Griffiths, Thomas L;
Zhu, Jian-Qiao;
Grant, Erin;
McCoy, R Thomas;
(2024)
Bayes in the Age of Intelligent Machines.
Current Directions in Psychological Science
, 33
(5)
283 -291.
10.1177/09637214241262329.
Preview |
Text
Grant paper.pdf - Accepted Version Download (2MB) | Preview |
Abstract
The success of methods based on artificial neural networks in creating intelligent machines seems like it might pose a challenge to explanations of human cognition in terms of Bayesian inference. We argue that this is not the case and that these systems in fact offer new opportunities for Bayesian modeling. Specifically, we argue that artificial neural networks and Bayesian models of cognition lie at different levels of analysis and are complementary modeling approaches, together offering a way to understand human cognition that spans these levels. We also argue that the same perspective can be applied to intelligent machines, in which a Bayesian approach may be uniquely valuable in understanding the behavior of large, opaque artificial neural networks that are trained on proprietary data.
Type: | Article |
---|---|
Title: | Bayes in the Age of Intelligent Machines |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1177/09637214241262329 |
Publisher version: | http://dx.doi.org/10.1177/09637214241262329 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Bayesian modeling; computational modeling; artificial intelligence |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > The Sainsbury Wellcome Centre |
URI: | https://discovery.ucl.ac.uk/id/eprint/10200032 |
Archive Staff Only
![]() |
View Item |