UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The algebra of functions with antidomain and range

Hirsch, R; Jackson, M; Mikulas, S; (2016) The algebra of functions with antidomain and range. Journal of Pure and Applied Algebra , 220 (6) pp. 2214-2239. 10.1016/j.jpaa.2015.11.003. Green open access

[thumbnail of Hirsch_FunctionAlgebra_revisedJPAArevised.pdf]
Preview
Text
Hirsch_FunctionAlgebra_revisedJPAArevised.pdf

Download (399kB) | Preview

Abstract

We give complete, finite quasiequational axiomatisations for algebras of unary partial functions under the operations of composition, domain, antidomain, range and intersection. This completes the extensive programme of classifying algebras of unary partial functions under combinations of these operations. We also look at the complexity of the equational theories and provide a nondeterministic polynomial upper bound. Finally we look at the problem of finite representability and show that finite algebras can be represented as a collection of functions over a finite base set provided that intersection is not in the signature.

Type: Article
Title: The algebra of functions with antidomain and range
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.jpaa.2015.11.003
Publisher version: http://dx.doi.org/10.1016/j.jpaa.2015.11.003
Language: English
Additional information: Copyright © 2016. This manuscript version is published under a Creative Commons Attribution Non-commercial Non-derivative 4.0 International licence (CC BY-NC-ND 4.0). This licence allows you to share, copy, distribute and transmit the work for personal and non-commercial use providing author and publisher attribution is clearly stated. Further details about CC BY licences are available at http://creativecommons.org/licenses/by/4.0.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/1498508
Downloads since deposit
102Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item