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MULTIPLE ORTHOGONAL POLYNOMIALS, d-ORTHOGONAL

POLYNOMIALS, PRODUCTION MATRICES, AND BRANCHED

CONTINUED FRACTIONS

ALAN D. SOKAL

Abstract. I analyze an unexpected connection between multiple orthogo-
nal polynomials, d-orthogonal polynomials, production matrices and branched
continued fractions. This work can be viewed as a partial extension of Vien-
not’s combinatorial theory of orthogonal polynomials to the case where the
production matrix is lower-Hessenberg but is not necessarily tridiagonal.
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1. Introduction

The goal of this paper is to point out, and then analyze in detail, an unexpected
connection between multiple orthogonal polynomials and d-orthogonal polynomials
on the one hand, and production matrices and branched continued fractions on the
other—objects that arose over the past few decades in the special-functions and
enumerative-combinatorics communities, respectively. It is appropriate to begin,
therefore, by explaining briefly each of these four concepts.

Multiple orthogonal polynomials [5, 51, 75] [36, Chapter 23] are a generalization
of conventional orthogonal polynomials [14,36,72] in which the polynomials satisfy
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orthogonality relations with respect to several measures μ1, . . . , μr rather than just
one. Multiple orthogonal polynomials first arose in Hermite–Padé approximation
[52, Chapter 4] [73]; they have applications to number theory [67, 68, 74], random
matrices [42–44] and nonintersecting random paths [41–43], among other fields. See
Section 2.1 for a brief summary.

Closely related to multiple orthogonal polynomials are the so-called d-orthogonal
polynomials. A sequence (Pn(x))n≥0 of monic polynomials is said to be d-orthogonal
[50,77] with respect to a sequence Γ0, . . . ,Γd−1 of linear forms in case Γk(x

�Pn(x)) =
0 whenever n > d� + k. (To avoid trivialities, it is also usually required that
Γk(x

�Pn(x)) �= 0 when n = d�+ k.) For d = 1 this reduces to the ordinary concept
of orthogonality. It turns out that the sequence of multiple orthogonal polynomials
of type II taken along the so-called stepline is d-orthogonal (for d = r) with respect
to the linear forms associated to the measures μ1, . . . , μr.

Production matrices [23, 24] have become in recent years an important tool in
enumerative combinatorics (see Section 2.2 for a brief summary). In the special
case of a tridiagonal production matrix, this construction goes back to Stieltjes’
[70,71] work on continued fractions: the production matrix of a classical S-fraction
or J-fraction is tridiagonal. Moreover, the classical J-fraction and tridiagonal pro-
duction matrix associated to the moment sequence of a measure μ are closely related
to the sequence of orthogonal polynomials associated to μ. This connection was
comprehensively investigated by Viennot [80,81] in the early 1980s, who developed
a general combinatorial theory of orthogonal polynomials, building on Flajolet’s
[31] combinatorial theory of continued fractions. Our work here can be viewed as
a partial extension of Viennot’s theory to the case where the production matrix
is lower-Hessenberg (i.e. vanishes above the first superdiagonal) but is not neces-
sarily tridiagonal. Indeed, this extension was already begun by Viennot himself
[80, sections III.5 and V.6].

Various types of branched continued fractions have been introduced in the anal-
ysis literature [10,11,22] [49, pp. 274–280, 285] [20, p. 28], but we are not concerned
here with these. Rather, we are concerned with the branched continued fractions
that have been introduced by combinatorialists and whose Taylor coefficients are the
generating polynomials for selected types of lattice paths, generalizing the work of
Flajolet [31] on classical continued fractions. This investigation was also initiated by
Viennot [80, section V.6], who briefly considered the branched continued fractions
(fractions multicontinuées) generated by �Lukasiewicz paths. This work was carried
forward in the Ph.D. theses of Roblet [59] and Varvak [78]. Further applications
were made by Gouyou-Beauchamps [33] and Drake [28]. Subsequently, Albenque
and Bouttier [4] introduced the branched continued fractions generated by m-Dyck
paths and proved many interesting results about them. Most recently, Pétréolle,
Sokal and Zhu [56] carried out a comprehensive analysis of the branched continued
fractions associated to m-Dyck, m-Schröder and �Lukasiewicz paths, with emphasis
on questions related to total positivity; see also [21,55] for further applications. For
these branched continued fractions, the production matrix is lower-Hessenberg but
not (except in the classical cases) tridiagonal. See Section 2.4 for a brief summary.

Finally, let us mention the remarkable Ph.D. thesis of Drake [27], who initiated
the combinatorial theory of multiple orthogonal polynomials and who foresaw the
link with branched continued fractions [27, p. 1]. Our work here can be viewed as
an extension, and to some extent a completion, of his.
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Throughout this paper, we fix a commutative ring (with identity element 1 �= 0)
R: we will use sequences and matrices with entries in R, and polynomials and
formal power series with coefficients in R. The analyst reader should feel free to
imagine, without too much loss of generality, that R = R. However, in applications
of this formalism there will often be parameters, and we will usually prefer to treat
these parameters as algebraic indeterminates ξ; then R will be either the ring R[ξ]
of polynomials in these indeterminates or the field R(ξ) of rational functions in
these indeterminates.

In particular, to any (positive or signed) measure μ on R that has finite moments
of all orders, there is canonically associated a linear functional L on the polynomial
ring R[x], defined by L(xn) =

∫
xn dμ(x). It is well known [14] that the theory

of orthogonal polynomials (or at least the simplest parts of it) can be expressed
entirely in terms of this linear functional—or equivalently, in terms of the sequence
of moments an = L(xn)—without reference to the measure μ. We shall adopt this
approach here, and also replace R by an arbitrary commutative ring R.

The plan of this paper is as follows: In Section 2 we collect some basic definitions
and facts concerning multiple orthogonal polynomials, production matrices and
branched continued fractions. In Section 3 we use the theory of production matrices
to demonstrate some very simple relations between sequences of monic polynomials,
the linear recurrences they satisfy, and their dual sequences of linear functionals. We
also generalize Viennot’s [80] formula for the expectation of products of orthogonal
polynomials. In Section 4 we analyze sequences of monic polynomials that are
orthogonal to a sequence of linear functionals. In Section 5 we show how this
theory applies to ordinary orthogonal polynomials, and in Section 6 we apply it to
multiple orthogonal polynomials. Finally, in Section 7 we examine some concrete
examples. In the Appendix we prove a basic result concerning LU factorization for
matrices over a commutative ring.

2. Preliminaries

In this section we provide a brief introduction to multiple orthogonal polyno-
mials [5, 51, 75] [36, Chapter 23], production matrices [23, 24, 56, 65], and branched
continued fractions [56]. The reader familiar with one or more of these topics can
skim those parts quickly, with the main aim of fixing the notation.

2.1. Multiple orthogonal polynomials. We begin by giving a brief introduction
to the theory of multiple orthogonal polynomials, following [36, Chapter 23] but
making a few comments about “algebraizing” the theory to allow coefficients in
an arbitrary commutative ring R. We limit attention to the multiple orthogonal
polynomials of type II, since these are the only ones that will arise in the remainder
of the paper. (I leave it to others to investigate whether there is any analogue of
the connections discussed here for the multiple orthogonal polynomials of type I.)

Fix an integer r ≥ 1, and let μ1, . . . , μr be positive measures on the real line
with finite moments of all orders. We use multi-indices n = (n1, . . . , nr) ∈ Nr and
write |n| = n1 + . . .+ nr. The multiple orthogonal polynomial of type II for
the multi-index n is the degree-|n| monic polynomial Pn(x) = x|n| + . . . satisfying
the orthogonality relations

(2.1)

∫
xkPn(x) dμj(x) = 0 for all 1 ≤ j ≤ r and 0 ≤ k ≤ nj − 1,
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whenever such a polynomial exists and is unique. The equations (2.1) give a system
of |n| linear equations for the |n| non-leading coefficients of the polynomial Pn(x);
the multi-index n is said to be normal whenever the solution exists and is unique.
Note that the coefficient matrix of this system is the transpose of the |n| × |n|
matrix

(2.2) Mn =
(
H

(1)
|n|,n1

H
(2)
|n|,n2

· · · H
(r)
|n|,nr

)
,

where H
(j)
M,N is the M ×N Hankel matrix of the moments of μj : that is, H

(j)
M,N =

(m
(j)
r+s)0≤r≤M−1,0≤s≤N−1 where

(2.3) m
(j)
k =

∫
xk dμj(x).

Therefore, the multi-index n is normal if and only if detMn �= 0.
A system of measures μ1, . . . , μr is said to be perfect in case all n ∈ Nr are

normal. Several general sufficient conditions for a system to be perfect are known
(Angelesco systems, AT systems, Nikishin systems, . . . ): see [36, Chapter 23] [75].
We shall henceforth restrict attention to perfect systems.

The orthogonality conditions (2.1) can be trivially re-expressed in terms of the
linear forms L(1), . . . ,L(r) associated to the measures μ1, . . . , μr, which are defined

by L(j)(xn) =
∫
xn dμj(x): it suffices to replace m

(j)
k by L(j)(xk). Moreover, from

this point of view, the measures μj need not be positive measures; indeed, the

linear forms L(j) need not come from (signed) measures at all. Provided that one
can show, one way or another, that all n ∈ Nr are normal, the multiple orthogonal
polynomials are well-defined.

Having done this, we can go farther and “algebraize” the theory by considering
polynomials with coefficients in an arbitrary commutative ring (with identity ele-
ment 1 �= 0) R, rather than just R = R. We fix linear forms L(1), . . . ,L(r) on the

polynomial ring R[x], and define “moments” m
(j)
k = L(j)(xk); then the multi-index

n is normal if and only if detMn is an invertible element of the ring R.
Let us now make a simple but important observation. Fix a multi-index n =

(n1, . . . , nr) ∈ Nr, and suppose that the polynomial Pn(x) satisfies the orthogonality
relations (2.1) with respect to some family of (not necessarily positive) measures
μ = (μ1, . . . , μr). Then Pn(x) also satisfies the orthogonality relations (2.1) with
respect to any family of (not necessarily positive) measures μ′ = (μ′

1, . . . , μ
′
r) where

μ′
i is any linear combination of {μj : nj ≥ ni}. In particular, if n1 ≥ n2 ≥ . . . ≥ nr,

then we can take μ′
i =

∑i
j=1 cijμj for any lower-triangular matrix C = (cij)1≤i,j≤r.

That is, μ′
i is an arbitrary linear combination of μ1, . . . , μi. This observation will

play an important role in what follows (see Section 4 ff.).
The collection (Pn(x))n∈Nr of (monic) multiple orthogonal polynomials of type II

satisfies a variety of recurrences, generalizing the well-known three-term recurrence
for conventional orthogonal polynomials. Here is one [36, Theorem 23.1.7 et seq.]:
We denote by ek the multi-index with entry 1 in position k and 0 elsewhere. For a

permutation π of {1, . . . , r}, we write s(π)j = eπ(1)+eπ(2)+ . . .+eπ(j) for 1 ≤ j ≤ r.

Then there exist real numbers a
(k)
n,0 (n ∈ N

r, 1 ≤ k ≤ r) and a
(π)
n,j (n ∈ N

r, π ∈ Sr,
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1 ≤ j ≤ r) such that

(2.4) xPn(x) = Pn+ek
(x) + a

(k)
n,0Pn(x) +

r∑
j=1

a
(π)
n,jPn−s

(π)
j

(x),

with the convention that P
n−s

(π)
j

(x) = 0 whenever one or more of the entries in

n − s
(π)
j is negative. (Note that the coefficients a

(π)
n,j do not depend on k, and the

coefficients a
(k)
n,0 do not depend on π. But we will never use this fact.)

Now let j1, j2, . . . be an infinite sequence of elements of {1, . . . , r}, and define

a sequence (nk)k≥0 of multi-indices in Nr by nk =
∑k

i=1 eji . These multi-indices
satisfy |nk| = k and describe an increasing nearest-neighbor path in Nr in which the

ith step is along direction ji. Now let P̂k(x)
def
= Pnk

(x) be the multiple orthogonal
polynomial of type II along this path in Nr. It then follows from (2.4) that the

singly-indexed sequence (P̂n(x))n≥0 satisfies an (r+2)-term recurrence of the form

(2.5) xP̂n(x) =

n+1∑
k=n−r

πnkP̂k(x),

where πn,n+1 = 1 and πnk = 0 for k < 0; of course the coefficients πnk depend on the
choice of nearest-neighbor path. The recurrence (2.5) will play a central role in the
remainder of this paper. Please observe that the coefficients πnk in this recurrence
can be collected into a matrix Π = (πnk)n,k≥0 that is unit-lower-Hessenberg and
(r, 1)-banded: that is, πnk = 0 if k > n+ 1 or k < n− r, and πn,n+1 = 1.

A particularly important role is played by the multi-indices n = (n1, . . . , nr)
lying on the stepline: this is the near-diagonal sequence starting at (0, 0, . . . , 0)
and following the path (n, n, . . . , n) → (n + 1, n, . . . , n) → (n + 1, n + 1, . . . , n) →
. . . → (n + 1, n + 1, . . . , n + 1) → . . . . In other words, we define a singly-indexed

sequence (P̃n(x))n≥0 by

(2.6) P̃n(x) = P(n1,...,nr)(x) where ni :=
⌊n+ r − i

r

⌋
for 1 ≤ i ≤ r.

The stepline polynomials (P̃n(x))n≥0 are a special case of the nearest-neighbor-path

polynomials (P̂n(x))n≥0, so they satisfy an (r+2)-term recurrence of the form (2.5).

2.2. Production matrices. In this subsection we give a brief introduction to
the theory of production matrices [23, 24]; see also [65] [56, sections 8.1 and 9.2]
for further discussion. In the general theory, the production matrix can be any
row-finite or column-finite matrix. Here, however, we shall restrict attention to
production matrices that are unit-lower-Hessenberg. Also, in the general theory
the production matrix is usually called P ; but here we shall call it Π in order to
avoid confusion with the sequence of polynomials Pn(x).

So let Π = (πij)i,j≥0 be a unit-lower-Hessenberg matrix (indexed by N) with
entries in a commutative ring R: that is, πi,i+1 = 1 and πij = 0 for j > i+1. Then
let A = (ank)n,k≥0 be the matrix defined by ank = (Πn)0k. It is easy to see that A
is unit-lower-triangular, i.e. ann = 1 and ank = 0 for k > n. Writing out the matrix
multiplications explicitly, we have

(2.7) ank =
∑

i1,...,in−1

π0i1πi1i2πi2i3 · · ·πin−2in−1
πin−1k,
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so that ank is the total weight for all n-step walks in N from i0 = 0 to in = k,
in which the weight of a walk is the product of the weights of its steps, and a step
from i to j gets a weight πij . (Since Π is lower-Hessenberg, these are �Lukasiewicz
walks , i.e. the allowed steps are i → j with 0 ≤ j ≤ i+ 1.) Yet another equivalent
formulation is to define the entries ank by the recurrence

(2.8) ank =
∞∑
i=0

an−1,iπik for n ≥ 1

with the initial condition a0k = δ0k. We shall call Π the production matrix and
A the output matrix , and we write A = O(Π).

These definitions can be given a compact matrix formulation. Let Δ be the
matrix with 1 on the superdiagonal and 0 elsewhere, i.e. Δn,n+1 = 1 and Δnk = 0
for k �= n+ 1 (of course it is unit-lower-Hessenberg). Then for any matrix M with
rows indexed by N, the product ΔM is simply M with its zeroth row removed and

all other rows shifted upwards. (Some authors use the notation M
def
= ΔM .) The

recurrence (2.8) can then be written as

(2.9) ΔA = AΠ.

Since A is unit-lower-triangular, it is invertible, so (2.9) is equivalent to

(2.10) Π = A−1ΔA.

Conversely, it is not difficult to see that for any unit-lower-triangular matrix A, the
matrix A−1ΔA is unit-lower-Hessenberg. It therefore follows that for each unit-
lower-triangular matrix A, there is a unique unit-lower-Hessenberg matrix Π such
that A = O(Π), and it is given by Π = A−1ΔA.

Now let B = A−1 be the inverse of A (which is of course also unit-lower-
triangular). We then have a one-to-one correspondence between unit-lower-Hessen-
berg matrices Π, unit-lower-triangular matrices A and unit-lower-triangular matri-
ces B, defined by

(2.11) A := O(Π) := B−1, B := O(Π)−1 := A−1, Π := A−1ΔA := BΔB−1.

In Section 3 we will see how the matrices A, B and Π arise in different characteri-
zations of sequences of monic polynomials.

Remarks.

(1) Production matrices are nowadays widely used in enumerative combina-
torics: thus, for instance, the entry for a triangular array in the On-Line Ency-
clopedia of Integer Sequences [53] often gives its production matrix.

(2) Several subclasses of lower-Hessenberg production matrices are of especial
combinatorial interest:

• Tridiagonal production matrices correspond to Motzkin walks (i.e. the al-
lowed steps are i → j with j ∈ {i−1, i, i+1}) and thence to classical J-fractions
[31], as will be explained in Section 2.3.

• Toeplitz lower-Hessenberg production matrices generate Bell-subgroup Rior-
dan arrays ; and more generally, 1-almost-Toeplitz lower-Hessenberg produc-
tion matrices (i.e. lower-Hessenberg matrices that are Toeplitz except for the
zeroth column) generate Riordan arrays. See [8,61,62,69] for introductions to
Riordan arrays, and [23, 34, 65] for the just-quoted theorems on their produc-
tion matrices.
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• Lower-Hessenberg production matrices of the form πnk = (n!/k!)(zn−k +
kan−k+1) generate exponential Riordan arrays [8, pp. 217–218] [55, The-
orem 8.2].

(3) When the commutative ring R is equipped with a partial order, production
matrices are also a powerful tool for attacking problems related to total positivity
[65]. In particular, the total positivity of the production matrix Π is a sufficient
(but far from necessary) condition for the total positivity of its output matrix O(Π)
and for the Hankel-total positivity of the zeroth-column sequence of O(Π). See [65]
[56, sections 8.1 and 9.2] [21, 55, 64] for precise statements, proofs, and further
discussion and applications.

�

2.3. Classical continued fractions. As preparation for the discussion of branched
continued fractions in Section 2.4, as well as for some applications later in this pa-
per, we begin by giving a very brief review of selected aspects of the theory of
classical continued fractions (J-fractions and S-fractions). We will follow the nota-
tion and terminology used nowadays by combinatorialists [31], as this is the most
appropriate for our work; but we will also point out the translation to the formalism
employed in the classical analysis literature on continued fractions [20,38,49,54,82]
and the moment problem [1, 3, 60, 63, 71].

We shall consider continued fractions of either Stieltjes (S) type,

(2.12) f(t) =

∞∑
n=0

ant
n =

1

1−
α1t

1−
α2t

1− · · ·

,

or Jacobi (J) type,

(2.13) f(t) =
∞∑

n=0

ant
n =

1

1− γ0t−
β1t

2

1− γ1t−
β2t

2

1− · · ·

.

Here these expressions are to be interpreted as formal power series in the indeter-
minate t; we do not wish to address questions of convergence. Thus, the continued-
fraction coefficients α = (αn)n≥1, β = (βn)n≥1 and γ = (γn)n≥0 are sequences
in a commutative ring R, and they determine the sequence a = (an)n≥0 of Taylor
coefficients by formal expansion of the continued fraction. Indeed, it is concep-
tually simplest to consider α,β,γ as algebraic indeterminates; then the an are
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polynomials with integer coefficients in these indeterminates:

∞∑
n=0

Sn(α)tn =
1

1−
α1t

1−
α2t

1− · · ·

(2.14)

∞∑
n=0

Jn(β,γ)t
n =

1

1− γ0t−
β1t

2

1− γ1t−
β2t

2

1− · · ·

(2.15)

We call Sn(α) the Stieltjes–Rogers polynomials , and Jn(β,γ) the Jacobi–
Rogers polynomials .

In a seminal 1980 paper, Flajolet [31] gave a combinatorial interpretation of the
Stieltjes–Rogers and Jacobi–Rogers polynomials in terms of lattice paths. We recall
that a Motzkin path of length n is a path in the right quadrant N×N, starting at
(0, 0) and ending at (n, 0), using steps (1, 1) [“rise”], (1, 0) [“level step”] and (1,−1)
[“fall”]. More generally, a Motzkin path at level k is a path in N×N≥k, starting
at (0, k) and ending at (n, k), using the same steps. A Motzkin path is called a
Dyck path if it has no level steps; obviously a Dyck path must have even length.

Theorem 2.1 (Flajolet [31]).

(a) The Jacobi–Rogers polynomial Jn(β,γ) is the generating polynomial for
Motzkin paths of length n, in which each rise gets weight 1, each level step
at height i gets weight γi, and each fall from height i gets weight βi.

(b) The Stieltjes–Rogers polynomial Sn(α) is the generating polynomial for
Dyck paths of length 2n, in which each rise gets weight 1 and each fall
from height i gets weight αi.

Proof. (a) For each k ≥ 0, let fk(t) be the generating function for Motzkin paths
at level k (of arbitrary length) in which each rise gets weight 1, each level step at
height i gets weight γi, each fall from height i gets weight βi, and each step of any
kind gets an additional weight t. It is a formal power series in the indeterminate t,
with coefficients that are polynomials in β,γ.

Now let P be any Motzkin path at level k; and if it is of nonzero length, split it at
its first return to height k, yielding P = P ′P ′′. Then P ′ is either a single level step
at height k, or else a path of the form UPk+1D where U is a rise k → k + 1, Pk+1

is an arbitrary Motzkin path at level k+1, and D is a fall k+1 → k. Furthermore,
P ′′ is an arbitrary Motzkin path at level k. We thus deduce the functional equation

(2.16) fk(t) = 1 + γktfk(t) + βk+1t
2fk+1(t)fk(t)

or equivalently

(2.17) fk(t) =
1

1− γkt− βk+1t2fk+1(t)
.
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Iterating (2.17), we see immediately that fk is given by the continued fraction

(2.18) fk(t) =
1

1− γkt−
βk+1t

2

1− γk+1t−
βk+2t

2

1− · · ·
and in particular that f0 is given by (2.15).

(b) This follows from part (a) by setting γ = 0, renaming β as α, and renaming
t2 as t. �

Remarks.

(1) In the function-theoretic literature on the moment problem [1, 3, 60, 63, 71]
and continued fractions [20, 38, 49, 54, 82], the generating function for a sequence
a = (an)n≥0 of real numbers is most often written in the form

(2.19) F (z) =
1

z
f
(1
z

)
=

∞∑
n=0

an
zn+1

.

This formulation has the property that if a is a moment sequence with representing
measure μ, i.e. an =

∫∞
−∞ xn dμ(x), then the Stieltjes transform

(2.20) F (z)
def
=

∫ ∞

−∞

dμ(x)

z − x

is analytic in the upper half-plane Im z > 0 and has the series (2.19) as its large-z
asymptotic expansion, uniformly in each sector ε ≤ | arg z| ≤ π − ε [63, p. 27].

Given a power series of the form (2.19), the S-type continued fraction is then
written in the form [63, p. viii] [82, p. 329]

(2.21) F (z) =
1

l1z −
1

l2 −
1

l3z −
1

l4 − · · ·
(note that ln is multiplied by z for n odd but not for n even), which is easily seen
to be equivalent to (2.12) if we normalize to a0 = 1 (hence l1 = 1) and then set
α1 = 1/l2 and αn = 1/(lnln+1) for n ≥ 2; the reverse translation is

l2k−1=
α1α3 · · ·α2k−3

α2α4 · · ·α2k−2
(2.22a)

l2k =
α2α4 · · ·α2k−2

α1α3 · · ·α2k−1
.(2.22b)

Likewise, the J-type continued fraction is written in the form [63, pp. viii, 31]

(2.23) F (z) =
λ1

z − c1 −
λ2

z − c2 −
λ3

z − c3 −
λ4

z − c4 − · · ·

,
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which is easily seen to be equivalent to (2.13) if we normalize to λ1 = 1 and then
set γn = cn+1 and βn = λn+1.

(2) My use of the terms “S-fraction” and “J-fraction” follows the general practice
in the combinatorial literature, starting with Flajolet [31]. The classical literature
on continued fractions [20, 38, 49, 54, 82] generally uses a different terminology. For
instance, Jones and Thron [38, pp. 128–129, 386–389] use the term “regular C-
fraction” for (a minor variant of) what I have called an S-fraction; they call it an
“S-fraction” if all αn < 0. They use the term “associated continued fraction” for
(a minor variant of) what I have called a J-fraction, and use the term “J-fraction”
for 2.23 with λn �= 0.

(3) It is worth observing that an S-fraction can always be transformed into a
J-fraction by contraction [82, p. 21] [80, p. V-31]: namely, (2.12) and (2.13) are
equal if

γ0 = α1(2.24a)

γn = α2n + α2n+1 for n ≥ 1(2.24b)

βn = α2n−1α2n.(2.24c)

See [82, pp. 20–22] for the classic algebraic proof; see [30, Lemmas 1 and 2] [29, proof
of Lemma 1] [25, Lemma 4.5] for a very simple variant algebraic proof; and see [80,
pp. V-31–V-32] for an enlightening combinatorial proof, based on defining a Motzkin
path by grouping pairs of steps in a Dyck path. The reverse transformation—from
J-fraction to S-fraction—is generically possible if the coefficient ring R is a field,
but not in general otherwise.

�

Let us now generalize these definitions; we concentrate on the case of J-fractions,
but similar constructions can be applied to S-fractions. A partial Motzkin path
of length n is a path in the right quadrant N × N, starting at (0, 0) and ending at
some point (n, k), using the same steps as before. Let Jn,k(β,γ) be the generating
polynomial for partial Motzkin paths from (0, 0) to (n, k), in which each rise gets
weight 1, each level step at height i gets weight γi, and each fall from height
i gets weight βi. We therefore have an infinite unit-lower-triangular array J =(
Jn,k(β,γ)

)
n,k≥0

in which the first (k = 0) column displays the ordinary Jacobi–

Rogers polynomials Jn,0 = Jn. It is immediate from the definition of Jn,k that the
matrix J is the output matrix O(Π) corresponding to the tridiagonal production
matrix

(2.25) Π =

⎡⎢⎢⎢⎣
γ0 1
β1 γ1 1

β2 γ2 1
. . .

. . .
. . .

⎤⎥⎥⎥⎦
that generates Motzkin walks with the given weights [cf. (2.7)]. We then have the
following beautiful fact:

Proposition 2.2 (LDLT factorization of the Hankel matrix of Jacobi–Rogers poly-
nomials). The Hankel matrix of Jacobi–Rogers polynomials,

(2.26) H∞(J)
def
=

(
Jn+n′(β,γ)

)
n,n′≥0

,
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has the factorization

(2.27) H∞(J) = JDJT

where D = diag(1, β1, β1β2, . . .) is the diagonal matrix with entries

(2.28) Dkk =
k∏

i=1

βi

for k ≥ 0.

Proof. It suffices to note the identity [2, p. 351] [37, Remark 2.2]

(2.29) Jn+n′,0(β,γ) =

∞∑
�=0

Jn,�(β,γ)

( �∏
i=1

βi

)
Jn′,�(β,γ),

which arises from splitting a Motzkin path of length n + n′ into its first n steps
and its last n′ steps, and then imagining the second part run backwards: the factor∏k

i=1 βi arises from the fact that when we reversed the path we interchanged rises

with falls and thus lost a factor
∏k

i=1 βi for those falls that were not paired with
rises. The identity (2.29) can be written in matrix form as (2.27). �

Remarks.

(1) The reversal argument employed in this proof can be rewritten purely alge-
braically as follows: Note first that the tridiagonal matrix (2.25) satisfies

(2.30) ΠT = D−1ΠD,

where D = diag(1, β1, β1β2, . . .). (Here we work in the ring Z[β,β−1,γ] of Laurent
polynomials in β.) On the other hand, it is a general fact [65][56, Lemma 9.5] that
if Π is a production matrix and O0(Π) is the zeroth-column sequence of O(Π), then

(2.31) H∞(O0(Π)) = O(Π)O(ΠT)
T
.

And finally, it is a general fact [65][56, Lemma 8.1] that if M is an invertible lower-
triangular matrix satisfying M00 = 1, then O(M−1ΠM) = O(Π)M . Putting all
this together, we have

H∞(O0(Π)) = O(Π)O(ΠT)
T

(2.32a)

= O(Π)O(D−1ΠD)
T

(2.32b)

= O(Π)[O(Π)D]T(2.32c)

= O(Π)DO(Π)T,(2.32d)

as asserted in Proposition 2.2. Obviously, this proof relies crucially on the fact
that the reversal of a Motzkin path is again a Motzkin path, or equivalently on the
fact that the production matrix Π is tridiagonal and therefore symmetric up to a
diagonal similarity transformation (2.30).

(2) The factorization (2.27) was found more than a century ago by Stieltjes
[70,71], albeit without the interpretation in terms of Motzkin paths. More precisely,
Stieltjes [70] [71, pp. J.18–J.19] found the analogous factorization for S-fractions.
The factorization for J-fractions can be found in Wall’s 1948 book [82, Theo-
rem 53.1], among other places.
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�

Taking the determinant of the n×n leading principal submatrix on both sides of
(2.27), we obtain a classical formula [82, Theorem 51.1] for the Hankel determinants
of a J-fraction:

Corollary 2.3 (Hankel determinants of the Jacobi–Rogers polynomials). Let Δn =
det

(
Ji+j(β,γ)

)
0≤i,j≤n−1

be the n×n leading principal minor of the Hankel matrix

H∞(J). Then

(2.33) Δn+1 = βn
1 β

n−1
2 · · ·β2

n−1βn.

In particular, if R = R and all βi > 0, then the Hankel matrix H∞(J) is positive-
definite, which implies that the underlying sequence (Jn(β,γ))n≥0 is a Hamburger
moment sequence with a representing measure of infinite support [1, 3, 60, 63].

2.4. Branched continued fractions. In this subsection we give a very brief in-
troduction to the theory of branched continued fractions, limiting attention for
simplicity to branched S-fractions; our treatment follows [56], where many more
details and applications can be found.

Fix an integer m ≥ 1. An m-Dyck path [7, 12, 56, 57] is a path in the upper
half-plane Z×N, starting and ending on the horizontal axis, using steps (1, 1) [“rise”
or “up step”] and (1,−m) [“m-fall” or “down step”]. More generally, an m-Dyck
path at level k is a path in Z×N≥k, starting and ending at height k, using steps
(1, 1) and (1,−m). Since the number of up steps must equal m times the number
of down steps, the length of an m-Dyck path must be a multiple of m+ 1.

Now let α = (αi)i≥m be an infinite set of indeterminates. Then [56] the m-

Stieltjes–Rogers polynomial of order n, denoted S
(m)
n (α), is the generating

polynomial for m-Dyck paths of length (m + 1)n in which each rise gets weight 1

and each m-fall from height i gets weight αi. Clearly S
(m)
n (α) is a homogeneous

polynomial of degree n with nonnegative integer coefficients.

Let f0(t) =
∑∞

n=0 S
(m)
n (α)tn be the ordinary generating function for m-Dyck

paths with these weights; and more generally, let fk(t) be the ordinary generating
function for m-Dyck paths at level k with these same weights. (Obviously fk is just
f0 with each αi replaced by αi+k; but we shall not explicitly use this fact.) Then
straightforward combinatorial arguments [56, Section 2.3], similar to those used in
the proof of Theorem 2.1, lead to the functional equation

(2.34) fk(t) = 1 + αk+mtfk(t)fk+1(t) · · · fk+m(t)

or equivalently

(2.35) fk(t) =
1

1− αk+mtfk+1(t) · · · fk+m(t)
.
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Iterating (2.35), we see immediately that fk is given by the branched continued
fraction

fk(t) =
1

1− αk+mt
∏m

i1=1

1

1− αk+m+i1t
∏m

i2=1

1

1− αk+m+i1+i2t
∏m

i3=1

1

1− · · ·

(2.36a)

= 1

1−
αk+mt(

1−
αk+m+1t(

1−
αk+m+2t

(· · · ) · · · (· · · )
)
· · ·

(
1−

αk+2m+1t

(· · · ) · · · (· · · )
)
)
· · ·

(
1−

αk+2mt(
1−

αk+2m+1t

(· · · ) · · · (· · · )
)
· · ·

(
1−

αk+3mt

(· · · ) · · · (· · · )
)
)

(2.36b)

and in particular that f0 is given by the specialization of (2.36) to k = 0. We
shall call the right-hand side of (2.36) an m-branched Stieltjes-type continued
fraction , or m-branched S-fraction for short.

Remark. In truth, we hardly ever use the branched continued fraction (2.36);
instead, we work directly with the m-Dyck paths and/or with the recurrence
(2.34)/(2.35) that their generating functions satisfy. �

We now generalize these definitions as follows. A partial m-Dyck path is a path
in the upper half-plane Z×N, starting on the horizontal axis but ending anywhere,
using steps (1, 1) [“rise”] and (1,−m) [“m-fall”]. A partial m-Dyck path starting
at (0, 0) must stay always within the set Vm = {(x, y) ∈ Z×N : x = y mod m+1}.

Now let α = (αi)i≥m be an infinite set of indeterminates, and let S
(m)
n,k (α) be the

generating polynomial for partial m-Dyck paths from (0, 0) to ((m+ 1)n, (m+ 1)k)
in which each rise gets weight 1 and eachm-fall from height i gets weight αi. We call

the S
(m)
n,k the generalized m-Stieltjes–Rogers polynomials . Obviously S

(m)
n,k is

nonvanishing only for 0 ≤ k ≤ n, and S
(m)
n,n = 1. We therefore have an infinite unit-

lower-triangular array S(m) =
(
S
(m)
n,k (α)

)
n,k≥0

in which the first (k = 0) column

displays the ordinary m-Stieltjes–Rogers polynomials S
(m)
n,0 = S

(m)
n .

The production matrix for the triangle S(m) was found in [56, sections 7.1 and
8.2]. We begin by defining some special matrices M = (mij)i,j≥0:

• L(s1, s2, . . .) is the lower-bidiagonal matrix with 1 on the diagonal and
s1, s2, . . . on the subdiagonal:

(2.37) L(s1, s2, . . .) =

⎡⎢⎢⎢⎢⎢⎣
1
s1 1

s2 1
s3 1

. . .
. . .

⎤⎥⎥⎥⎥⎥⎦ .
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• U�(s1, s2, . . .) is the upper-bidiagonal matrix with 1 on the superdiagonal
and s1, s2, . . . on the diagonal:

(2.38) U�(s1, s2, . . .) =

⎡⎢⎢⎢⎢⎢⎣
s1 1

s2 1
s3 1

s4 1
. . .

. . .

⎤⎥⎥⎥⎥⎥⎦ .

Then the production matrix for the triangle S(m) is

P (m)S(α)
def
= L(αm+1, α2m+2, α3m+3, . . .)L(αm+2, α2m+3, α3m+4, . . .) · · ·

L(α2m, α3m+1, α4m+2, . . .)U
�(αm, α2m+1, α3m+2, . . .),(2.39)

that is, the product of m factors L and one factor U� [56, Proposition 8.2].
Let us remark, finally, that there is (as far as I know) no analogue of Proposi-

tion 2.2 for m-S-fractions with m > 1, since the reversal of an m-Dyck path is not
an m-Dyck path.

3. Production matrix for a sequence of monic polynomials

In this section we prove some very elementary—but important—relations be-
tween sequences of monic polynomials, the linear recurrences they satisfy, and their
dual sequences of linear functionals. All of these properties will be re-expressed in
a convenient matrix form, using the theory of production matrices (Section 2.2).
We conclude this section with some more delicate matters concerning “expectation
values” of products of polynomials, culminating in Open Problem 3.10.

3.1. Linear functionals. Let R[x] be the ring of polynomials in one indetermi-
nate x, with coefficients in R; it is an R-module. (If R is a field, then R[x] is a vector
space over R.) A linear functional (more precisely, an R-linear functional) on
R[x] is a map L : R[x] → R satisfying L(ap(x)+bq(x)) = aL(p(x))+bL(q(x)) for all
a, b ∈ R and p(x), q(x) ∈ R[x]. To each linear functional L : R[x] → R there is nat-
urally associated a sequence (�n)n≥0 of elements of R, defined by �n = L(xn). And
conversely, to every sequence (�n)n≥0 there is associated a unique linear functional

L satisfying L(xn) = �n, namely L(
∑N

n=0 cnx
n) =

∑N
n=0 cn�n. We call (�n)n≥0 the

moment sequence of the linear functional L.
Now let (Lk)k≥0 be a sequence of such linear functionals. We form the matrix

A = (ank)n,k≥0 whose columns are the moment sequences of these linear functionals,
i.e. ank = Lk(x

n). We call A the moment matrix for the sequence (Lk)k≥0 of
linear functionals. We say that the sequence (Lk)k≥0 is normalized in case the
matrix A is unit-lower-triangular, i.e. Lk(x

n) = 0 for n < k and Lk(x
k) = 1.

3.2. Sequences of monic polynomials. By a sequence of monic polynomials
we mean a sequence (Pn(x))n≥0 of polynomials (with coefficients in R) such that
Pn(x) has degree n and leading coefficient 1. We can assemble the coefficients of
these polynomials into a unit-lower-triangular matrix B = (bnk)n,k≥0 by writing
Pn(x) =

∑n
k=0 bnkx

k. There is obviously a one-to-one correspondence between
unit-lower-triangular matrices and sequences of monic polynomials. We call B the
coefficient matrix for the sequence (Pn(x))n≥0 of polynomials.
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Now let A = (ank)n,k≥0 be the inverse matrix to B, i.e. A = B−1. Then we
obviously have xn =

∑n
k=0 ankPk(x).

3.3. Duality. Let P = (Pn(x))n≥0 be a sequence of monic polynomials, and let
L = (Lk)k≥0 be a sequence of linear functionals. We say that P and L are dual
to each other in case Lk(Pn(x)) = δkn for all k, n ≥ 0. The fundamental result
concerning such duality is very simple:

Proposition 3.1 (Sequence of monic polynomials and its dual sequence of linear
functionals). Given any sequence (Pn(x))n≥0 of monic polynomials, there exists a
unique sequence (Lk)k≥0 of linear functionals that satisfies Lk(Pn(x)) = δkn, and
it is normalized.

Conversely, given any normalized sequence (Lk)k≥0 of linear functionals, there
exists a unique sequence (Pn(x))n≥0 of monic polynomials that satisfies Lk(Pn(x)) =
δkn.

The relation between these sequences is: The moment matrix A of the sequence
(Lk)k≥0 and the coefficient matrix B of the sequence (Pn(x))n≥0 are inverses of
each other.

Proof. Using Pn(x) =
∑n

j=0 bnjx
j and Lk(x

j) = ajk, we see that the condition

Lk(Pn(x)) = δkn is equivalent to the matrix equation BA = I. If (Pn(x))n≥0 is a
sequence of monic polynomials, then B is unit-lower-triangular, and BA = I has the
unique solution A = B−1; moreover, A is unit-lower-triangular. And conversely,
if (Lk)k≥0 is a normalized sequence of linear functionals, then A is unit-lower-
triangular, and BA = I has the unique solution B = A−1; moreover, B is unit-
lower-triangular. �
3.4. Linear recurrence ←→ production matrix. The next result, which is only
slightly more complicated, connects a sequence (Pn(x))n≥0 of monic polynomials
with the unique linear recurrence (of a certain standard form) that defines it:

Proposition 3.2 (Sequence of monic polynomials and its defining recurrence).
Given any sequence (Pn(x))n≥0 of monic polynomials, there exists a unique unit-
lower-Hessenberg matrix Π = (πnk)n,k≥0 such that

(3.1) Pn+1(x) = (x− πnn)Pn(x)−
n−1∑
k=0

πnkPk(x)

or equivalently

(3.2) xPn(x) =

n+1∑
k=0

πnkPk(x).

And conversely, given any unit-lower-Hessenberg matrix Π = (πnk)n,k≥0, there
exists a unique sequence (Pn(x))n≥0 of polynomials satisfying (3.1)/ (3.2) with the
initial condition P0(x) = 1, and it is monic.

The relation between these objects is: The coefficient matrix B of the sequence
(Pn(x))n≥0 satisfies B = O(Π)−1 or equivalently Π = BΔB−1.

Proof. Let (Pn(x))n≥0 be a sequence of monic polynomials with coefficient matrix
B. Substituting Pn(x) =

∑n
j=0 bnjx

j into (3.2) and extracting the coefficient of xj ,

we see that (3.2) is equivalent to

(3.3) bn,j−1 = (ΠB)nj
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or in other words

(3.4) BΔ = ΠB.

Since B is unit-lower-triangular and hence invertible, this equation has the unique
solution Π = BΔB−1.

The converse assertion is obvious, using (3.1). �

Remarks.

(1) This proposition is also stated by Viennot [80, p. III-18, Proposition III.7],
where a combinatorial proof is sketched; by Yang [85, Theorem 2.3]; by Cheon
and Kim [13, Theorem 4.1]; by Verde-Star [79, Theorem 2.1]; and by Costabile,
Gualtieri and Napoli [16, Theorem 4.2].

(2) The recurrence (3.2) can also be written in vector form as xP = ΠP, where
P is the column vector whose entries are the sequence (Pn(x))n≥0. Iterating this,
we see that xrP = ΠrP for any integer r ≥ 0, or concretely

(3.5) xrPn(x) =

n+r∑
j=0

(Πr)njPj(x).

It then follows that for any polynomial q(x) we have

(3.6) q(x)Pn(x) =

n+deg q∑
j=0

(q(Π))njPj(x).

�

The monic polynomials Pn(x) defined by the recurrence (3.1) are also the char-
acteristic polynomials of the leading principal submatrices of the production ma-
trix Π. To state this result, let us introduce notation as follows: For any matrix
A = (aij)i,j≥0, we write An = (aij)0≤i,j≤n−1 for its n× n leading principal subma-
trix, and Δn(A) = detAn for its n×n leading principal minor, with the convention
Δ0(A) = 1. When the matrix is lower-Hessenberg, these leading principal minors
satisfy a recurrence that is reasonably well known [32, pp. 251–252] [84, pp. 410–
411], though perhaps not as well known as it should be:

Lemma 3.3 (Leading principal minors of a lower-Hessenberg matrix).
The leading principal minors Δn(H) of a lower-Hessenberg matrix H = (hij)i,j≥0

satisfy the recurrence

(3.7) Δn =

n−1∑
j=0

(−1)n−1−jhn−1,j

(
n−2∏
i=j

hi,i+1

)
Δj .

Proof. Laplace-expand detHn in the last (i.e. (n− 1)st) row. When row n− 1 and
column j are deleted from Hn, what remains is

(3.8)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hj

× · · · × hj,j+1

× · · · × × hj+1,j+2

...
...

...
...

. . .

× · · · × × × · · · hn−2,n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(blank entries are zero), so that its determinant is
(∏n−2

i=j hi,i+1

)
Δj . �

For tridiagonal matrices, (3.7) becomes a three-term recurrence that is much
better known [35, p. 35].

Proposition 3.4 (Monic polynomials as characteristic polynomials of production
matrix). Let Π = (πnk)n,k≥0 be a unit-lower-Hessenberg matrix, and let (Pn(x))n≥0

be the sequence of monic polynomials defined by the recurrence (3.1) with the initial
condition P0(x) = 1. Then Pn(x) = det(xI −Πn).

Proof. Applying (3.7) to the matrix H = xI −Π, we obtain

(3.9) Δn = (x− πn−1,n−1)Δn−1 −
n−2∑
j=0

πn−1,jΔj ,

which matches the recurrence (3.1). �

Remarks.

(1) When the matrix Π is tridiagonal, this result is classical [14, p. 26, Exer-
cise 4.12] [36, p. 24, Theorem 2.2.4].1

(2) The general case of Proposition 3.4 is also known: see, for instance, [19,
eq. (2.8) ff.], [85, Theorem 2.3], [79, Corollary 3.1] and [16, Theorem 4.4]; see also
[13, Theorem 3.1].

(3) When R = R or C, it follows from Proposition 3.4 that the zeros of Pn(x)
are the eigenvalues of Πn. This suggests that the asymptotic zero distribution of
the polynomials Pn(x) as n → ∞ should be related to the spectral properties of
the infinite matrix Π acting on a suitable space of sequences (for instance, �2(N)).
See e.g. [6, 39, 40, 58, 87].

�

Finally, the recurrence (3.1) also leads to a combinatorial formula, due to Viennot
[80, p. III-16], for the matrix elements of B = O(Π)−1 in terms of those of Π:

Corollary 3.5 (Viennot [80]). Let Π = (πnk)n,k≥0 be a unit-lower-Hessenberg
matrix, and let B = (bnj)n,j≥0 be given by B = O(Π)−1. Then bnj is the sum over
partitions of {0, 1, . . . , n− 1} into zero or more intervals [k, �] (k ≤ �) and exactly
j empty sites, with a weight −π�k for each interval [k, �].2

Proof. Write b̂nj for the quantity defined in the Corollary, and define P̂n(x) =∑n
j=0 b̂njx

j . Then P̂n(x) is the sum over partitions of {0, 1, . . . , n − 1} into zero

or more intervals [k, �] (k ≤ �) and zero or more empty sites, with a weight −π�k

for each interval [k, �] and a weight x for each empty site. And it is easy to see,

by considering the status of the vertex n in P̂n+1(x), that the sequence (P̂n(x))n≥0

satisfies the same recurrence (3.1) as is satisfied by (Pn(x))n≥0, with the same initial

condition P̂0(x) = P0(x) = 1. So P̂n(x) = Pn(x). �

1I thank Alex Dyachenko for drawing my attention to this classical result, which inspired the
generalization presented in Proposition 3.4.

2Viennot [80, p. III-16] inadvertently omitted the minus sign in front of π�k in this formula. But
this was clearly an oversight, as he had the minus sign correct in the tridiagonal case [80, p. I-9].
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3.5. Summary. To summarize the results obtained thus far: There is a one-to-one
correspondence between sequences (Pn(x))n≥0 of monic polynomials (with coeffi-
cient matrix B), their dual sequences (Lk)k≥0 of linear functionals (with moment
matrix A), and their defining linear recurrences (3.1)/(3.2) (with production ma-
trix Π); and these correspondences are given by (2.11).

3.6. Expectation values of products. Fix now a unit-lower-Hessenberg matrix
Π: this defines (by Proposition 3.2) a sequence (Pn(x))n≥0 of monic polynomials
with coefficient matrix B = O(Π)−1, which in turn defines (by Proposition 3.1)
a dual sequence (Lk)k≥0 of linear functionals with moment matrix A = O(Π).
Our goal is to find a general combinatorial or algebraic formula for quantities of
the form Lk(q(x)Pm(x)Pn(x)), where q(x) is a polynomial, in terms of the coeffi-
cients Π. By analogy to probability theory, we refer colloquially to quantities like
Lk(q(x)Pm(x)Pn(x)) as “expectation values”.

In the tridiagonal case with k = 0, Viennot [80, p. I-15, Proposition I.17] found
a beautiful formula for these expectation values:

Proposition 3.6 (Viennot [80]). When the unit-lower-Hessenberg matrix Π is tridi-
agonal, we have

(3.10) L0(q(x)Pm(x)Pn(x)) = π10π21 · · ·πn,n−1(q(Π))mn

for any polynomial q(x). In particular, when q(x) = 1 we have the orthogonality
relation

(3.11) L0(Pm(x)Pn(x)) = hnδmn

with the normalizing constant hn = π10π21 · · ·πn,n−1.

Please note [80, p. I-15] that the right-hand side of (3.10) with q(x) = xr, namely
π10π21 · · ·πn,n−1(Π

r)mn, can be interpreted as the total weight for Motzkin paths of
length r+m+n from height 0 → 0 in which the first m steps are “up” steps (getting
weight 1) and the last n steps are “down” steps (getting weight πn,n−1 · · ·π10). Now,
in a Motzkin path that starts and ends at the same height, each “up” step i → i+1
can be paired with a “down” step i + 1 → i; it follows that the weight of such a
path equals the weight of the reversed path. These considerations show that the
right-hand side of (3.10) is indeed symmetric in m ↔ n.

Viennot [80, pp. I-16–I-19] proved Proposition 3.6 by a rather intricate combi-
natorial argument; here we give a simple algebraic proof:

Proof of Proposition 3.6. Let � = (�n)n≥0 be the moment sequence of the linear
functional L0, i.e.

(3.12) �n = L0(x
n) = an0 = (Πn)00.

And let H∞(l) = (�i+j)i,j≥0 be the Hankel matrix associated to the sequence l.
Since the unit-lower-Hessenberg matrix Π is tridiagonal, it is of the form (2.25)
with γn = πnn and βn = πn,n−1. Proposition 2.2 therefore gives

(3.13) H∞(l) = ADAT,

where D = diag(1, β1, β1β2, . . .). Since B = A−1, we can rewrite this as

(3.14) BH∞(l)BT = D,
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or concretely

(3.15)

∞∑
i,j=0

bmibnj�i+j = β1 · · ·βnδmn.

But the left-hand side of (3.15) is exactly L0(Pm(x)Pn(x)). This proves (3.11).
If we further left-multiply (3.14) by q(Π), we obtain

(3.16) q(Π)BH∞(l)BT = q(Π)D,

or concretely

(3.17)
∞∑

i,j,m′=0

(q(Π))mm′bm′ibnj�i+j = (q(Π))mnβ1 · · ·βn.

But, using (3.6), we see that the left-hand side of (3.17) is exactly L0(q(x)Pm(x)Pn(x)).
This proves (3.10). �

Hélder Lima [45] has pointed out to me that Proposition 3.6 can be extended to
k �= 0 as follows:

Proposition 3.7. When the unit-lower-Hessenberg matrix Π is tridiagonal, we
have

(3.18) Lk(q(x)) = h−1
k L0(q(x)Pk(x))

and hence

(3.19) Lk(q(x)Pm(x)Pn(x)) = h−1
k hn(q(Π)Pk(Π))mn

for any polynomial q(x), where hn = π10π21 · · ·πn,n−1.

Proof. Put m = 0 in (3.10), rename n as k, and take q(x) = xn: this gives

(3.20) L0(x
nPk(x)) = hk(Π

n)0k = hkank = hkLk(x
n).

It follows that

(3.21) L0(q(x)Pk(x)) = hkLk(q(x))

for any polynomial q(x). This proves (3.18). Then replace q(x) by q(x)Pm(x)Pn(x)
and use (3.10); this proves (3.19). �

Remark. The meaning of h−1
k in the formulae (3.18) and (3.19) requires some clari-

fication. The formulae obviously hold if hk is invertible in the ring R. In particular
this is the case if we consider Π = {πij}i≥j≥0 to be indeterminates and we work in

the ring Z[Π,Π−1] of Laurent polynomials. Now suppose that k ≤ n: then both
sides of (3.19) are in fact polynomials in Π, so the identity holds when the πij are
specialized to arbitrary elements in an arbitrary commutative ring. I am not sure
what happens when k > n. �

We would now like to generalize these results to the non-tridiagonal case. (Vi-
ennot [80, top p. V-41] alludes to this as an open problem.) For the moment I have
only the following result:
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Theorem 3.8. With (Pn(x))n≥0 and (Lk)k≥0 defined as above, we have

(3.22) Lk(x
�Pn(x)) = (Π�)nk

and more generally

Lk(x
�Pm(x)Pn(x)) =

m∑
j=0

bmj(Π
j+�)nk(3.23a)

= (BH
(�)
k BT)mn,(3.23b)

where H
(�)
k is the �-shifted Hankel matrix of the kth column of A:

(3.24) (H
(�)
k )ij

def
= ai+j+�,k = (Πi+j+�)0k.

Proof. Since (Pn(x))n≥0 and (Lk)k≥0 are a dual pair, we have Lk(Pn(x)) = δkn.
Applying Lk to (3.5), we obtain Lk(x

�Pn(x)) = (Π�)nk; this proves (3.22). Now
use Pm(x) =

∑m
j=0 bmjx

j ; inserting this into (3.22) gives (3.23a).

On the other hand, we have Lk(x
n) = ank. Inserting the representing equation

in terms of B for both Pm(x) and Pn(x), we have

Lk(x
�Pm(x)Pn(x)) = Lk

( m∑
i=0

n∑
j=0

bmibnjx
i+j+�

)
(3.25a)

=
m∑
i=0

n∑
j=0

bmibnjai+j+�,k(3.25b)

= (BH
(�)
k BT)mn(3.25c)

when H
(�)
k is defined by 3.24. This proves (3.23b). �

Remark. The identity (3.22) is contained in the thesis of Roblet [59, p. 153, Propo-
sition 78] in the special case where Π is (d, 1)-banded and 0 ≤ k ≤ d − 1 (but
this is no real loss of generality, since we can take d → ∞). Roblet’s proof was
combinatorial, following the model of Viennot [80, pp. I-15–I.19]. �

It is an immediate consequence of Theorem 3.8 that certain matrix elements
have to vanish:

Corollary 3.9. In the situation of Theorem 3.8:

(a) Lk(x
�Pm(x)Pn(x)) = 0 whenever k > �+m+ n.

(b) If Π is (d, 1)-banded [that is, πnk = 0 whenever k < n− d], then

Lk(x
�Pm(x)Pn(x)) = 0

whenever k < n− d(�+m) or k < m− d(�+ n).

Conversely, if Lk(xPn(x)) = 0 whenever k < n − d [this is the � = 1, m = 0 case
of (b)], then Π is (d, 1)-banded.

Proof. (a) is an immediate consequence of (3.23a) together with the facts that B
is lower-triangular and Π is lower-Hessenberg.

(b) The vanishing for k < n− d(�+m) is likewise an immediate consequence of
(3.23a) together with the facts that B is lower-triangular and Π is (d, 1)-banded.
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The vanishing for k < m− d(�+ n) then follows from the symmetry m ↔ n of the
left-hand side of (3.23a).

The converse assertion follows trivially from (3.22). �
In particular, if Π is (d, 1)-banded, then Lk(x

�Pn(x)) = 0 whenever n > d� +
k. So the sequence (Pn(x))n≥0 is d-orthogonal with respect to the sequence
L0, . . . ,Ld−1 of linear forms, in the sense defined in the Introduction. But in fact
this vanishing for n > d�+ k holds for all k ≥ 0, not just for k ≤ d− 1.

Unfortunately equation (3.23a) is not very nice, because it is not manifestly
symmetric in m ↔ n; moreover, it is not expressed solely in terms of Π. The
equation (3.23b) has the m ↔ n symmetry, but it is still not expressed solely in
terms of Π. Combining (3.23a) with Corollary 3.5 gives an explicit formula for
Lk(x

�Pm(x)Pn(x)) in terms of the matrix elements of Π; but this formula is rather
complicated, and it also fails to make manifest the symmetry m ↔ n. Combining
(3.23b) and (3.24) with Corollary 3.5 gives an even more complicated formula for
Lk(x

�Pm(x)Pn(x)) in terms of the matrix elements of Π, which at least is manifestly
symmetric in m ↔ n. But none of these formulae seem really satisfactory. What
we really want is something that looks more like Propositions 3.6 and 3.7 and that
reduces to them when Π is tridiagonal. My hope is that there might be some
cancellations between terms in the expansion of (3.23a), so that the final result
can perhaps be stated in a simpler way. I therefore conclude by stating the main
unsolved problem of this paper:

Open Problem 3.10. Find a more satisfactory formula for Lk(x
�Pm(x)Pn(x))—

ideally one that resembles Propositions 3.6 and 3.7 and that reduces to them when
Π is tridiagonal. Even the special case k = � = 0 would be of great interest.

4. Sequence of monic polynomials orthogonal to a sequence of

linear functionals

Let Γ = (Γk)k≥0 be a sequence of linear functionals on R[x], with moment matrix
Γ = (γnk)n,k≥0 given by γnk = Γk(x

n). And let P = (Pn(x))n≥0 be a sequence
of monic polynomials, with unit-lower-triangular coefficient matrix B = (bnj)n,j≥0

given by Pn(x) =
∑n

j=0 bnjx
j . We say that P is orthogonal to Γ in case each

Pn(x) is orthogonal to Γk for 0 ≤ k ≤ n− 1, i.e. Γk(Pn(x)) = 0 for 0 ≤ k ≤ n− 1.
Since

(4.1) Γk(Pn(x)) =
n∑

j=0

bnjγjk = (BΓ)nk,

we see that P is orthogonal to Γ if and only if BΓ vanishes below the diagonal, or
in other words BΓ is an upper-triangular matrix U , or equivalently Γ = B−1U . We
record this simple fact:

Proposition 4.1 (Orthogonality between a sequence of linear functionals and a
sequence of monic polynomials). Let Γ = (Γk)k≥0 be a sequence of linear functionals
on R[x], with moment matrix Γ; and let P = (Pn(x))n≥0 be a sequence of monic
polynomials, with unit-lower-triangular coefficient matrix B. Then P is orthogonal
to Γ if and only if the matrix BΓ is upper-triangular, or equivalently if there exists
an upper-triangular matrix U such that Γ = B−1U .

We can interpret this result in two ways, depending on whether we start from Γ
or from P:
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Starting from Γ. Suppose that the moment matrix Γ has a factorization Γ = LU
where L is unit-lower-triangular and U is upper-triangular. Then B = L−1 is
the coefficient matrix for a sequence P of monic polynomials that is orthogonal
to Γ. Furthermore, the sequence L = (Lk)k≥0 of linear functionals dual to P
(given by Proposition 3.1) then has moment matrix A = B−1 = L. It follows that

Γk =
∑k

j=0(U
T)kjLj ; and if the diagonal elements of U are invertible, then Lk =∑k

j=0(U
−T)kjΓj . In other words, each Γk is a linear combination of L0, . . . ,Lk;

and if the diagonal elements of U are invertible, then each Lk is a special linear
combination of Γ0, . . . ,Γk, namely, one that makes the first k elements of its moment
sequence zero and the next element 1.

Starting from P. Let P = (Pn(x))n≥0 be a sequence of monic polynomials, with
coefficient matrix B. Then there is a canonically associated sequence of linear
functionals with respect to which P is orthogonal, namely, the dual sequence L =
(Lk)k≥0, with moment matrix A = B−1. But P is also orthogonal with respect to
any sequence Γ = (Γk)k≥0 of linear functionals whose moment matrix Γ is of the
form Γ = AU , where U is any upper-triangular matrix; or in other words, each Γk

is an arbitrary linear combination of L0, . . . ,Lk.

Remark. When R = R, it is often the case in applications that L0 is the moment
functional of a positive measure. But Lk for k ≥ 1 cannot be the moment func-
tional of a positive measure, because the zeroth component of its moment sequence
vanishes but the sequence is not identically zero (since the kth component is 1).
Analyst readers may be interested in the following problem: Given a unit-lower-
triangular matrix A whose zeroth column is the moment sequence of a positive
measure, find an upper-triangular matrix U such that every column of Γ = AU is
the moment sequence of a positive measure; or in other words, find linear combina-
tions Γk of L0, . . . ,Lk that are all moment functionals of positive measures. This
problem of course has trivial solutions: we could take all the Γk to be zero, or to
be equal to L0. But suppose we further insist that all the functionals Γ0,Γ1, . . . be
linearly independent. Then the problem seems to be nontrivial. �

Since Γk is a linear combination of L0, . . . ,Lk whenever P is orthogonal to Γ, it
also follows that the result of Corollary 3.9(b) holds with Lk replaced by Γk:

Corollary 4.2. Let Π = (πnk)n,k≥0 be a unit-lower-Hessenberg matrix, let P =
(Pn(x))n≥0 be the sequence of monic polynomials defined by (3.1)/ (3.2) with initial
condition P0(x) = 1, and let Γ = (Γk)k≥0 be any sequence of linear functionals
such that P is orthogonal to Γ.

If Π is (d, 1)-banded, then Γk(x
�Pm(x)Pn(x)) = 0 whenever k < n− d(�+m) or

k < m− d(�+ n).

In view of the key role played here by the factorization Γ = LU when we start
from Γ, it is now appropriate to recall some simple facts concerning the existence
and uniqueness of LU factorizations for matrices over a commutative ring [66]. Let
us say that a square matrix Γ has a weak LU factorization if Γ = LU where L is
lower-triangular and U is upper-triangular, and an LU factorization if Γ = LU
where L is unit-lower-triangular and U is upper-triangular. We then have [66]:

Proposition 4.3 (LU factorization for matrices over a commutative ring). Let Γ
be an n×n matrix with entries in a commutative ring R, and let Δ1, . . . ,Δn be its
leading principal minors.
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(a) If Γ has a weak LU factorization, then we must have Δ1 | Δ2 | · · · | Δn,
where a | b denotes that a divides b in the ring R.

(b) If Γ has a weak LU factorization in which none of the diagonal elements of
L or U is a zero or a divisor of zero, then none of Δ1, . . . ,Δn is zero or a
divisor of zero.

(c) If Γ has a weak LU factorization in which all of the diagonal elements of L
and U are invertible in R, then Δ1, . . . ,Δn are invertible in R.

Conversely,

(d) If none of Δ1, . . . ,Δn−1 is a zero or a divisor of zero, then Γ has at most one
LU factorization. (In particular this holds if R is an integral domain and
Δ1, . . . ,Δn−1 �= 0.)

(e) If Δ1, . . . ,Δn−1 are invertible in R, then Γ has exactly one LU factoriza-
tion. (In particular this holds if R is a field and Δ1, . . . ,Δn−1 �= 0.)

Since [66] is not yet publicly available, we include a proof of Proposition 4.3 in the
Appendix.

Taking n → ∞ in Proposition 4.3(d,e) and applying it to the situation considered
in Proposition 4.1, we conclude:

Corollary 4.4 (Existence and uniqueness of a sequence of monic polynomials
orthogonal to a given sequence of linear functionals). Let R be a commutative
ring, and let Γ = (Γk)k≥0 be a sequence of linear functionals on R[x], with moment
matrix Γ.

(a) If none of the leading principal minors Δ1,Δ2, . . . of Γ is zero or a divisor of
zero, then there is at most one sequence of monic polynomials orthogonal to
Γ. (In particular this holds if R is an integral domain and Δ1,Δ2, . . . �= 0.)

(b) If all of the leading principal minors Δ1,Δ2, . . . of Γ are invertible in R,
then there is exactly one sequence of monic polynomials orthogonal to Γ.
(In particular this holds if R is a field and Δ1,Δ2, . . . �= 0.)

5. Application to ordinary orthogonal polynomials

Let us begin by showing how the general theory from the preceding section
applies to ordinary orthogonal polynomials.

Fix a linear functional L, with moment sequence � = (�n)n≥0 given by �n =

L(xn). And let us choose Γk to be the k-shift of L: that is, Γk(x
n)

def
= L(xn+k).

Then the moment matrix Γ of the sequence Γ = (Γk)k≥0 of linear functionals
is the Hankel matrix H∞(�) = (�i+j)i,j≥0 associated to the sequence �: that is,
γnk = �n+k. And a sequence P = (Pn(x))n≥0 of monic polynomials is orthogonal
to Γ in case L(xkPn(x)) = 0 for 0 ≤ k ≤ n−1, i.e. precisely when P is a sequence of
monic orthogonal polynomials in the usual sense associated to the linear functional
L [14, Chapter 1]. In particular, by Corollary 4.4(b), such a sequence P exists (and
is unique) whenever R is a field and all the leading principal minors Δ1,Δ2, . . . of
Γ are nonzero.

Let us now relate this to production matrices and classical continued fractions.
It is known [82, Theorem 51.1] [80, p. IV-17, Corollaire 7 and p. V-5, Proposition 1]
that if R is a field and all the leading principal minors Δ1,Δ2, . . . of the Hankel
matrix Γ = H∞(�) are nonzero, then there exists a classical J-fraction that repre-
sents the ordinary generating function of the sequence � that underlies this Hankel
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matrix, i.e.

(5.1)

∞∑
n=0

�nt
n =

1

1− γ0t−
β1t

2

1− γ1t−
β2t

2

1− γ2t−
β3t

2

1− γ3t− · · ·
in the sense of formal power series, with coefficients γ0, γ1, . . . ∈ R and β1, β2, . . . ∈
R \ {0}. In fact, the J-fraction coefficients are connected to the leading principal
minors by

(5.2) βn =
Δn−1Δn+1

Δ2
n

where Δ−1
def
= 1 [this follows from (2.33)], while the γn are given by other determi-

nants involving the moments � [80, Sections IV.3 and V.1].3

This J-fraction has all the properties described in Section 2.3. In particular, it
has a tridiagonal production matrix Π in which πn,n+1 = 1, πnn = γn, πn,n−1 = βn

and πnk = 0 for k < n − 1 or k > n + 1 [cf. (2.25)]. The zeroth column of the
output matrix J = O(Π) is the moment sequence �. Furthermore, Proposition 2.2
tells us that the Hankel matrix Γ = H∞(�) has the LDLT factorization

(5.3) Γ = JDJT,

where J = O(Π) is the unit-lower-triangular matrix of generalized Jacobi–Rogers
polynomials, and D = diag(1, β1, β1β2, . . .). By Proposition 4.3(d,e), this gives the
unique LU factorization of Γ, i.e. L = J and U = DJT. Proposition 4.1 then implies
that there is a unique sequence P of monic polynomials orthogonal to Γ, and its
coefficient matrix is B = J−1 = O(Π)−1. So the LDLT factorization can be written
as

(5.4) Γ = ADAT = B−1DB−T,

where A = O(Π) and B = A−1 = O(Π)−1. (This is the general factorization
Γ = B−1U found in Proposition 4.1, specialized to a case in which the matrix Γ is
symmetric.)

Finally, Proposition 3.2 implies that the orthogonal polynomials obey the three-
term recurrence

(5.5) Pn+1(x) = (x− γn)Pn(x)− βnPn−1(x),

where the coefficients arising in the recurrence are precisely the same ones that arise
in the J-fraction for the moment sequence �. This is, of course, a well-known fact
[82, Theorems 50.1 and 51.1] [80, Chapitre V] [15, Theorem 2.3 and Corollary 2.5]
[86, Section 5.2.1]. And it is likewise well known that the coefficient matrix of
the orthogonal polynomials is B = A−1 = O(Π)−1 [80, p. III-2, Théorème 1]
[86, Proposition 5.12]. But it is pleasing to see all these classical facts come together
as consequences of a simple algebraic theory.

3Please note that Viennot’s Δn [80, p. IV-15, eqn. (17)] is an (n + 1) × (n + 1) determinant,
hence equal to my Δn+1.
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6. Application to multiple orthogonal polynomials

Let us now apply the general theory from the Section 4 to the multiple orthogonal
polynomials of type II along an increasing nearest-neighbor path in Nr.

If L is a linear functional on R[x] and k is a nonnegative integer, we denote by

L�k the k-shift of L: that is, L�k(xn)
def
= L(xn+k).

Now fix an integer r ≥ 1, and fix linear functionals L(1), . . . ,L(r) on R[x]. (In
the analytical setting, we will have R = R, and L(1), . . . ,L(r) will be the moment
functionals associated to the positive measures μ1, . . . , μr.) And let (Pn(x))n∈Nr be
the multiple orthogonal polynomials of type II associated to the linear functionals
L(1), . . . ,L(r), which we here assume to exist.

Now let j1, j2, . . . be an infinite sequence of elements of {1, . . . , r}, and define a

sequence (nk)k≥0 of multi-indices in N
r by nk =

∑k
i=1 eji . They satisfy |nk| = k

and describe an increasing nearest-neighbor path in Nr in which the ith step is

along direction ji. Now let P̂k(x)
def
= Pnk

(x) be the multiple orthogonal polynomial
of type II along this path in Nr. Let mi = (ni−1)ji = (ni)ji − 1 be the number of

indices j1, . . . , ji−1 that equal ji. Then P̂k(x) is orthogonal to the linear functionals
L�1, . . . ,L�k, where the “new” linear functional appearing at stage k is

(6.1) L�k = (L(jk))�mk ,

i.e.

(6.2) L�k(xn) = L(jk)(xn+mk).

Now set Γk = L�,k+1: we then see that the sequence P̂ = (P̂k(x))k≥0 is orthogonal
to the sequence Γ = (Γk)k≥0 in the sense of the preceding section.

On the other hand, we know from the general theory of multiple orthogonal poly-

nomials (Section 2.1) that the sequence P̂ satisfies an (r+2)-term linear recurrence
(2.5) with an (r, 1)-banded unit-lower-Hessenberg matrix Π. It follows from Propo-

sition 3.2 that the coefficient matrix of the sequence P̂ is the unit-lower-triangular
matrix B = O(Π)−1. Proposition 4.1 then implies that Γ = B−1U = O(Π)U for
some upper-triangular matrix U ; this is the LU factorization of Γ. Thus, Γ0 is
proportional to the zeroth column of the output matrix O(Π); and more generally,
each Γk is a linear combination of columns 0, . . . , k of O(Π).

Example 6.1 (Multiple orthogonal polynomials along an axis). If j1, j2, j3, . . . =
j, j, j, . . ., then nk = kej , and we are in the situation of Section 5 with L = L(j) and

Γk = (L(j))�k. Then (P̂k(x))k≥0 is the sequence of ordinary orthogonal polynomials

associated to the linear functional L(j). �

Example 6.2 (Multiple orthogonal polynomials along the stepline). If j1, j2, j3, . . .

= 1, . . . , r, 1, . . . , r, . . ., then (nk)k≥0 is the stepline defined in (2.6), i.e. P̂k(x) =

P̃k(x). The sequence L�1,L�2, . . . is

L(1), . . . ,L(r), (L(1))�1, . . . , (L(r))�1, (L(1))�2, . . . , (L(r))�2, . . . .

In the case r = 2, the formulae for L0 and L1 (but not the higher Lk) can be
found already in the thesis of Drake [27, Theorem 2.4.1]. �
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7. Some Examples

7.1. Bessel Kν weights ⇒ Rising-factorial moments. Two decades ago, Van
Assche and Yakubovich [76] studied the multiple orthogonal polynomials of types I
and II associated to a pair of measures (that is, r = 2) in which the weights
are modified Bessel functions of the second kind, Kν(x) [83, p. 78], multiplied by
powers of x. We shall follow their paper closely, but change the notation to make
the formulae more symmetrical.

For real numbers a1, a2 > 0, let μa1,a2
be the positive measure on [0,∞) given

by

(7.1) dμa1,a2
(x) =

2

Γ(a1)Γ(a2)
x(a1+a2−2)/2Ka1−a2

(2
√
x) dx.

This is symmetric in a1 ↔ a2 because K−ν = Kν . The moments of the measure
μa1,a2

are products of rising factorials:

(7.2)

∫ ∞

0

xn dμa1,a2
(x) =

Γ(a1 + n)Γ(a2 + n)

Γ(a1)Γ(a2)
= an1a

n
2 ,

where an
def
= a(a+ 1) · · · (a+ n− 1) (see e.g. [83, p. 388]).

Now fix a1, a2 > 0 and consider the pair of measures (μ1, μ2) = (μa1,a2
, μa1+1,a2

).
Let Pn(x) be the (monic) multiple orthogonal polynomials of type II associated to

the pair (μ1, μ2), and let P̃n(x) be those polynomials on the stepline:

(7.3) P̃2k(x) = Pk,k(x), P̃2k+1(x) = Pk+1,k(x).

Then Van Assche and Yakubovich [76, Theorem 4] showed that these polynomials
satisfy the four-term recurrence4

(7.4) xP̃n(x) = P̃n+1(x) + πn,nP̃n(x) + πn,n−1P̃n−1(x) + πn,n−2P̃n−2(x),

where

πn,n = a1a2 + (2a1 + 2a2 − 1)n+ 3n2(7.5a)

πn,n−1 =n(a1 + n− 1)(a2 + n− 1)(a1 + a2 + 3n− 2)(7.5b)

πn,n−2 =n(n− 1)(a1 + n− 1)(a1 + n− 2)(a2 + n− 1)(a2 + n− 2).(7.5c)

On the other hand, Pétréolle, Zhu and I have found [56, Section 13], for all
integers m ≥ 1, an m-branched S-fraction for the ratio of contiguous hyperge-
ometric series Fm+1 0 [56, Theorem 13.1]: namely, if we define the polynomials

P
(m)
n (a1, . . . , am; am+1) by

(7.6)

∞∑
n=0

P (m)
n (a1, . . . , am; am+1)t

n :=

Fm+1 0

(
a1, . . . , am+1

—

∣∣∣∣ t)
Fm+1 0

(
a1, . . . , am, am+1 − 1

—

∣∣∣∣ t) ,

then P
(m)
n (a1, . . . , am; am+1) = S

(m)
n (α) where S

(m)
n is the m-Stieltjes–Rogers poly-

nomial and the coefficients α = (αi)i≥m are given by

(7.7) α = a1 · · · am, a2 · · · am+1, a3 · · · am+1(a1+1), a4 · · · am+1(a1+1)(a2+1), . . . .

4The translation from our notation to theirs is ν = a1−a2, α = a2−1, bn = πn,n, cn = πn,n−1,

dn = πn,n−2.
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Note that these α can be interpreted as the products of m successive “pre-alphas”:

(7.8) αpre = a1, . . . , am+1, a1 + 1, . . . , am+1 + 1, a1 + 2, . . . , am+1 + 2, . . . .

In particular, if am+1 = 1, then the denominator series Fm+1 0 on the right-hand

side of (7.6) becomes simply the constant 1, so that P
(m)
n (a1, . . . , am; 1) is simply

a product of rising factorials:

(7.9) P (m)
n (a1, . . . , am; 1) =

m∏
i=1

ani

(this special case is [56, Corollary 13.3]). Specializing further to m = 2, we obtain
from (7.7)

α3k+2 =(a1 + k)(a2 + k)(7.10a)

α3k+3 =(a2 + k)(1 + k)(7.10b)

α3k+4 =(1 + k)(a1 + k + 1).(7.10c)

Then the corresponding production matrix (2.39) [56, Propositions 7.2 and 8.2 and
eqn. (7.8)] is quadridiagonal with πn,n+1 = 1 and

πn,n =α3n + α3n+1 + α3n+2(7.11a)

πn,n−1 =α3n−2α3n + α3n−1α3n + α3n−1α3n+1(7.11b)

πn,n−2 =α3n−4α3n−2α3n(7.11c)

provided that we make the convention α0 = α1 = 0.5 The formulae (7.10) satisfy
this convention, and substituting (7.10) into (7.11) gives precisely (7.5).

In fact, we can go farther and compute the full output matrix O(Π), i.e. compute

the generalized 2-Stieltjes–Rogers polynomials S
(2)
n,k(α) for the coefficients α given

by (7.10). This was not done in [56], but we can do it here:

Proposition 7.1 (Generalized 2-Stieltjes–Rogers polynomials associated to the
rising-factorial moments). The output matrix O(Π) = S(2)(α) corresponding to the
production matrix (7.5) is

(7.12) S
(2)
n,k(α) =

(
n

k

)
(a1 + k)n−k(a2 + k)n−k.

5If α3n and α3n+1 are given by polynomial expressions in n that do not vanish when n = 0,
then πn,n (resp. πn,n−1) is given by the corresponding polynomial expression plus a correction

term proportional to δn,0 (resp. δn,1).
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Proof. Let ank be the right-hand side of (7.12); we need to show that it satisfies
the recurrence (2.8) when the πik are given by (7.5). That is, we need to show that

(
n

k

)
(a1 + k)n−k(a2 + k)n−k

(7.13)

=

(
n− 1

k − 1

)
(a1 + k − 1)n−k(a2 + k − 1)n−k

+

(
n− 1

k

)
(a1 + k)n−k−1(a2 + k)n−k−1[a1a2 + (2a1 + 2a2 − 1)k + 3k2]

+

(
n− 1

k + 1

)
(a1 + k + 1)n−k−2(a2 + k + 1)n−k−2

× [(k + 1)(a1 + k)(a2 + k)(a1 + a2 + 3k + 1)]

+

(
n− 1

k + 2

)
(a1 + k + 2)n−k−3(a2 + k + 2)n−k−3

× [(k + 2)(k + 1)(a1 + k + 1)(a1 + k)(a2 + k + 1)(a2 + k)].

This is a tedious but straightforward computation: it is convenient to pull out from

the right-hand side a factor (n−1)!
(n−k)!(k+2)!(a1+k+2)n−k−3(a2+k+2)n−k−3 and then

evaluate the remaining polynomial expression. �

Remarks.

(1) Our definition (μ1, μ2) = (μa1,a2
, μa1+1,a2

) is manifestly asymmetric between
a1 and a2; nevertheless, the recurrence (7.5) and the output matrix (7.12) are
symmetric in a1 ↔ a2. The reason is that if we define μ′

2 = μa1,a2+1, then μ′
2 is a

linear combination of μ1 and μ2 (and vice versa):

(7.14) a1μa1+1,a2
− a2μa1,a2+1 = (a1 − a2)μa1,a2

.

It follows that (as mentioned in Section 2.1) the pairs (μ1, μ2) and (μ1, μ
′
2) give rise

to the same collection of multiple orthogonal polynomials Pn(x).
Also, the alphas (7.10) are asymmetric in a1 and a2, but they nevertheless give

rise to a production matrix (7.11)/(7.5) and output matrix (7.12) that are sym-
metric in a1 ↔ a2. This is an instance of the nonuniqueness of branched continued
fractions [56, Sections 3, 10.1, 12.1, 12.2.1 and 13].

(2) Explicit expressions for the stepline polynomials P̃n(x) can be found [9,17];
they are hypergeometric polynomials F1 2.

(3) The work of Van Assche and Yakubovich [76] was subsequently generalized
by Kuijlaars and Zhang [44] to general r ≥ 2: here the measures μ1, . . . , μr have
moments that are products of r rising factorials [44, eq. (1.6)], and their densities
are expressed in general in terms of Meijer G-functions [44, eq. (1.4)]. The stepline

polynomials P̃n(x) are hypergeometric polynomials F1 r [44, eq. (3.10) and preceding
(3.11)] and can also be written in terms of Meijer G-functions [44, eq. (3.11)]. The

stepline polynomials P̃n(x) satisfy an (r+2)-term recurrence relation, for which the
coefficients are computed explicitly in [44, Corollary 4.2 and Lemma 4.3]. These
coefficients presumably coincide with the production matrix obtained from the r-
branched S-fraction [56, Corollary 13.3] via [56, Propositions 7.2 and 8.2], but I
have not explicitly checked this for r > 2.



790 ALAN D. SOKAL

(4) More generally, one can consider cases in which the moments of the measures
μ1, . . . , μr are ratios of products of rising factorials, with p factors in the numerator
and q factors in the denominator. Then the ordinary generating function of the
moments of μ1 is a hypergeometric function Fp+1 q with ap+1 = 1, and the recurrence
relation for the stepline polynomials can be compared with the branched continued
fractions in [56, Theorems 14.3, 14.5 and 14.6]. In all these branched continued
fractions, r = max(p, q). Lima and Loureiro have considered the cases (p, q) = (2, 1)
[47] and (p, q) = (2, 2) [48]; and Lima [46] has very recently considered the case of
general (p, q).

�

7.2. Bessel Iα weights ⇒ Laguerre moments. For real numbers α ≥ −1 and
x ≥ 0, define a positive measure μα,x on [0,∞) by

(7.15) dμα,x(y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
e−x F0 1

(
—

α+ 1

∣∣∣∣xy) 1
Γ(α+1)y

αe−y dy for α > −1

x e−(x+y) F0 1

(
—

2

∣∣∣∣xy) dy for α = −1.

(Here the weight function for α = −1 is the limit as α → −1 of the ones for α > −1.)
The moments of μα,x are

(7.16)

∫ ∞

0

yn dμα,x(y) = L(α)
n (x),

where L(α)
n (x) is the monic unsigned Laguerre polynomial

(7.17) L(α)
n (x)

def
= n!L(α)

n (−x) =

n∑
k=0

(
n

k

)
(n+ α)n−kxk

and ρn
def
= ρ(ρ−1) · · · (ρ−n+1). Indeed, this is nothing other than the well-known

integral representation for the Laguerre polynomials [72, Theorem 5.4],
(7.18)

L(α)
n (x) = n!L(α)

n (−x) = e−xx−α/2

∫ ∞

0

yne−yyα/2Iα(2
√
xy) dy for α > −1,

where Iα is the modified Bessel function of the first kind [83, p. 77]

Iα(z) =

∞∑
k=0

(z/2)α+2k

k!Γ(α+ k + 1)
(7.19a)

=
1

Γ(α+ 1)
(z/2)α F0 1

(
—

α+ 1

∣∣∣∣ z2/4),(7.19b)

together with the corresponding limiting formula when α → −1.
Some years ago, Coussement and Van Assche [18] studied the multiple orthog-

onal polynomials of types I and II associated to the pair of measures (μ1, μ2) =
(μα,ξ, μα+1,ξ) where α > −1 and ξ > 0 are fixed parameters. (They actually used

a slightly different normalization, so that their moments are ξnL(α)
n (ξ) rather than

L(α)
n (ξ): see [18, Lemma 1]. Their c is our 1/ξ.) In particular, Coussement and
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Van Assche [18] computed explicitly the four-term recurrence relation for the mul-
tiple orthogonal polynomials of type II along the stepline [18, Theorem 9]. After
translating from their normalization to ours, this four-term recurrence becomes

(7.20) xP̃n(x) = P̃n+1(x) + πn,nP̃n(x) + πn,n−1P̃n−1(x) + πn,n−2P̃n−2(x),

where

πn,n =(2n+ 1 + α) + ξ(7.21a)

πn,n−1 =n(n+ α) + 2nξ(7.21b)

πn,n−2 =n(n− 1)ξ.(7.21c)

This quadridiagonal production matrix Π plays a central role in our forthcoming
work [21] on the coefficientwise Hankel-total positivity of the Laguerre polynomials.
When α = −1 (Lah polynomials) it arises from a 2-branched S-fraction, as found
already in [55]; when α = 0 (rook polynomials) it arises from a modified 2-branched
S-fraction (see [21]).

Coussement and Van Assche [18] also gave an explicit formula for the multiple
orthogonal polynomials of type II along the stepline [18, Theorem 10 and Corol-
lary 2]. After translating from their notation to ours, it is

(7.22) P̃n(x) = (−1)n
n∑

k=0

(
n

k

)
ξn−kL(α)

k (−x).

It is curious that Laguerre polynomials occur here too.

7.3. Final remarks. I suspect that the foregoing examples are just the tip of
the iceberg, and that the connection between multiple orthogonal polynomials,
production matrices and branched continued fractions will be fruitful in both di-
rections. For instance, using known techniques (such as vector Pearson equations
[9, 17, 18, 26, 47, 48, 76]) it may be possible to devise new examples of multiple or-
thogonal polynomials; these will then automatically provide a production matrix
for the sequence of moments of μ1; this production matrix will in turn automat-
ically arise from a branched J-fraction [56, Sections 4–8], and in some cases this
branched J-fraction may arise from contraction of a branched S-fraction [56, Propo-
sitions 7.2 and 7.6]. And conversely, combinatorial or algebraic methods leading
to new production matrices or branched continued fractions may point the way to
new examples of multiple orthogonal polynomials.

Appendix A. LU factorization for matrices over a commutative ring:

Proof of Proposition 4.3

If A is a finite or infinite matrix over a commutative ring R, we denote by Ak its
k × k leading principal submatrix, and by Δk = detAk the corresponding leading
principal minor, with the convention Δ0 = 1.

To prove Proposition 4.3, we will need the following simple fact:

Lemma A.1. Let L = (�ij)
n
i,j=1 be an n× n lower-triangular matrix over a com-

mutative ring R; and assume that none of the diagonal elements �ii is zero or a
divisor of zero. Then for each vector b ∈ Rn, the equation Lx = b has at most one
solution x ∈ Rn.
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Proof. �11x1 = b1 has at most one solution x1, since �11 is neither zero nor a divisor

of zero. Continuing inductively, we see that �iixi = bi −
∑i−1

j=1 �ijxj has at most
one solution xi. �

Proof of Proposition 4.3. (a,b,c) Let A = (aij)
n
i,j=1 be an n×n matrix with entries

in R, and suppose that we have a factorization A = LU where L = (�ij)
n
i,j=1 is

lower-triangular and U = (uij)
n
i,j=1 is upper-triangular. It follows that Ak = LkUk

for all k, and hence that

(A.1) Δk = (detLk)(detUk) = (�11u11)(�22u22) · · · (�kkukk).

This proves (a,b,c).
(d) Now suppose that A = LU where L is unit-lower-triangular. As before we

have Ak = LkUk for all k; and now Δk = u11u22 · · ·ukk. Since by hypothesis
none of Δ1, . . . ,Δn−1 is zero or a divisor of zero, we can conclude that none of
u11, . . . , un−1,n−1 is zero or a divisor of zero.

We now prove uniqueness by induction on n. The base case n = 1 is trivial.
Suppose that the result holds for matrices of size n − 1; we wish to prove it for

A ∈ Rn×n. Write A =

(
An−1 b
cT d

)
,L =

(
Ln−1 0
�T 1

)
and U =

(
Un−1 u
0 un

)
. Then

A = LU says that

An−1 =Ln−1Un−1(A.2a)

b =Ln−1u(A.2b)

cT =�TUn−1(A.2c)

d =�Tu+ un.(A.2d)

By the inductive hypothesis, An−1 has a unique LU factorization Ln−1Un−1; and
as previously noted, none of the diagonal elements of Un−1 is zero or a divisor of
zero. Clearly (A.2b) has the unique solution u = L−1

n−1b. Moreover, Lemma A.1

implies that (A.2c) has at most one solution �T. Then un = d− �Tu is determined
as well. This proves (d).

(e) The existence proof is also by induction on n. The base case n = 1 is trivial;
and for the inductive step we again use (A.2). By the inductive hypothesis, An−1

has a unique LU factorization Ln−1Un−1, and moreover Un−1 is invertible (because
Δn−1 is). Then (A.2)b–d have the unique solution u = L−1

n−1b, �
T = cTU−1

n−1 and

un = d− cTU−1
n−1L

−1
n−1b. �
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Available on-line at http://lacim.uqam.ca/en/les-parutions/

https://mathscinet.ams.org/mathscinet-getitem?mr=1280397
https://mathscinet.ams.org/mathscinet-getitem?mr=2470930
https://mathscinet.ams.org/mathscinet-getitem?mr=2647568
https://mathscinet.ams.org/mathscinet-getitem?mr=2827849
https://mathscinet.ams.org/mathscinet-getitem?mr=3257662
https://mathscinet.ams.org/mathscinet-getitem?mr=4560438
https://mathscinet.ams.org/mathscinet-getitem?mr=4154921
https://mathscinet.ams.org/mathscinet-getitem?mr=4429042
https://mathscinet.ams.org/mathscinet-getitem?mr=1172520
https://mathscinet.ams.org/mathscinet-getitem?mr=1425747
https://mathscinet.ams.org/mathscinet-getitem?mr=3525716
https://mathscinet.ams.org/mathscinet-getitem?mr=1130396
http://oeis.org
http://oeis.org
https://mathscinet.ams.org/mathscinet-getitem?mr=85349
https://mathscinet.ams.org/mathscinet-getitem?mr=4152728
https://mathscinet.ams.org/mathscinet-getitem?mr=4666039
https://mathscinet.ams.org/mathscinet-getitem?mr=3555875
https://mathscinet.ams.org/mathscinet-getitem?mr=1985016
http://lacim.uqam.ca/en/les-parutions/


796 ALAN D. SOKAL
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