Browse by UCL people
Group by: Type | Date
Jump to: Article
Number of items: 35.
Article
Burman, E;
Feizmohammadi, A;
Muench, A;
Oksanen, L;
(2021)
Space time stabilized finite element methods for a unique continuation problem subject to the wave equation.
ESAIM: Mathematical Modelling and Numerical Analysis
, 55
S969-S991.
10.1051/m2an/2020062.
|
Burman, Erik;
Nechita, Mihai;
Oksanen, Lauri;
(2022)
A stabilized finite element method for inverse problems subject to the convection–diffusion equation. II: convection-dominated regime.
Numerische Mathematik
, 150
pp. 769-801.
10.1007/s00211-022-01268-1.
|
Burman, E;
Feizmohammadi, A;
Oksanen, L;
(2020)
A finite element data assimilation method for the wave equation.
Mathematics of Computation
, 89
(2020)
10.1090/mcom/3508.
|
Burman, E;
Feizmohammadi, A;
Oksanen, L;
(2020)
A Fully Discrete Numerical Control Method for the Wave Equation.
SIAM Journal on Control and Optimization
, 58
(3)
pp. 1519-1546.
10.1137/19M1249424.
|
Burman, E;
Ish-Horowicz, J;
Oksanen, L;
(2018)
Fully discrete finite element data assimilation method for the heat equation.
ESAIM: Mathematical Modelling and Numerical Analysis
, 52
(5)
pp. 2065-2082.
10.1051/m2an/2018030.
|
Burman, E;
Larson, MG;
Oksanen, L;
(2018)
Primal-Dual Mixed Finite Element Methods for the Elliptic Cauchy Problem.
SIAM Journal on Numerical Analysis
, 56
(6)
pp. 3480-3509.
10.1137/17M1163335.
|
Burman, E;
Nechita, M;
Oksanen, L;
(2019)
A stabilized finite element method for inverse problems subject to the convection-diffusion equation. I: diffusion-dominated regime.
Numerische Mathematik
10.1007/s00211-019-01087-x.
(In press).
|
Burman, E;
Nechita, M;
Oksanen, L;
(2018)
Unique continuation for the Helmholtz equation using stabilized finite element methods.
Journal des Mathematiques Pures et Appliquees
10.1016/j.matpur.2018.10.003.
(In press).
|
Burman, E;
Oksanen, L;
(2018)
Weakly Consistent Regularisation Methods for Ill-Posed Problems.
Numerical Methods for PDEs
, 15
pp. 171-202.
10.1007/978-3-319-94676-4_7.
|
Burman, E;
Oksanen, L;
(2018)
Data assimilation for the heat equation using stabilized finite element methods.
Numerische Mathematik
10.1007/s00211-018-0949-3.
(In press).
|
Cârstea, CAI;
Nakamura, G;
Oksanen, L;
(2020)
Uniqueness for the inverse boundary value problem of piecewise homogeneous anisotropic elasticity in the time domain.
Transactions of the American Mathematical Society
, 373
(5)
pp. 3423-3443.
10.1090/tran/8014.
|
Chen, X;
Lassas, M;
Oksanen, L;
Paternain, GP;
(2021)
Inverse Problem for the Yang–Mills Equations.
Communications in Mathematical Physics
, 384
pp. 1187-1225.
10.1007/s00220-021-04006-0.
|
Chervova, O;
Oksanen, L;
(2016)
Time reversal method with stabilizing boundary conditions for Photoacoustic tomography.
Inverse Problems
, 32
(12)
, Article 125004. 10.1088/0266-5611/32/12/125004.
|
de Hoop, MV;
Kepley, P;
Oksanen, L;
(2018)
Recovery of a Smooth Metric via Wave Field and Coordinate Transformation Reconstruction.
SIAM Journal on Applied Mathematics
, 78
(4)
pp. 1931-1953.
10.1137/17M1151481.
|
De Hoop, MV;
Kepley, P;
Oksanen, L;
(2018)
An Exact Redatuming Procedure for the Inverse Boundary Value Problem for the Wave Equation.
SIAM Journal on Applied Mathematics
, 78
(1)
pp. 171-192.
10.1137/16M1106729.
|
de Hoop, MV;
Kepley, P;
Oksanen, L;
(2016)
On the Construction of Virtual Interior Point Source Travel Time Distances from the Hyperbolic Neumann-to-Dirichlet Map.
SIAM Journal On Applied Mathematics
, 76
(2)
pp. 805-825.
10.1137/15M1033010.
|
de Hoop, MV;
Oksanen, L;
Tittelfitz, J;
(2016)
Uniqueness for a seismic inverse source problem modeling a subsonic rupture.
Communications in Partial Differential Equations
, 41
(12)
pp. 1895-1917.
10.1080/03605302.2016.1240183.
|
Feizmohammadi, A;
Ilmavirta, J;
Oksanen, L;
(2020)
The Light Ray Transform in Stationary and Static Lorentzian Geometries.
The Journal of Geometric Analysis
10.1007/s12220-020-00409-y.
|
Feizmohammadi, A;
Oksanen, L;
(2020)
Recovery of zeroth order coefficients in non-linear wave equations.
Journal of the Institute of Mathematics of Jussieu
10.1017/S1474748020000122.
(In press).
|
Feizmohammadi, A;
Oksanen, L;
(2020)
An inverse problem for a semi-linear elliptic equation in Riemannian geometries.
Journal of Differential Equations
, 269
(6)
pp. 4683-4719.
10.1016/j.jde.2020.03.037.
|
Helin, T;
Lassas, M;
Oksanen, L;
Saksala, T;
(2018)
Correlation based passive imaging with a white noise source.
Journal de Mathématiques Pures et Appliquées
, 116
pp. 132-160.
10.1016/j.matpur.2018.05.001.
|
Kian, Y;
Kurylev, Y;
Lassas, M;
Oksanen, L;
(2019)
Unique recovery of lower order coefficients for hyperbolic equations from data on disjoint sets.
Journal of Differential Equations
, 267
(4)
pp. 2210-2238.
10.1016/j.jde.2019.03.008.
|
Kian, Y;
Morancey, M;
Oksanen, L;
(2019)
Application of the boundary control method to partial data Borg-Levinson inverse spectral problem.
Mathematical Control and Related Fields
, 9
(2)
pp. 289-312.
10.3934/mcrf.2019015.
|
Kian, Y;
Oksanen, L;
(2019)
Recovery of Time-Dependent Coefficient on Riemannian Manifold for Hyperbolic Equations.
International Mathematics Research Notices
, 2019
(16)
pp. 5087-5126.
10.1093/imrn/rnx263.
|
Kian, Y;
Oksanen, L;
Soccorsi, E;
Yamamoto, M;
(2018)
Global uniqueness in an inverse problem for time fractional diffusion equations.
Journal of Differential Equations
, 264
(2)
pp. 1146-1170.
10.1016/j.jde.2017.09.032.
|
Korpela, J;
Lassas, M;
Oksanen, L;
(2019)
Discrete regularization and convergence of the inverse problem for 1+1 dimensional wave equation.
Inverse Problems and Imaging
, 13
(3)
pp. 575-596.
10.3934/ipi.2019027.
|
Korpela, J;
Lassas, M;
Oksanen, L;
(2016)
Regularization strategy for an inverse problem for a 1+1 dimensional wave equation.
Inverse Problems
, 32
(6)
, Article 065001. 10.1088/0266-5611/32/6/065001.
|
Kurylev, Y;
Lassas, M;
Oksanen, L;
Uhlmann, G;
(2022)
Inverse problem for Einstein-scalar field equations.
Duke Mathematical Journal
, 171
(16)
pp. 3215-3282.
10.1215/00127094-2022-0064.
|
Kurylev, Y;
Lassas, M;
Oksanen, L;
(2017)
Hyperbolic inverse problem with data on disjoint sets.
Inverse Problems
|
Kurylev, Y;
Oksanen, L;
Paternain, GP;
(2018)
Inverse problems for the connection Laplacian.
Journal of Differential Geometry
, 110
(3)
pp. 457-494.
10.4310/jdg/1542423627.
|
Lassas, M;
Oksanen, L;
Stefanov, P;
Uhlmann, G;
(2020)
The Light Ray Transform on Lorentzian Manifolds.
Communications in Mathematical Physics
10.1007/s00220-020-03703-6.
(In press).
|
Lassas, M;
Oksanen, L;
Stefanov, P;
Uhlmann, G;
(2018)
On the Inverse Problem of Finding Cosmic Strings and Other Topological Defects.
Communications in Mathematical Physics
, 357
(2)
pp. 569-595.
10.1007/s00220-017-3029-0.
|
Lassas, M;
Oksanen, L;
Yang, Y;
(2016)
Determination of the spacetime from local time measurements.
Mathematische Annalen
, 365
(1)
pp. 271-307.
10.1007/s00208-015-1286-9.
|
Liu, S;
Oksanen, L;
(2016)
A Lipschitz stable reconstruction formula for the inverse problem for the wave equation.
Transactions of the American Mathematical Society
, 368
(1)
pp. 319-335.
10.1090/tran/6332.
|
Oksanen, L;
Salo, M;
(2020)
Inverse problems in imaging and engineering science.
Mathematics in Engineering
, 2
(2)
pp. 287-289.
10.3934/mine.2020014.
|