDT1D
−1 (5.1)

where B1 is the binomial matrix [i.e. (1.6) at x = 1], T1 is the lower-triangular matrix 
of all ones [i.e. (2.2) at x = 1], and D = diag

(
(n!)n≥0

)
. More generally, we have

B−1
ξ P Bξ = B1 (Δ + ξI)DT1D

−1 . (5.2)

Proof. Since φm = 1/m! and ψm = 1, Proposition 2.14 implies

P = DT∞
(
(1/m!)m≥0

)
D−1 ΔDT1D

−1 = B1 ΔDT1D
−1 , (5.3)

and Lemma 2.17 implies (5.2). �
Remarks.

1. The zeroth and first columns of the matrix P are identical: that is, pn,0 = pn,1. This 
can be seen from Lemma 2.19 with c = 1, by noting either that tn,0 = tn,1 for n ≥ 1
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or that Ψ(s) = 1/(1 − s). Alternatively, it can be seen directly from (5.1): the zeroth 
and first columns of the matrix Δ DT1D

−1 are identical (namely, they are both equal 
to 1/(n +1)!); so the zeroth and first columns of M Δ DT1D

−1 are identical, for any
row-finite matrix M . (Indeed, this would be the case if D = diag( (n!)n≥0) were 
replaced by any diagonal matrix diag(d0, d1, d2, . . .) satisfying d0 = d1.) We will also 
see that pn,0 = pn,1 in the explicit formula (5.16).
The equality pn,0 = pn,1 implies, by Lemma 2.19(b) ⇐⇒ (b′), the factorization

P = PΔT (e00 + Δ) (5.4)

where e00 denotes the matrix with an entry 1 in position (0, 0) and all other entries 
zero, and PΔT is the lower-triangular matrix obtained from P by deleting its zeroth 
column.

2. Closely related to the production matrix P = B1 Δ DT1D
−1 are

P̂ = B1 DT1D
−1 Δ and P̂ ′ = ΔB1 DT1D

−1 . (5.5)

It was shown in [43, Section 4.1] that P̂ is the production matrix for the forest 
matrix F = (fn,k)n,k≥0 where fn,k =

(
n
k

)
k nn−k−1 counts k-component forests of 

rooted trees on n labeled vertices; and that P̂ ′ = ΔP̂ΔT is the production matrix 
for F′ = ΔFΔT = (fn+1,k+1)n,k≥0. All three production matrices correspond to the 
same A-series A(s) = es/(1 − s), but with different splittings into Φ and Ψ. �

We have more to say about this production matrix P , but in order to avoid disrupting 
the flow of the argument we defer it to Section 5.4.

5.2. The matrix T(y,z)

Proof of Theorem 1.4. In order to employ the theory of exponential Riordan arrays, we 
work here in the ring Q[y, z], even though the matrix elements actually lie in Z[y, z].

By Corollary 4.6, the exponential Riordan array T(y, z) has Φ(s) = ezs and Ψ(s) =
1/(1 − ys). By Lemma 2.5, the corresponding sequences φ and ψ (namely, φm = zm/m!
and ψm = ym) are Toeplitz-totally positive in the ring Q[y, z] equipped with the coeffi-
cientwise order. Corollary 2.18 then yields Theorem 1.4. �

Analogously to Proposition 5.1, we have:

Proposition 5.2 (Production matrix for T(y, z)). The production matrix P (y, z) =
T(y, z)−1ΔT(y, z) is the unit-lower-Hessenberg matrix

P (y, z) = Bz ΔDTyD
−1 (5.6)
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where Bz is the weighted binomial matrix (1.6), Ty is the Toeplitz matrix of powers (2.2), 
and D = diag

(
(n!)n≥0

)
. More generally,

B−1
ξ P (y, z)Bξ = Bz (Δ + ξI)DTyD

−1 . (5.7)

Remarks.

1. The zeroth and first columns of the matrix P (y, z) satisfy pn,0 = ypn,1. This can 
be seen from Lemma 2.19 with c = y, by noting either that tn,0(y, z) = ytn,1(y, z)
for n ≥ 1 (Proposition 1.3) or that Ψ(s) = 1/(1 − ys). Alternatively, it can be seen 
directly from (5.1): the zeroth column of the matrix Δ DTyD

−1 is y times the first 
column (they are, respectively, yn+1/(n +1)! and yn/(n +1)!); so the zeroth column 
of M Δ DTyD

−1 is y times the first column, for any row-finite matrix M .
The equality pn,0 = ypn,1 implies, by Lemma 2.19(b) ⇐⇒ (b′), the factorization

P (y, z) = P (y, z) ΔT (y e00 + Δ) . (5.8)

2. Closely related to the production matrix P (y, z) = Bz Δ DTyD
−1 are

P̂ (y, z) = Bz DTyD
−1 Δ and P̂ ′(y, z) = ΔBz DTyD

−1 . (5.9)

It was shown in [43, Section 4.3] that P̂ (y, z) is the production matrix for F(y, z) =(
fn,k(y, z)

)
n,k≥0 where fn,k(y, z) counts k-component forests of rooted trees on the 

vertex set [n] with a weight y (resp. z) for each improper (resp. proper) edge. Like-
wise, P̂ ′(y, z) = ΔP̂ (y, z)ΔT is the production matrix for F′(y, z) = ΔF(y, z)ΔT =(
fn+1,k+1(y, z)

)
n,k≥0. All three production matrices correspond to the same A-series 

A(s) = ezs/(1 − ys), but with different splittings into Φ and Ψ. �

5.3. The matrix T(y,φ)

The proof is similar to that in the preceding subsections, but a bit of care is needed 
to handle the case in which the ring R does not contain the rationals.

Proof of Theorem 1.8. We start by letting φ = (φm)m≥0 be indeterminates, and working 
in the ring Q[y, φ].

By Corollary 4.9, the exponential Riordan array T(y, φ) has Φ(s) =
∑∞

m=0 φmsm and 
Ψ(s) = 1/(1 − ys), so ψm = ym. We therefore have T(y, φ) = O(P ) and more generally 
T(y, φ)Bx = O(B−1

x PBx), where Proposition 2.14 and Lemma 2.17 tell us that

B−1
x PBx = [DT∞(φ)D−1] (Δ + xI) [DT∞(ψ)D−1] . (5.10)

We now use the definition (2.32) to rewrite this as

B−1
x PBx = T∞(φ)� (Δ + xI) T∞(ψ)� . (5.11)
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Having done this, the equality T(y, φ)Bx = O(B−1
x PBx) is now a valid identity in the 

ring Z[y, φ]. We can therefore now substitute elements φ in any commutative ring R for 
the indeterminates φ, and the identity still holds.

By hypothesis the sequence φ is Toeplitz-totally positive in the ring R. By Lemma 2.4, 
the sequence ψ is Toeplitz-totally positive in the ring Z[y] equipped with the coefficien-
twise order. By Lemma 2.20, the matrices T∞(φ)� and T∞(ψ)� are also totally positive. 
Therefore B−1

x PBx is totally positive in the ring R[x, y] equipped with the coefficientwise 
order. Lemma 2.6 and Theorem 2.8 then yield Theorem 1.8. �
Proposition 5.3 (Production matrix for T(y, φ)). The production matrix P (y, φ) =
T(y, φ)−1ΔT(y, φ) is the unit-lower-Hessenberg matrix

P (y,φ) = T∞(φ)� ΔT �
y (5.12)

where Ty is the Toeplitz matrix of powers (2.2), and � is defined in (2.32). More generally,

B−1
ξ P (y,φ)Bξ = T∞(φ)� (Δ + ξI)T �

y . (5.13)

Remark.

1. The zeroth and first columns of the matrix P (y, φ) satisfy pn,0 = ypn,1, for exactly 
the same reasons as were observed for P (y, z). This implies the factorization

P (y,φ) = P (y,φ) ΔT (y e00 + Δ) . (5.14)

2. Closely related to the production matrix P (y, φ) = T∞(φ)� Δ T �
y are

P̂ (y,φ) = T∞(φ)� T �
y Δ and P̂ ′(y,φ) = ΔT∞(φ)� T �

y . (5.15)

It was shown in [43, Section 4.4] that P̂ (y, φ) is the production matrix for F(y, φ) =(
fn,k(y, φ)

)
n,k≥0 where fn,k(y, φ) counts k-component forests of rooted trees on the 

vertex set [n] with a weight y for each improper edge and a weight φ̂m
def= m! φm

for each vertex with m proper children. Likewise, P̂ ′(y, φ) = ΔP̂ (y, φ)ΔT is the 
production matrix for F′(y, φ) = ΔF(y, φ)ΔT =

(
fn+1,k+1(y, φ)

)
n,k≥0. All three 

production matrices correspond to the same A-series A(s) = Φ(s)/(1 −ys), but with 
different splittings into Φ and Ψ. �

5.4. More on the production matrix for T

We now wish to say a bit more about the production matrix P for the tree matrix T. 
We begin by giving an explicit formula:
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Proposition 5.4. The production matrix P = T−1ΔT is the unit-lower-Hessenberg matrix 
with entries

pn,k = n

(
n

k

)
Sn−k +

(
n + 1
k

)
(5.16a)

= n!
k! (n− k + 1)! (nSn−k+1 + 1) (5.16b)

where Sm denotes the ordered subset number [32, A000522]

Sm
def=

m∑
k=0

m!
k! . (5.17)

These matrix elements satisfy in particular pn,0 = pn,1 = nSn + 1 for all n ≥ 0.

The formula (5.16) has a very easy proof, based on the theory of exponential Riordan 
arrays together with our formulae for A(s) and Z(s); we give here this proof. On the 
other hand, it is also of some interest to see that this production matrix can be derived 
by “elementary” algebraic methods, without relying on the machinery of exponential 
Riordan arrays or on any combinatorial interpretation; this second proof can be found 
in arXiv:2302.03999v1.

First Proof of Proposition 5.4. From A(s) = es/(1 − s) we have

an =
n∑

j=0

1
j! = Sn

n! . (5.18)

From Z(s) = es/(1 − s)2 we have

zn =
n∑

j=0

n + 1 − j

j! = n
n∑

j=0

1
j! + 1

n! = nSn + 1
n! . (5.19)

Theorem 2.13 and (2.15) give

pn,k = n!
k! (zn−k + k an−k+1) , (5.20)

and a little algebra leads to (5.16a,b). It is then easy to see that pn,0 = pn,1 = nSn+1. �
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Remarks.

1. The first few rows of this production matrix are

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
3 3 1

11 11 5 1
49 49 24 7 1

261 261 130 42 9 1
1631 1631 815 270 65 11 1

11743 11743 5871 1955 485 93 13 1

95901 95901 47950 15981 3990 791 126 15
. . .

...
...

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.21)

This matrix P (or its lower-triangular variant PΔT in which the zeroth column 
is deleted) is not currently in [32]. However, the zeroth and first columns are [32, 
A001339], and the second column pn,2 = nSn/2 is [32, A036919].

2. As mentioned earlier, it is not an accident that pn,0 = pn,1: by Lemma 2.19 this 
reflects the fact that Ψ(s) = 1/(1 − s), or equivalently that tn,0 = tn,1. For the same 
reason, the production matrices P (y, z) and P (y, φ) satisfy pn,0 = ypn,1.

3. The ordered subset numbers satisfy the recurrence Sm = mSm−1 + 1. �

Let us now state some further properties of the matrix elements pn,k:

Proposition 5.5. Define the matrix P = (pn,k)n,k≥0 by (5.16)/(5.17). Then:

(a) The pn,k are nonnegative integers that satisfy the backward recurrence

pn,k = (k + 1)pn,k+1 +
(

n

k − 1

)
(5.22)

with initial condition pn,n+1 = 1.
(b) The pn,k are also given by

pn,k = nSn − Qk(n)
k! , (5.23)

where

Qk(n) = −1 +
k∑

(j − 1)!
(

n

j − 2

)
(5.24a)
j=2
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= −1 +
k∑

j=2
(j − 1)nj−2 (5.24b)

are polynomials in n with integer coefficients. In particular, Q0(n) = Q1(n) = −1
and Q2(n) = 0, so that pn,0 = pn,1 = nSn + 1 and pn,2 = nSn/2.

The proof, plus some further remarks, can be found at arXiv:2302.03999v1.
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