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Abstract

Neurite orientation dispersion and density imaging (NODDI) enables more specific charac-

terization of tissue microstructure by estimating neurite density (NDI) and orientation disper-

sion (ODI), two key contributors to fractional anisotropy (FA). The present work compared

NODDI- with diffusion tensor imaging (DTI)-derived indices for investigating white matter

abnormalities in a clinical sample. We assessed the added value of NODDI parameters over

FA, by contrasting group differences identified by both models. Diffusion-weighted images

with multiple shells were acquired in a group of 8 healthy controls and 8 patients with an

inherited metabolic disease. Both standard DTI and NODDI analyses were performed. Tract

based spatial statistics (TBSS) was used for group inferences, after which overlap and

unique contributions across different parameters were evaluated. Results showed that

group differences in NDI and ODI were complementary, and together could explain much of

the FA results. Further, compared to FA analysis, NDI and ODI gave a pattern of results that

was more regionally specific and were able to capture additional discriminative voxels that

FA failed to identify. Finally, ODI from single-shell NODDI analysis, but not NDI, was found

to reproduce the group differences from the multi-shell analysis. To conclude, by using a

clinically feasible acquisition and analysis protocol, we demonstrated that NODDI is of

added value to standard DTI, by revealing specific microstructural substrates to white matter

changes detected with FA. As the (simpler) DTI model was more sensitive in identifying

group differences, NODDI is recommended to be used complementary to DTI, thereby add-

ing greater specificity regarding microstructural underpinnings of the differences. The find-

ing that ODI abnormalities can be identified reliably using single-shell data may allow the

retrospective analysis of standard DTI with NODDI.
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Introduction

Diffusion-weighted imaging (DWI) can be used in vivo to assess properties and potential abnor-

malities of tissue microstructure. A variety of parameters can be estimated by measuring the dif-

fusion of water, exploiting the fact that the diffusion is influenced by tissue microstructure. A

variety of models are used to model water diffusion. Widely used–perhaps even the default

model- is the single compartment diffusion tensor model [1], with fractional anisotropy (FA) as

its most commonly used parameter. This straightforward marker has been studied in the context

of brain development and aging [2], and has been found to be reduced in numerous neurologi-

cal and neurodegenerative diseases [3,4]. Reductions in FA have been linked to axonal degenera-

tion (e.g., in amyotrophic lateral sclerosis, ALS [5]), to myelin breakdown (e.g., in multiple

sclerosis, MS [6]), or to a general state of decreased white matter integrity. Although FA is a sen-

sitive measure, it is inherently non-specific [7]. A reduction in FA could be caused by reduced

neurite density, increased dispersion of orientation, and several other factors. Related markers

derived from the eigenvalues of the diffusion tensor are radial (perpendicular, d?) and axial

(parallel, d||) diffusivity (RD and AD, respectively), and mean diffusivity (MD). It has been sug-

gested that changes in RD reflect de/dysmyelination [8], while AD changes are more related to

axonal damage [9], but the interpretation of these markers has been a topic of controversy [10].

Recently, neurite orientation dispersion and density imaging (NODDI) was developed to

enable more specific characterisation of tissue microstructure using a clinically feasible proto-

col [11]. NODDI distinguishes three tissue compartments (intra-, extra-neurite, and cerebral

spinal fluid—CSF) that are each modelled in a biologically informed manner, enabling several

parameters to be estimated and analysed individually. Two main resulting indices are neurite

density (NDI) and orientation dispersion (ODI). Measures of density and orientation disper-

sion in the brain have shown great correspondence to histological measures (i.e., neurite den-

sity to optical myelin staining intensity [12] and orientation dispersion to quantitative Golgi

analysis [13]). Abnormalities in the morphology of neurites have been observed in diseases.

For instance, axonal loss was found in MS as reflected by reductions in axonal density and

area, while the WM appeared normal [14]. The correlation between FA and axonal density,

however, is relatively weak. NDI, as a more specific estimate of density, might therefore be a

more sensitive marker of axon pathology than FA.

In vivo quantification of neurite density and orientation dispersion has been shown in previ-

ous studies as well [11,15]. Recently, NODDI has been demonstrated to be useful in several

applications, ranging from localisation of malformations, to characterisation of WM and GM in

diseases and normal development [16–26]. Although NODDI has been thoroughly described,

tested and applied, to our knowledge group inferences based on NODDI have not been explic-

itly compared to group inferences resulting from standard DTI. NODDI enables more specific

quantification of microstructure compared to DTI, but it is very important and relevant to

explicitly investigate whether this benefit manifests in a clinical study, as NODDI is potentially

less sensitive due to the addition of model parameters (compared to standard DTI). Hence the

value of analysing NODDI parameters has yet to be demonstrated in the context of population-

based clinical studies. Therefore, the present work assesses the added value of NODDI parame-

ters for identifying and investigating white matter abnormalities over DTI-based markers, by

explicitly comparing results from NODDI and DTI analyses as applied to a clinical sample, the

inherited metabolic disease classic galactosemia. In this disease, WM pathology has mainly been

described in terms of diffuse signal hyperintensities on T2-weighted images [27] and has been

linked at least partly to myelin abnormalities, caused by deficient galactosylation of galactocer-

ebrosides (important building stones of myelin) [28]. The interpretation of the results in the

context of the disease is published elsewhere [20]. Here, more specifically, we compared group
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differences using the DTI-derived (FA, RD, AD, MD) and NODDI-derived (NDI, ODI) mark-

ers and evaluated the extent to which the markers identified coinciding and unique differences

in the results. By comparing DTI- and NODDI-derived group differences, this study further

adds to the important practical question whether it is worthwhile to invest more imaging time

to acquire multi-shell diffusion data in the context of a clinical study. In addition, we aimed to

determine whether standard single-shell DTI-quality DWI data can be used for investigating

white matter abnormalities based on NODDI-based tissue quantification.

Methods

NODDI model

NODDI allows the differentiation of three compartments in the brain–it distinguishes 1)

intra-neurite space, modelled as restricted diffusion (collection of sticks forming a Watson dis-

tribution); 2) extra-neurite space, modelled as hindered, but not restricted diffusion (aniso-

tropic Gaussian diffusion); and 3) a cerebral spinal fluid (CSF) compartment, modelled as

isotropic Gaussian diffusion. The full normalised signal A is represented as follows: A = (1-

vfiso) (vfin Ain + (1-vfin) Aen) + vfisoAiso, where vf stands for volume fraction; in for intra-neur-

ite; en for extra-neurite; and iso for the isotropic CSF compartment (see [11] for a more exten-

sive description of the model). The intra-neurite volume fraction (vfin) represents the neurite

density index (NDI; typically high in WM, low in GM). The other main parameter from the

NODDI estimation is the orientation dispersion index (ODI), which quantifies the angular

variation of neurite orientation (ranging from 0 for perfectly coherently oriented structures to

1 for isotropic structures; typically high in GM, low in WM).

Data acquisition

Data on eight patients with an inherited metabolic disease (classic galactosemia; see [20]) [16–

21 years of age] and eight healthy controls [15–20 years of age] were acquired on a 3-T Siemens

Trio whole body scanner (Siemens Medical System, Erlangen, Germany), using a 32-channel

head coil. The DWI data were obtained using a double-refocused single-shot spin echo EPI

sequence. 64 slices with isotropic voxels of 2.2 mm3 were obtained (TR = 8500 ms; TE = 97 ms)

in an anterior to posterior direction. Data were acquired at two different b-values: b = 1000 s/

mm2 with 64 diffusion-encoding gradient directions and b = 2000 s/mm2 with 64 diffusion

directions. In addition, 5 b = 0 images were collected, two of which were acquired using a

reversed phase encoding direction (posterior to anterior), to allow the estimation of susceptibil-

ity induced distortions. The diffusion encoding directions spanned the entire sphere. Total

acquisition time of the DWI data was approximately 22.5 minutes. Participants were screened

for MRI compatibility, and gave written informed consent (in case of minors, both parents/

caregivers also gave written informed consent). The Medical Ethical Committee of the Maas-

tricht University Hospital/Maastricht University gave ethical clearance for this study.

Data analyses

Data pre-processing was initiated with estimation of susceptibility induced distortions. From

the pairs of images acquired using reversed phase-encode directions (i.e., with distortions

going in opposite directions), the susceptibility-induced off-resonance field was estimated

using a method similar to the one described in Andersson et al. [29] (topup of FMRIB Software

Library [FSL] [30]). In addition, eddy current-induced distortions and head motion were esti-

mated, and all distortions were corrected by simultaneously modelling the effects of diffusion

eddy currents (using a Gaussian process) and movements on the image (using FSL’s eddy
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[31,32]). Concurrently, the b-vectors were rotated to account for the corrections (using

Python; http://www.python.org).

The diffusion tensors were estimated from one shell of the corrected DWI data (b = 1000 s/

mm2) using a linear fitting algorithm (dtifit, implemented in FSL). DTI-TK (publicly available;

http://www.nitrc.org/projects/dtitk) was used for tensor-based spatial normalization of the

volumes to an iteratively optimized population-specific template [33]. This algorithm applies a

deformable registration to the tensor images, which has shown to lead to improved registra-

tion, as compared to FA-based registration algorithms [34,35]. The resulting normalized

images were averaged, and high-resolution FA, RD, AD and MD maps (1 mm iso-voxel) were

derived. By thinning the mean FA images, a mean FA skeleton was created that represented

the centres of all tracts common to the group (tract based spatial statistics [TBSS] of FSL [36]).

The aligned FA data from each subject was projected onto this skeleton using the calculated

distance maps. Using the same distance maps, the RD, AD and MD maps were projected onto

the FA skeleton as well. The resulting data were fed into the statistical analysis.

In parallel, neurite orientation dispersion and density imaging (NODDI) was applied to the

pre-processed data, both on the multi-shell and on the single-shell DTI-quality (b = 1000 s/

mm2) data (publicly available in a Matlab toolbox, http://nitrc.org/projects/noddi_toolbox).

The output scalar images from NODDI (NDI, ODI, fiso [CSF volume fraction], fmin [fitting

objective function values, proportional to the fitting residuals]) were normalized to the

-already defined- study-specific common group space using the transformation fields as calcu-

lated per participant during the tensor-based registration. Then, the normalized data were pro-

jected onto the -already calculated- mean FA skeleton using the original distance maps (using

an adapted code from TBSS).

On the skeletonised FA, AD, RD, MD, NDI, ODI, fiso, fmin maps, permutation-based statis-

tics were carried out (using randomise of FSL; 5000 permutations) using a design with group

as a between-subjects factor and age as a covariate. P-values were corrected by means of the

Threshold-Free Cluster Enhancement (TFCE) option [37]. A corrected alpha of 0.05 was used

as the significance level.

Resulting statistical group maps were compared across measures by evaluating overlap of

discriminating voxels by means of dice coefficients [2 (A ˄ B) / (A + B)] [38], and by evaluating

unique contributions voxel-wise.

A pipeline of the data analysis procedure can be found in the Supporting Information (S1

File).

Results

NODDI revealed more specific group differences

The FA analysis showed the most group differences, as compared to the other indices (see Fig

1 and/or Table 1). The NODDI analysis revealed several group differences in NDI and ODI

that give a more specific regional pattern of white matter changes as compared to the general

pattern of FA findings (Fig 1): NDI changes were found mainly in bilateral anterior regions,

while ODI changes were left lateralized and more posterior (more descriptive data on the clus-

ters can be found in [20]).

Group differences in NDI and ODI are complementary and overlap with

DT indices

The group differences in NDI and ODI were complementary, supported by a minimal over-

lap in results (dice coefficient = 0.07). Further, the combination of NDI and ODI could
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explain much of the FA results, supported by a substantial overlap between the discrimina-

tive voxels identified by NODDI and FA (dice coefficient = 0.52; Table 1). Further, it can

be noticed that the AD group differences overlap with ODI changes (dice coefficient =

0.55), while RD changes overlapped more with NDI changes (dice coefficient = 0.48).

MD changes also overlapped more with NDI (dice coefficient = 0.29) than ODI (dice

coefficient = 0.04).

Fig 1. Comparison of statistical group results. Presented are the voxels discriminating across the groups by the different parameters (i.e.,

DTI-based: mean diffusivity [MD], axial diffusivity [AD], radial diffusivity [RD], and fractional anisotropy [FA]; NODDI-based: neurite density index

[NDI], and orientation dispersion index [ODI]). A selection of slices is presented from the superior to inferior parts of the brain. In green, the mean

FA skeleton is overlaid. Note that images are in radiological convention (left is right).

doi:10.1371/journal.pone.0167884.g001
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NODDI indices identify unique group differences

The NODDI parameters identified voxels discriminative across the groups that were not cap-

tured by the FA analysis: 38.3% and 13.0% of significant voxels in NDI and ODI, respectively,

were not captured by the FA analysis (see Fig 2). In comparison, the AD and RD group analy-

ses resulted in 15.7 and 15.2% not-captured-by-FA discriminative voxels, respectively.

Checks of potential confounds

Analysing the fmin maps, which are proportional to the fitting residuals, did not yield any sig-

nificant group differences. In addition, the CSF volume fraction (fiso) differed only in a very

small number of voxels (168 out of the 82.379 voxels of the entire WM skeleton). Here, patients

showed increased fiso in the body of the corpus callosum (see Fig 3).

ODI estimations from single-shell data can be used for group inferences

as well

A comparison between the multi-shell and single-shell fittings can be found in Fig 4, where the

averaged group maps are presented. The NODDI analysis using single-shell data (b = 1000 s/

mm2) could estimate ODI sufficiently well to be used for group inference, supported by similar

ODI maps and a large overlap in the voxels discriminating across groups in single-shell and

multi-shell ODI estimations (dice coefficient = 0.74) (Fig 5). NDI could not be reliably esti-

mated using single-shell data as can be observed in the maps (e.g., no clear distinction between

WM and GM), and the group results showed little overlap with the multi-shell NDI results

(dice coefficient = 0.09).

Discussion

Using a metabolic disease as an example, we demonstrated that the multi-compartment model

neurite orientation dispersion and density imaging (NODDI) can be of added value to standard

diffusion tensor imaging (DTI) for investigating WM abnormalities. NODDI reveals more

specific microstructural substrates to white matter changes detected with fractional anisotropy

(FA) that can be analysed independently. Also, the single-shell NODDI index of orientation

dispersion (ODI) gave a very similar pattern of group differences compared to the multi-shell

data.

Table 1. Overlap in number in discriminative voxels across parameters, expressed in dice coefficients and number of voxels.

FA # (23.994) a AD # (1.512) RD " (19.550) MD " (6.742) NDI # (12.597) ODI " (3.283) NDI+ODI (15.481)

FA # (23.994) 0.10 (1.275) 0.76 (16.578) 0.30 (4.553) 0.43 (7.770) 0.21 (2.855) 0.52 (10.236)

AD # (1.512) 0.04 (425) 0 (0) 0.00 (22) 0.55 (1.319) 0.16 (1.324)

RD " (19.550) 0.44 (5.720) 0.48 (7.742) 0.14 (1.641) 0.52 (9.074)

MD " (6.742) 0.29 (2.768) 0.04 (175) 0.26 (2.928)

NDI # (12.597) 0.05 (399) n.a.

ODI " (3.283) n.a.

NDI+ODI (15.481)

a Entire FA skeleton: 82.379 voxels;
" = refers to increases in the patient group,
# = refers to decreases in the patient group;

n.a. = not applicable

doi:10.1371/journal.pone.0167884.t001
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Fig 3. Group differences in CSF volume fraction (fiso). Presented are voxels that showed a significant

group differences in fiso. Voxels are overlaid on averaged group maps. Slices are selected to optimally show

the limited number of voxels showing a group difference.

doi:10.1371/journal.pone.0167884.g003

Fig 2. NODDI discriminative voxels not captured by FA analysis. Presented are voxels that were of discriminative value in the group NDI (red)

and ODI (blue) analysis, but not in the FA analysis. Voxels are overlaid on averaged FA maps and the mean FA skeleton (green). A selection of slices

is shown from anterior to posterior direction (top row), and from superior to inferior regions of the brain (bottom row). In the boxes, corresponding

tensor illustrations are presented.

doi:10.1371/journal.pone.0167884.g002
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By using a biologically informed tissue model, NODDI is capable of estimating more spe-

cific indices compared to FA: neurite density (NDI) and orientation dispersion (ODI), two key

contributors to FA. In the current study, we analysed differences in the main white matter

tracts across a metabolic patient group (classic galactosemia; see [20]) and a healthy control

Fig 4. Comparison of multi- and single-shell NODDI parameter maps. Presented are the averaged NODDI parameter maps, estimated

using multi-shell data, single-shell data. A selection of slices is presented from the superior to inferior parts of the brain. Visual inspection of

the maps shows that ODI and fiso maps are very similar across the multi- and single-shell estimations, but single-shell NDI maps are very

different–more noisy–compared to multi-shell NDI maps.

doi:10.1371/journal.pone.0167884.g004
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Fig 5. Comparison of statistical group results across multi-shell and single-shell NODDI parameter

estimations. Presented are voxels that could discriminative across the groups, derived from NODDI

analyses on multi- and single-shell data. A selection of slices is presented from the superior to inferior parts of

the brain. In green, the mean FA skeleton is overlaid. As can be observed, there is large overlap in multi-shell

and single-shell ODI discriminative voxels (dice coefficient = 0.74). Further, minimal overlap is found in NDI

discriminative voxels (dice coefficient = 0.09).

doi:10.1371/journal.pone.0167884.g005
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group by integrating NODDI analysis with a standard voxel-wise group inference technique

TBSS. The aim was to compare overlap in group results between the standard DTI and

NODDI analysis. The NODDI parameters showed little overlap in the voxels that were identi-

fied as discriminative across groups, indicating the parameters complemented each other.

Taken together, however, NDI and ODI results showed a substantial overlap with FA results.

In addition, we showed that these group results are not driven by NODDI model misfitting.

One concern might be that there are differences in intrinsic diffusivity across groups, leading

to biased estimation of the indices in one of the groups. Recently, however, it has been shown

that variations in intrinsic diffusivity are reflected in the fitting residuals [39]. It is therefore

important to inspect these residuals when using NODDI in group comparisons. In the current

study, we did not observe any group differences in the fitting residuals, making it reasonable

to conclude that intrinsic parallel diffusivity is comparable between the groups. Also, the CSF

volume fraction (fiso) only differed minimally across groups, making it unlikely that this has

biased our findings. Hence, we hereby demonstrate a conceptual disentanglement of FA into

these two major contributing factors in the context of a clinical study. Further, we observed

that NDI and ODI gave results that were more regionally specific compared to FA, giving

more support for the idea to separately analyse these indices. Note that there is no ground

truth here, but the observed regional patterns are in line with the known cognitive profile of

this disease, namely higher order cognitive impairments (i.e., the anterior, bilateral profile of

NDI changes), and language production and (speech) motor impairments (i.e., the predomi-

nant left-hemispheric, more posterior ODI changes; see [20] for more information on the

interpretation of the results, on the clusters and correlations with behaviour) [40–43]. Further-

more, reduced NDI in this patient population is consistent with abnormal myelin associated

with the disorder [27], which is linked to deficient galactosylation of galactocerebrosides (mye-

lin building stones). From a modelling point of view, abnormal myelin increases in the extra-

neurite space, which (indirectly) leads to a reduction in the (relative) volume fraction of the

intra-neurite space (vfin). NDI can, however, also be affected by other processes, such as neuro-

nal loss as this would also increase the extra-neurite space. The finding that the patients also

showed increased ODI in left-lateralized regions indicates that the WM pathology is more

diverse and complex than previously hypothesized. Interestingly, different brain regions reveal

different WM microstructural changes, questioning which exact mechanisms underlie these

findings (i.e., the left-lateralized profile of ODI fitting with motor and language problems,

versus the bilateral anterior nature of NDI in line with more general higher order cognitive

abnormalities). It warrants the need for further investigations to elucidate what causes these

changes, and simultaneously demonstrates the added value of decomposing FA into these two

separate indices to learn more about underlying pathologies.

In addition to overlap with FA findings, we observed that NDI and ODI were capable of

identifying discriminative voxels that were not captured by the FA analysis. More specifi-

cally, almost 40% of the voxels that showed a significant group difference in NDI were not

captured by the FA analysis, and 13% of the ODI discriminative voxels. From the location of

these unique contributions (see Fig 2), it appears that this occurs at least partly in regions

where there is fanning or crossing of fibres, such as in the corona radiata (but also in other

regions). Previous studies have already shown that FA is weak in regions with complex fibre

organisations [44]. Although NODDI does not explicitly takes crossing fibres into account,

the data does suggest that NODDI analysis is of important added value in the investigation

of changes in white matter microstructure in regions with more complex fibre organisa-

tions. It should be noted, however, that the FA analysis was most sensitive, or at least identi-

fied most group discriminative voxels. This could be explained by the fact that NDI and

ODI each contribute to explain part of the detected FA changes, but separately they have
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less statistical power. It is recommended, therefore, to use both analyses in a complementary

fashion.

It could be argued that radial and axial diffusivity (RD and AD, respectively) already give

more specific information as compared to FA. It has been suggested that RD reflects de/dys-

myelination, while AD changes reflect axonal damage [8,9]. Although the interpretation of

these parameters has been discouraged in the literature [10], we made a direct comparison

between these and the NODDI parameters as well. The results revealed a comparable profile

with the NODDI parameters: RD and AD group results were complementary with little over-

lap, but together showed high overlap with FA (higher than NDI and ODI). This is not unex-

pected, however, as AD and RD are simply based on the eigenvalues of the diffusion tensor,

and FA is computed from these same eigenvalues (and hence FA and AD/RD are not indepen-

dent). In addition, NDI results showed large overlap with RD (or perpendicular diffusivity),

but minimal overlap with AD (or parallel diffusivity). This was also expected, since increased

neurite density would lead to decreased radial diffusivity. Further, in the NODDI tissue model,

parallel diffusivity is primarily influenced by ODI [11]. Indeed, ODI results showed large over-

lap with parallel diffusivity (AD), but little overlap with perpendicular diffusivity (RD; for

more details on the modelling aspects one can refer to [11]). It thus seems that although RD

and AD give more information to complement FA, the variations can well be explained by

NDI and ODI, and in a more specific and biologically informed manner. Further, RD and AD

are still–like FA- based on the diffusion tensor, and thus suffer from the same weaknesses that

more advanced models try to overcome using a physical model (i.e., by modelling multiple

compartments, eliminating free water contamination). And, in the current study RD and AD

were not as capable as NDI to capture additional discriminative voxels that FA missed. Hence,

we demonstrated that NODDI parameters also have added value over the use of RD and AD.

The second main finding is that group differences in ODI could be identified reliably using

standard single-shell DTI data (i.e., using one non-zero b-value in addition to the b = 0 data).

The ODI maps estimated by multi-shell and single-shell (b1000) data were very comparable, as

demonstrated before [11]. Further, the group results showed the same regional pattern, illus-

trated by a high overlap in discriminative voxels. This indicates that retrospective analysis of

standard single-shell DTI data with NODDI is possible and might provide valuable additional

insights on angular variation in the neurites. Note that also single shells with higher b-values

can be used, as they contain higher angular resolution. Examining orientation dispersion is rel-

evant in many respects, both in white and in grey matter. For instance, the dispersion in orien-

tation distribution is associated with development and aging of the brain (i.e., increase and

reduction, respectively), and changes in the morphology of neurites can be linked to several

neurological and neurodegenerative disorders. As already demonstrated before [11], NDI

could not be estimated in a reliable manner using single-shell data, as it requires both a low b-

value and a high b-value shell (in addition to b = 0 images). Also in the current assessment, the

maps were mainly composed of noise (i.e., no WM and GM distinction) and the group analysis

did not yield any overlapping results with the multi-shell NODDI analysis.

Finally, with this study we also demonstrated the feasibility of integrating NODDI analysis

with standard DWI analysis tools, such as in this case DTI-TK (for tensor-based spatial nor-

malisation) and TBSS (for voxel-wise group inferences). The pipeline of the data analysis is

available and can be found in the Supporting Information (S1 File).

To sum up, previous work has demonstrated the new insights into microstructure that

NODDI can provide in a range of applications. The present study went one step further by

conducting a systematic comparison between group differences determined by standard DTI

and NODDI analyses. This helps clarifying the added value of NODDI analyses when making

group inferences, complementary to standard DTI analysis, providing support for the
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adoption of a longer, multi-shell diffusion imaging protocol in clinical samples. It shows that

using a clinically feasible acquisition protocol and analysis pipeline, more specific substrates

of white matter (compared to DTI) can be estimated and analysed separately. The NODDI

parameters complemented each other, showed little overlap, and together showed substantial

overlap with FA, indicating (conceptual) disentanglement of FA into two key contributors.

Results further showed that compared to FA analysis, NDI and ODI gave a pattern of results

that was more regionally specific and were able to capture additional discriminative voxels that

FA failed to identify. Note again that FA was still the most sensitive to group differences, as

expected from the simplicity of the model, even though fitted with less data (single shell) com-

pared to NODDI (multi-shell). NODDI therefore is recommended to be used in addition to

DTI, therewith adding greater specificity. Finally, we demonstrated that retrospective analysis

of the angular variation of neurites (ODI) using standard DTI-quality datasets is viable. Future

analyses further need not to be limited to the WM but can extend to evaluate neurite morphol-

ogy and potential changes herein in the GM as well, and could include more recent extensions

of the NODDI model to include anisotropy of the orientation dispersion (Bingham-NODDI)

[45].
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