UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Quantum Computation Beyond the Unitary Circuit Model

Usher, NB; (2017) Quantum Computation Beyond the Unitary Circuit Model. Doctoral thesis , UCL (University College London). Green open access

[thumbnail of Usher_ID_PhD_MainThesis2.pdf]
Preview
Text
Usher_ID_PhD_MainThesis2.pdf

Download (1MB) | Preview

Abstract

This thesis considers various paradigms of quantum computation in an attempt to understand the nature of the underlying physics. A standard approach is to consider unitary computation on pure input states, such that the outcome of the computation is determined by single computational basis measurement on the output state. It has been shown that there exists equivalent models of computation, such as measurement based quantum computing (MBQC), which provide insight into the role of entanglement and measurement. Furthermore, constraining or relaxing available resources can directly impacts the power of the computation, allowing one to gauge their role in the process. Here, we first extend known constructions such as Matrix Product States, MBQC and the oneclean qubit model to a mixed state formalism, in an attempt to develop computational models where noise acting on the physical resources, as might be experienced in laboratory settings, may be mapped to logical noise on the computation. Next, we introduce Measurement-Based Classical Computing, an essentially classical model of computation, wherein the complexity hard wired into probability distributions generated via quantum means yields surprising non classical results. Finally, we consider postselection the ability to discard displeasing measurement outcomes and argue that it may be used in a tame way, which does not provide a dramatic increase in computational power. From here, we develop a new Hamiltonian, based on a circuit to Hamiltonian construction, presenting evidence of QMA-hardness.

Type: Thesis (Doctoral)
Title: Quantum Computation Beyond the Unitary Circuit Model
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/1559869
Downloads since deposit
1,183Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item