Khan, Danyal Z;
Hanrahan, John G;
Baldeweg, Stephanie E;
Dorward, Neil L;
Stoyanov, Danail;
Marcus, Hani J;
(2023)
Current and Future Advances in Surgical Therapy for Pituitary Adenoma.
Endocrine Reviews
10.1210/endrev/bnad014.
(In press).
Preview |
PDF
Khan_Current and Future Advances in Surgical Therapy for Pituitary Adenoma_AAM.pdf - Accepted Version Download (1MB) | Preview |
Abstract
The vital physiological role of the pituitary gland, alongside its proximal critical neurovascular structures means pituitary adenomas cause significant morbidity or mortality. Whilst enormous advancements have been made in the surgical care of pituitary adenomas, treatment failure and recurrence remain challenges. To meet these clinical challenges, there has been an enormous expansion of novel medical technologies (e.g. endoscopy, advanced imaging, artificial intelligence). These innovations have the potential to benefit each step of the patient journey, and ultimately, drive improved outcomes. Earlier and more accurate diagnosis addresses this in part. Analysis of novel patient data sets, such as automated facial analysis or natural language processing of medical records holds potential in achieving an earlier diagnosis. After diagnosis, treatment decision-making and planning will benefit from radiomics and multimodal machine learning models. Surgical safety and effectiveness will be transformed by smart simulation methods for trainees. Next-generation imaging techniques and augmented reality will enhance surgical planning and intraoperative navigation. Similarly, the future armamentarium of pituitary surgeons, including advanced optical devices, smart instruments and surgical robotics, will augment the surgeon's abilities. Intraoperative support to team members will benefit from a surgical data science approach, utilising machine learning analysis of operative videos to improve patient safety and orientate team members to a common workflow. Postoperatively, early detection of individuals at risk of complications and prediction of treatment failure through neural networks of multimodal datasets will support earlier intervention, safer hospital discharge, guide follow-up and adjuvant treatment decisions. Whilst advancements in pituitary surgery hold promise to enhance the quality of care, clinicians must be the gatekeepers of technological translation, ensuring systematic assessment of risk and benefit. In doing so, the synergy between these innovations can be leveraged to drive improved outcomes for patients of the future.
Archive Staff Only
View Item |