UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Browse by UCL people

Group by: Type | Date
Jump to: Article
Number of items: 35.

Article

Burman, E; Feizmohammadi, A; Muench, A; Oksanen, L; (2021) Space time stabilized finite element methods for a unique continuation problem subject to the wave equation. ESAIM: Mathematical Modelling and Numerical Analysis , 55 S969-S991. 10.1051/m2an/2020062. Green open access
file

Burman, Erik; Nechita, Mihai; Oksanen, Lauri; (2022) A stabilized finite element method for inverse problems subject to the convection–diffusion equation. II: convection-dominated regime. Numerische Mathematik , 150 pp. 769-801. 10.1007/s00211-022-01268-1. Green open access
file

Burman, E; Feizmohammadi, A; Oksanen, L; (2020) A finite element data assimilation method for the wave equation. Mathematics of Computation , 89 (2020) 10.1090/mcom/3508. Green open access
file

Burman, E; Feizmohammadi, A; Oksanen, L; (2020) A Fully Discrete Numerical Control Method for the Wave Equation. SIAM Journal on Control and Optimization , 58 (3) pp. 1519-1546. 10.1137/19M1249424. Green open access
file

Burman, E; Ish-Horowicz, J; Oksanen, L; (2018) Fully discrete finite element data assimilation method for the heat equation. ESAIM: Mathematical Modelling and Numerical Analysis , 52 (5) pp. 2065-2082. 10.1051/m2an/2018030. Green open access
file

Burman, E; Larson, MG; Oksanen, L; (2018) Primal-Dual Mixed Finite Element Methods for the Elliptic Cauchy Problem. SIAM Journal on Numerical Analysis , 56 (6) pp. 3480-3509. 10.1137/17M1163335. Green open access
file

Burman, E; Nechita, M; Oksanen, L; (2019) A stabilized finite element method for inverse problems subject to the convection-diffusion equation. I: diffusion-dominated regime. Numerische Mathematik 10.1007/s00211-019-01087-x. (In press). Green open access
file

Burman, E; Nechita, M; Oksanen, L; (2018) Unique continuation for the Helmholtz equation using stabilized finite element methods. Journal des Mathematiques Pures et Appliquees 10.1016/j.matpur.2018.10.003. (In press). Green open access
file

Burman, E; Oksanen, L; (2018) Weakly Consistent Regularisation Methods for Ill-Posed Problems. Numerical Methods for PDEs , 15 pp. 171-202. 10.1007/978-3-319-94676-4_7. Green open access
file

Burman, E; Oksanen, L; (2018) Data assimilation for the heat equation using stabilized finite element methods. Numerische Mathematik 10.1007/s00211-018-0949-3. (In press). Green open access
file

Cârstea, CAI; Nakamura, G; Oksanen, L; (2020) Uniqueness for the inverse boundary value problem of piecewise homogeneous anisotropic elasticity in the time domain. Transactions of the American Mathematical Society , 373 (5) pp. 3423-3443. 10.1090/tran/8014. Green open access
file

Chen, X; Lassas, M; Oksanen, L; Paternain, GP; (2021) Inverse Problem for the Yang–Mills Equations. Communications in Mathematical Physics , 384 pp. 1187-1225. 10.1007/s00220-021-04006-0. Green open access
file

Chervova, O; Oksanen, L; (2016) Time reversal method with stabilizing boundary conditions for Photoacoustic tomography. Inverse Problems , 32 (12) , Article 125004. 10.1088/0266-5611/32/12/125004. Green open access
file

de Hoop, MV; Kepley, P; Oksanen, L; (2018) Recovery of a Smooth Metric via Wave Field and Coordinate Transformation Reconstruction. SIAM Journal on Applied Mathematics , 78 (4) pp. 1931-1953. 10.1137/17M1151481. Green open access
file

De Hoop, MV; Kepley, P; Oksanen, L; (2018) An Exact Redatuming Procedure for the Inverse Boundary Value Problem for the Wave Equation. SIAM Journal on Applied Mathematics , 78 (1) pp. 171-192. 10.1137/16M1106729. Green open access
file

de Hoop, MV; Kepley, P; Oksanen, L; (2016) On the Construction of Virtual Interior Point Source Travel Time Distances from the Hyperbolic Neumann-to-Dirichlet Map. SIAM Journal On Applied Mathematics , 76 (2) pp. 805-825. 10.1137/15M1033010. Green open access
file

de Hoop, MV; Oksanen, L; Tittelfitz, J; (2016) Uniqueness for a seismic inverse source problem modeling a subsonic rupture. Communications in Partial Differential Equations , 41 (12) pp. 1895-1917. 10.1080/03605302.2016.1240183. Green open access
file

Feizmohammadi, A; Ilmavirta, J; Oksanen, L; (2020) The Light Ray Transform in Stationary and Static Lorentzian Geometries. The Journal of Geometric Analysis 10.1007/s12220-020-00409-y. Green open access
file

Feizmohammadi, A; Oksanen, L; (2020) Recovery of zeroth order coefficients in non-linear wave equations. Journal of the Institute of Mathematics of Jussieu 10.1017/S1474748020000122. (In press). Green open access
file

Feizmohammadi, A; Oksanen, L; (2020) An inverse problem for a semi-linear elliptic equation in Riemannian geometries. Journal of Differential Equations , 269 (6) pp. 4683-4719. 10.1016/j.jde.2020.03.037. Green open access
file

Helin, T; Lassas, M; Oksanen, L; Saksala, T; (2018) Correlation based passive imaging with a white noise source. Journal de Mathématiques Pures et Appliquées , 116 pp. 132-160. 10.1016/j.matpur.2018.05.001. Green open access
file

Kian, Y; Kurylev, Y; Lassas, M; Oksanen, L; (2019) Unique recovery of lower order coefficients for hyperbolic equations from data on disjoint sets. Journal of Differential Equations , 267 (4) pp. 2210-2238. 10.1016/j.jde.2019.03.008. Green open access
file

Kian, Y; Morancey, M; Oksanen, L; (2019) Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control and Related Fields , 9 (2) pp. 289-312. 10.3934/mcrf.2019015. Green open access
file

Kian, Y; Oksanen, L; (2019) Recovery of Time-Dependent Coefficient on Riemannian Manifold for Hyperbolic Equations. International Mathematics Research Notices , 2019 (16) pp. 5087-5126. 10.1093/imrn/rnx263. Green open access
file

Kian, Y; Oksanen, L; Soccorsi, E; Yamamoto, M; (2018) Global uniqueness in an inverse problem for time fractional diffusion equations. Journal of Differential Equations , 264 (2) pp. 1146-1170. 10.1016/j.jde.2017.09.032. Green open access
file

Korpela, J; Lassas, M; Oksanen, L; (2019) Discrete regularization and convergence of the inverse problem for 1+1 dimensional wave equation. Inverse Problems and Imaging , 13 (3) pp. 575-596. 10.3934/ipi.2019027. Green open access
file

Korpela, J; Lassas, M; Oksanen, L; (2016) Regularization strategy for an inverse problem for a 1+1 dimensional wave equation. Inverse Problems , 32 (6) , Article 065001. 10.1088/0266-5611/32/6/065001. Green open access
file

Kurylev, Y; Lassas, M; Oksanen, L; Uhlmann, G; (2022) Inverse problem for Einstein-scalar field equations. Duke Mathematical Journal , 171 (16) pp. 3215-3282. 10.1215/00127094-2022-0064. Green open access
file

Kurylev, Y; Lassas, M; Oksanen, L; (2017) Hyperbolic inverse problem with data on disjoint sets. Inverse Problems Green open access
file

Kurylev, Y; Oksanen, L; Paternain, GP; (2018) Inverse problems for the connection Laplacian. Journal of Differential Geometry , 110 (3) pp. 457-494. 10.4310/jdg/1542423627. Green open access
file

Lassas, M; Oksanen, L; Stefanov, P; Uhlmann, G; (2020) The Light Ray Transform on Lorentzian Manifolds. Communications in Mathematical Physics 10.1007/s00220-020-03703-6. (In press). Green open access
file

Lassas, M; Oksanen, L; Stefanov, P; Uhlmann, G; (2018) On the Inverse Problem of Finding Cosmic Strings and Other Topological Defects. Communications in Mathematical Physics , 357 (2) pp. 569-595. 10.1007/s00220-017-3029-0. Green open access
file

Lassas, M; Oksanen, L; Yang, Y; (2016) Determination of the spacetime from local time measurements. Mathematische Annalen , 365 (1) pp. 271-307. 10.1007/s00208-015-1286-9. Green open access
file

Liu, S; Oksanen, L; (2016) A Lipschitz stable reconstruction formula for the inverse problem for the wave equation. Transactions of the American Mathematical Society , 368 (1) pp. 319-335. 10.1090/tran/6332. Green open access
file

Oksanen, L; Salo, M; (2020) Inverse problems in imaging and engineering science. Mathematics in Engineering , 2 (2) pp. 287-289. 10.3934/mine.2020014. Green open access
file

This list was generated on Sun Jan 11 04:51:29 2026 GMT.