UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Assessing Microstructural Substrates of White Matter Abnormalities: A Comparative Study Using DTI and NODDI

Timmers, I; Roebroeck, A; Bastiani, M; Jansma, B; Rubio-Gozalbo, E; Zhang, H; (2016) Assessing Microstructural Substrates of White Matter Abnormalities: A Comparative Study Using DTI and NODDI. PLoS One , 11 (12) 10.1371/journal.pone.0167884. Green open access

[thumbnail of journal.pone.0167884.pdf]
Preview
Text
journal.pone.0167884.pdf - Published Version

Download (3MB) | Preview

Abstract

Neurite orientation dispersion and density imaging (NODDI) enables more specific characterization of tissue microstructure by estimating neurite density (NDI) and orientation dispersion (ODI), two key contributors to fractional anisotropy (FA). The present work compared NODDI- with diffusion tensor imaging (DTI)-derived indices for investigating white matter abnormalities in a clinical sample. We assessed the added value of NODDI parameters over FA, by contrasting group differences identified by both models. Diffusion-weighted images with multiple shells were acquired in a group of 8 healthy controls and 8 patients with an inherited metabolic disease. Both standard DTI and NODDI analyses were performed. Tract based spatial statistics (TBSS) was used for group inferences, after which overlap and unique contributions across different parameters were evaluated. Results showed that group differences in NDI and ODI were complementary, and together could explain much of the FA results. Further, compared to FA analysis, NDI and ODI gave a pattern of results that was more regionally specific and were able to capture additional discriminative voxels that FA failed to identify. Finally, ODI from single-shell NODDI analysis, but not NDI, was found to reproduce the group differences from the multi-shell analysis. To conclude, by using a clinically feasible acquisition and analysis protocol, we demonstrated that NODDI is of added value to standard DTI, by revealing specific microstructural substrates to white matter changes detected with FA. As the (simpler) DTI model was more sensitive in identifying group differences, NODDI is recommended to be used complementary to DTI, thereby adding greater specificity regarding microstructural underpinnings of the differences. The finding that ODI abnormalities can be identified reliably using single-shell data may allow the retrospective analysis of standard DTI with NODDI.

Type: Article
Title: Assessing Microstructural Substrates of White Matter Abnormalities: A Comparative Study Using DTI and NODDI
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pone.0167884
Publisher version: http://dx.doi.org/10.1371/journal.pone.0167884
Language: English
Additional information: © 2016 Timmers et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Keywords: Science & Technology, Multidisciplinary Sciences, Science & Technology - Other Topics, NEURITE ORIENTATION DISPERSION, MULTISHELL DIFFUSION MRI, HUMAN BRAIN, CLASSIC GALACTOSEMIA, MULTIPLE-SCLEROSIS, ALZHEIMERS-DISEASE, DENSITY, CHILDREN, REGISTRATION, DISORDERS
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/1534846
Downloads since deposit
Loading...
74Downloads
Download activity - last month
Loading...
Download activity - last 12 months
Loading...
Downloads by country - last 12 months
Loading...

Archive Staff Only

View Item View Item