An Elementary Proof of Takagi's Theorem on the Differential Composition of Polynomials

Alan D. Sokal

To cite this article: Alan D. Sokal (2022) An Elementary Proof of Takagi's Theorem on the Differential Composition of Polynomials, The American Mathematical Monthly, 129:4, 381-384, DOI: 10.1080/00029890.2022.2027719

To link to this article: https://doi.org/10.1080/00029890.2022.2027719

Published online: 01 Apr 2022.

Submit your article to this journal

Article views: 655

View related articles

View Crossmark data

An Elementary Proof of Takagi＇s Theorem on the Differential Composition of Polynomials

Alan D．Sokal

〇 OPEN ACCESS

Abstract

I give a short and completely elementary proof of Takagi＇s 1921 theorem on the zeros of a composite polynomial $f(d / d z) g(z)$ ．

Many theorems in the analytic theory of polynomials $[\mathbf{2}, \mathbf{8}, \mathbf{1 0}, \mathbf{1 1}]$ are concerned with locating the zeros of composite polynomials．More specifically，let f and g be polynomials（with complex coefficients）and let h be a polynomial formed in some way from f and g ；under the assumption that the zeros of f（respectively，g ）lie in a subset S（respectively，T ）of the complex plane，we wish to deduce that the zeros of h lie in some subset U ．The theorems are distinguished by the nature of the operation defining h ，and the nature of the subsets S, T, U under consideration．

Here we shall be concerned with differential composition：$h(z)=f(d / d z) g(z)$ ，or $h=f(D) g$ for short．In detail，if $f(z)=\sum_{i=1}^{m} a_{i} z^{i}$ and $g(z)=\sum_{j=1}^{n} b_{j} z^{j}$ ，then $h(z)=$ $\sum_{i=1}^{m} a_{i} g^{(i)}(z)$ ；and D denotes the differentiation operator，i．e．，$D g=g^{\prime}$ ．The following important result was found by Takagi［13］in 1921，subsuming many earlier results：${ }^{1}$

Theorem 1 （Takagi）．Let f and g be polynomials with complex coefficients，with $\operatorname{deg} f=m$ and $\operatorname{deg} g=n$ ．Let f have an r－fold zero at the origin $(0 \leq r \leq m)$ ，and let the remaining zeros（with multiplicity）be $\alpha_{1}, \ldots, \alpha_{m-r} \neq 0$ ．Let K be the convex hull of the zeros of g ．Then either $f(D) g$ is identically zero，or its zeros lie in the set $K+\sum_{i=1}^{m-r}[0, n-r] \alpha_{i}^{-1}$ ．

Here we have used the notations $A+B=\{a+b: a \in A$ and $b \in B\}$ and $A B=$ $\{a b: a \in A$ and $b \in B\}$ ．

Takagi＇s proof was based on Grace＇s apolarity theorem［3］，a fundamental but some－ what enigmatic result in the analytic theory of polynomials．${ }^{2}$ This proof is also given in the books of Marden［8，Section 18］，Obrechkoff［10，pp．135－136］，and Rahman

[^0]and Schmeisser [11, Sections 5.3 and 5.4]. Here I give a short and completely elementary proof of Takagi's theorem.

The key step-as Takagi [13] observed-is to understand the case of a degree-1 polynomial $f(z)=z-\alpha$:
Proposition 2 (Takagi). Let g be a polynomial of degree n, and let K be the convex hull of the zeros of g. Let $\alpha \in \mathbb{C}$, and define $h=g^{\prime}-\alpha g$. Then either h is identically zero, or all the zeros of h are contained in K if $\alpha=0$, and in $K+[0, n] \alpha^{-1}$ if $\alpha \neq 0$.

The case $\alpha=0$ is the celebrated theorem of Gauss and Lucas [8, Section 6], [10, Chapter V], and [11, Section 2.1], which is the starting point of the modern analytic theory of polynomials. My proof for general α will be modeled on Cesàro's [1] 1885 proof of the Gauss-Lucas theorem [11, pp. 72-73], with a slight twist to handle the case $\alpha \neq 0$.
Proof of Proposition 2. Clearly, h is identically zero if and only if either (a) $g \equiv 0$ or (b) g is a nonzero constant and $\alpha=0$. Moreover, if g is a nonzero constant and $\alpha \neq 0$, then the zero set of h is empty. So we can assume that $n \geq 1$.

Let $\beta_{1}, \ldots, \beta_{n}$ be the zeros of g (with multiplicity), so that $g(z)=b_{n} \prod_{i=1}^{n}\left(z-\beta_{i}\right)$ with $b_{n} \neq 0$. If $z \notin K$, then $g(z) \neq 0$, and we can consider

$$
\frac{h(z)}{g(z)}=\frac{g^{\prime}(z)-\alpha g(z)}{g(z)}=\sum_{i=1}^{n} \frac{1}{z-\beta_{i}}-\alpha .
$$

If this equals zero, then by taking complex conjugates we obtain

$$
0=\sum_{i=1}^{n} \frac{1}{\bar{z}-\bar{\beta}_{i}}-\bar{\alpha}=\sum_{i=1}^{n} \frac{z-\beta_{i}}{\left|z-\beta_{i}\right|^{2}}-\bar{\alpha},
$$

which can be rewritten as $z=\sum_{i=1}^{n} \lambda_{i} \beta_{i}+\kappa \bar{\alpha}$ where

$$
\lambda_{i}=\frac{\left|z-\beta_{i}\right|^{-2}}{\sum_{j=1}^{n}\left|z-\beta_{j}\right|^{-2}}, \quad \kappa=\frac{1}{\sum_{j=1}^{n}\left|z-\beta_{j}\right|^{-2}} .
$$

Then $\lambda_{i}>0$ and $\sum_{i=1}^{n} \lambda_{i}=1$, so $\sum_{i=1}^{n} \lambda_{i} \beta_{i} \in K$; and of course $\kappa>0$. Moreover, by the Schwarz inequality we have

$$
|\alpha|^{2}=\left|\sum_{i=1}^{n} \frac{1}{z-\beta_{i}}\right|^{2} \leq n \sum_{i=1}^{n}\left|z-\beta_{i}\right|^{-2}=\frac{n}{\kappa},
$$

so $\kappa \leq n|\alpha|^{-2}$. This implies that $\kappa \bar{\alpha} \in[0, n] \alpha^{-1}$ and hence that $z \in K+[0, n] \alpha^{-1}$.
We can now handle polynomials f of arbitrary degree by iterating Proposition 2 :
Proof of Theorem 1. From $f(z)=a_{m}\left(\prod_{i=1}^{m-r}\left(z-\alpha_{i}\right)\right) z^{r}$ it is easy to see that $f(D)=$ $a_{m}\left(\prod_{i=1}^{m-r}\left(D-\alpha_{i}\right)\right) D^{r}$. We first apply D^{r} to g, yielding a polynomial of degree $n-r$ whose zeros also lie in K (by the Gauss-Lucas theorem); then we repeatedly apply (in any order) the factors $D-\alpha_{i}$, using Proposition 2.

Remark. When $\alpha=0$, the zeros of $h=g^{\prime}$ lie in K; so one might expect that when α is small, the zeros of $h=g^{\prime}-\alpha g$ should lie near K. But when α is small and nonzero, the set $K+[0, n] \alpha^{-1}$ arising in Proposition 2 is in fact very large. What is going on here?

Here is the answer: Suppose that $\operatorname{deg} g=n$. When $\alpha=0$, the polynomial $h=g^{\prime}$ has degree $n-1$; but when $\alpha \neq 0$, the polynomial $h=g^{\prime}-\alpha g$ has degree n. So, in order to make a proper comparison of their zeros, we should consider the polynomial g^{\prime} corresponding to the case $\alpha=0$ as also having a zero "at infinity." This zero then moves to a value of order α^{-1} when α is small and nonzero.

This behavior is easily seen by considering the example of a quadratic polynomial $g(z)=z^{2}-\beta^{2}$. Then the zeros of $g^{\prime}-\alpha g$ are

$$
\begin{aligned}
z & =\frac{1 \pm \sqrt{1+\alpha^{2} \beta^{2}}}{\alpha} \\
& =-\frac{\beta^{2}}{2} \alpha+O\left(\alpha^{3}\right), \quad 2 \alpha^{-1}+O(\alpha) .
\end{aligned}
$$

So there really is a zero of order α^{-1}, as Takagi's theorem recognizes.
In the context of Proposition 2, one expects that $g^{\prime}-\alpha g$ has one zero of order α^{-1} and $n-1$ zeros near K (within a distance of order α). More generally, in the context of Theorem 1, one would expect that h has $m-r$ zeros of order α^{-1}, with the remaining zeros near K. It is a very interesting problem - and one that is open, as far as I know - to find strengthenings of Takagi's theorem that exhibit these properties. There is an old result that goes in this direction [8, Corollary 18.1], [11, Corollary 5.4.1(ii)], but it is based on a disc D containing the zeros of g, which might in general be much larger than the convex hull K of the zeros.

Postscript. A few days after finding this proof of Proposition 2, I discovered that an essentially identical argument is buried in a 1961 paper of Shisha and Walsh [12, pp. 127-128 and 147-148] on the zeros of infrapolynomials. I was led to the ShishaWalsh paper by a brief citation in Marden's book [8, pp. 87-88, Exercise 11]. So the proof given here is not new; but it deserves to be better known.

ACKNOWLEDGMENTS. This research was supported in part by U.K. Engineering and Physical Sciences Research Council grant EP/N025636/1.

REFERENCES

[1] Cesàro, E. (1885). Solution de la question 1338. Nouvelles Annales de Mathématiques (3^{e} série). 4: 328-330. www.numdam.org/article/NAM_1885_3_4__328_0.pdf
[2] Dieudonné, J. (1938). La Théorie Analytique des Polynômes d'une Variable (à Coefficients Quelconques). Mémorial des Sciences Mathématiques, fascicule 93. Paris: Gauthier-Villars. www.numdam.org/ issue/MSM_1938_-93__1_0.pdf
[3] Grace, J. H. (1902). The zeros of a polynomial. Proc. Cambridge Philos. Soc. 11: 352-357.
[4] Honda, K. (1975). Teiji Takagi: A biography - on the 100th anniversary of his birth. Comment. Math. Univ. St. Paul. 24(2): 141-167. doi.org/10.14992/00010342
[5] Iyanaga, S. (1990). On the life and works of Teiji Takagi, in [14, pp. 354-376].
[6] Iyanaga, S. (2001). Memories of Professor Teiji Takagi. In: Miyake, K., ed. Class Field Theory - Its Centenary and Prospect. Advanced Studies in Pure Mathematics, Vol. 30. Tokyo: Mathematical Society of Japan, pp. 1-11.
[7] Kaplan, P. (1997). Takagi Teiji et la découverte de la théorie du corps de classes. Ebisu - Études Japonaises. 16: 5-11. www.persee.fr/doc/ebisu_1340-3656_1997_num_16_1_973
[8] Marden, M. (1966). Geometry of Polynomials, 2nd ed. Providence, RI: American Mathematical Society. (First edition 1949.)
[9] Miyake, K. (2007). Teiji Takagi, founder of the Japanese school of modern mathematics. Japanese J. Math. 2(1): 151-164.
[10] Obrechkoff, N. (2003). Zeros of Polynomials. Sofia: Marin Drinov Academic Publishing House. (Originally published in Bulgarian: Obreškov, N. (1963). Nuli na Polinomite. Sofia: Izdat. Bǔlgar. Akad. Nauk.)
[11] Rahman, Q. I., Schmeisser, G. (2002). Analytic Theory of Polynomials. Oxford: Clarendon Press.
[12] Shisha, O., Walsh, J. L. (1961). The zeros of infrapolynomials with some prescribed coefficients. J. Analyse Math. 9: 111-160.
[13] Takagi, T. (1921). Note on the algebraic equations. Proc. Phys.-Math. Soc. Japan. 3(11): 175-179. doi.org/10.11429/ppmsj1919.3.11_175 (Reprinted in [14, pp. 175-178].)
[14] Takagi, T. (1990). Collected Papers, 2nd ed. Edited and with a preface by S. Iyanaga, K. Iwasawa, K. Kodaira, and K. Yosida. Tokyo: Springer-Verlag. (Reprinted by Springer-Verlag, Heidelberg, 2014.)

Department of Mathematics, University College London, London WCIE 6BT, UK
and Department of Physics, New York University, New York, NY 10003, USA
sokal@nyu.edu

A Generalization of Euler's Limit

Euler's limit is defined as $\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n}=e$. We establish a generalization of this limit in the following proposition.
Proposition. Let A_{n} be a strictly increasing sequence of positive numbers satisfying the asymptotic formula $A_{n+1} \sim A_{n}$, and let $d_{n}=A_{n+1}-A_{n}$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{A_{n+1}}{A_{n}}\right)^{\frac{A_{n}}{d_{n}}}=e \tag{1}
\end{equation*}
$$

Proof. Let us consider the function $\ln x$ on the interval $\left[A_{n}, A_{n+1}\right]$ for all $n \in \mathbb{N}$. By the mean value theorem, we have $\ln A_{n+1}-\ln A_{n}=\frac{1}{c}\left(A_{n+1}-A_{n}\right)$ for some c with $A_{n}<c<A_{n+1}$. Hence (since $\frac{1}{A_{n+1}}<\frac{1}{c}<\frac{1}{A_{n}}$)

$$
\frac{A_{n+1}-A_{n}}{A_{n+1}}<\ln A_{n+1}-\ln A_{n}<\frac{A_{n+1}-A_{n}}{A_{n}} .
$$

Since $A_{n+1} \sim A_{n}$, we have

$$
1 \leftarrow \frac{A_{n}}{A_{n+1}}<\frac{\ln A_{n+1}-\ln A_{n}}{\frac{A_{n+1}-A_{n}}{A_{n}}}<1 ;
$$

that is,

$$
\lim _{n \rightarrow \infty} \ln \left(\frac{A_{n+1}}{A_{n}}\right)^{\frac{A_{n}}{A_{n+1}-A_{n}}}=1
$$

This completes the proof.
It can be seen that generalization (1) gives Euler's limit when $A_{n}=n$.
-Submitted by Reza Farhadian, Razi University, Iran
doi.org/10.1080/00029890.2022.2027718
MSC: Primary 11Y60; 40A05, Secondary 11B83; 11B05

[^0]: ${ }^{1}$ See Honda［4］，Iyanaga［5，6］，Kaplan［7］，and Miyake［9］for biographies of Teiji Takagi（高木貞治，Tak－ agi Teiji，1875－1960）．Takagi＇s papers published in languages other than Japanese（namely，English，German， and French）have been collected in［14］．
 ${ }^{2}$ For discussion of Grace＇s apolarity theorem and its equivalents－notably Walsh＇s coincidence theorem and the Schur－Szegő composition theorem－see Marden［8，Chapter IV］，Obrechkoff［10，Chapter VII］，and especially Rahman and Schmeisser［11，Chapter 3］．
 doi．org／10．1080／00029890．2022．2027719
 MSC：Primary 30 C 15 ，Primary 30 C 10
 （c） 2022 The Author（s）．Published with license by Taylor \＆Francis Group，LLC．
 This is an Open Access article distributed under the terms of the Creative Commons Attribution License （http：／／creativecommons．org／licenses／by／4．0／），which permits unrestricted use，distribution，and reproduction in any medium，provided the original work is properly cited．

