UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Composition operators on weighted Bergman spaces.

Jones, M; (1999) Composition operators on weighted Bergman spaces. Doctoral thesis , University of London. Green open access

[thumbnail of thesis.pdf]
Preview
PDF
thesis.pdf

Download (289kB)

Abstract

In the late 1960’s, E.A. Nordgren and J.V. Ryff studied composition operators on the Hardy space H2. They provided upper and lower bounds on the norms of general composition operators and gave the exact norm in the case where the symbol map is an inner function. Composition operators themselves, on various other spaces, have been studied by many authors since and much deep work has been done concerning them. Recently, however B.D. MacCluer and T. Kriete have developed the study of composition operators on very general weighted Bergman spaces of the unit disk in the complex plane. My starting point is this work. Composition operators serve well to link the two areas of analysis, operator theory and complex function theory. The products of this link lie deep in complex analysis and are diverse indeed. These include a thorough study of the Schr¨oeder functional equation and its solutions, see [16] and the references therein, in fact some of the well known conjectures can be linked to composition operators. Nordgren, [12], has shown that the Invariant Subspace Problem can be solved by classifying the minimal invariant subspaces of a certain composition operator on H2, and de Branges used composition operators to prove the Bieberbach conjecture. In this thesis, I use various methods from complex function theory to prove results concerning composition operators on weighted Bergman spaces of the unit disk, the main result is the confirmation of two conjectures of T. Kriete, which appeared in [7]. I also construct, in the final chapter, inner functions which map one arbitrary weighted Bergman space into another.

Type: Thesis (Doctoral)
Title: Composition operators on weighted Bergman spaces.
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Thesis digitised by British Library EThOS.
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Mathematics
URI: https://discovery.ucl.ac.uk/id/eprint/1363351
Downloads since deposit
329Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item