UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Learning State Representations via Retracing in Reinforcement Learning

Yu, C; Li, D; Hao, J; Wang, J; Burgess, N; (2022) Learning State Representations via Retracing in Reinforcement Learning. In: ICLR 2022 - 10th International Conference on Learning Representations. ICLR Green open access

[thumbnail of 3988_learning_state_representations.pdf]
Preview
Text
3988_learning_state_representations.pdf - Published Version

Download (1MB) | Preview

Abstract

We propose learning via retracing, a novel self-supervised approach for learning the state representation (and the associated dynamics model) for reinforcement learning tasks. In addition to the predictive (reconstruction) supervision in the forward direction, we propose to include “retraced” transitions for representation/model learning, by enforcing the cycle-consistency constraint between the original and retraced states, hence improve upon the sample efficiency of learning. Moreover, learning via retracing explicitly propagates information about future transitions backward for inferring previous states, thus facilitates stronger representation learning for the downstream reinforcement learning tasks. We introduce Cycle-Consistency World Model (CCWM), a concrete model-based instantiation of learning via retracing. Additionally we propose a novel adaptive “truncation” mechanism for counteracting the negative impacts brought by “irreversible” transitions such that learning via retracing can be maximally effective. Through extensive empirical studies on visual-based continuous control benchmarks, we demonstrate that CCWM achieves state-of-the-art performance in terms of sample efficiency and asymptotic performance, whilst exhibiting behaviours that are indicative of stronger representation learning.

Type: Proceedings paper
Title: Learning State Representations via Retracing in Reinforcement Learning
Event: ICLR 2022 - 10th International Conference on Learning Representations
Open access status: An open access version is available from UCL Discovery
Publisher version: https://openreview.net/forum?id=CLpxpXqqBV
Language: English
Additional information: This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Representation learning, model-based reinforcement learning
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Experimental Epilepsy
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/10167462
Downloads since deposit
Loading...
13Downloads
Download activity - last month
Loading...
Download activity - last 12 months
Loading...
Downloads by country - last 12 months
Loading...

Archive Staff Only

View Item View Item