
Published as a conference paper at ICLR 2022

LEARNING STATE REPRESENTATIONS VIA RETRACING
IN REINFORCEMENT LEARNING

Changmin Yu1∗, Dong Li2, Jianye Hao3, 2, Jun Wang1, 2, Neil Burgess1∗
1UCL, London, United Kingdom
2Huawei Noah’s Ark Lab
3College of Intelligence and Computing, Tianjin University
{changmin.yu.19; n.burgess}@ucl.ac.uk;
{lidong106; w.j}@huawei.com; jianye.hao@tju.edu.cn

ABSTRACT

We propose learning via retracing, a novel self-supervised approach for learning
the state representation (and the associated dynamics model) for reinforcement
learning tasks. In addition to the predictive (reconstruction) supervision in the
forward direction, we propose to include “retraced” transitions for representa-
tion/model learning, by enforcing the cycle-consistency constraint between the
original and retraced states, hence improve upon the sample efficiency of learning.
Moreover, learning via retracing explicitly propagates information about future
transitions backward for inferring previous states, thus facilitates stronger repre-
sentation learning for the downstream reinforcement learning tasks. We introduce
Cycle-Consistency World Model (CCWM), a concrete model-based instantiation
of learning via retracing. Additionally we propose a novel adaptive “truncation”
mechanism for counteracting the negative impacts brought by “irreversible” tran-
sitions such that learning via retracing can be maximally effective. Through
extensive empirical studies on visual-based continuous control benchmarks, we
demonstrate that CCWM achieves state-of-the-art performance in terms of sam-
ple efficiency and asymptotic performance, whilst exhibiting behaviours that are
indicative of stronger representation learning.

1 INTRODUCTION

Recent developments in deep reinforcement learning (RL) have made great progress in solving
complex control tasks (Mnih et al., 2013; Levine et al., 2016; Silver et al., 2017; Vinyals et al.,
2017; Schrittwieser et al., 2020). With the increasing capacity of deep RL algorithms, the problems
of interests become increasingly complex. An immediate challenge is that the observation space
becomes unprecedentedly high-dimensional, and often the perceived observations have significant
redundancy and might only contain partial information with respect to the associated ground-truth
states, hence negatively impacting the policy learning. The field of representation learning offers
a wide range of approaches for extracting useful information from high-dimensional data (with
potentially sequential dependency structure) (Bengio et al., 2013). Many recent works have explored
the application of representation learning in RL (Ha and Schmidhuber, 2018; Hafner et al., 2019;
2020a; Schrittwieser et al., 2020; Schwarzer et al., 2021; Zhang et al., 2020), which lead to superior
performance comparing to naive embedding. Many such algorithms rely on predictive (reconstruction)
supervision for representation learning, such that the effects of actions in the observable space are
maximally preserved in the learned representation space.

Here we argue that existing methods do not fully exploit the supervisory signals inherent in the data.
Additional valid supervision can often be obtained for representation learning by including temporally
“backward” transitions in situations in which the same set of rules govern both temporally forward
and backward transitions. Hence, with “learning via retracing”, we obtain more training samples for
representation learning without additional interaction with the environment (twice as much as existing
approaches in tasks that admit perfect reversibility across all transitions). Therefore, we hypothesise
that by augmenting representation learning with “learning via retracing”, we can significantly improve

∗Please send any enquiry to changmin.yu.19@ucl.ac.uk and n.burgess@ucl.ac.uk

1

Published as a conference paper at ICLR 2022

Forward path

Retracing paths

(a) (b)
Figure 1: Motivation of “learning via retrac-
ing”. (a): Retracing in navigation tasks yields
faster representation learning and potentially sup-
ports stronger generalisation; (b): “Irreversible”
transitions (graphical demonstration from the
DeepMind Control Suite Tassa et al. (2018)).

the sample efficiency of representation learning
and the overall RL task, which is a long-standing
issue that plagues the practical applicability of
deep RL algorithms. Beyond improved sample
efficiency, joint predictive supervision in tem-
porally forward and backward directions use in-
formation from both the future and the past for
the inference of states, similar to the smoothing
operation for latent state inference in state-space
models (Kalman, 1960; Murphy, 2012), leading
to more accurate latent state inference, hence
achieving stronger representation learning.

As a motivating example, consider a rat navigating towards a cheese in a cluttered environment
(Figure 1a). Upon first visit to the goal state, multiple imaginative retracing trajectories can be
randomly simulated. By constraining the temporal cycle-consistency of the retracing transitions, the
rat quickly builds a state representation that accurately preserves the transitions in the area around the
actual forward trajectory taken by the rat. Moreover, all retracing simulations pass through the two
“doors”, allowing the rat to quickly identify the key bottleneck states that are essential for successful
navigation towards the goal and generalisation to other task topologies (Section 5.3). We conjecture
that such imaginative retracing could be neurally implemented by the reversed hippocampal “replay”
that has been observed in both rodents and humans (Foster and Wilson, 2006; Penny et al., 2013; Liu
et al., 2021) (see Section 6 for further discussion).

One problem that hinders the successful application of “learning via retracing” is that reversibility
might not be preserved across all valid transitions, i.e., there exists transitions such that s → s′

for some action a, but no action a′ such that s′ → s (Figure 1b). Under these situations, naively
enforcing the similarity between the representations of s and š (the retraced state given s′ and a, see
Section 3) leads to a suboptimal representation space, potentially hindering RL training. Hence in
order to maximally preserve the advantages brought by “learning via retracing”, it is essential to
identify “irreversible” transitions and rule them out from representation learning via retracing. To this
end, we propose a novel dynamically regulated approach for identifying such “irreversible” states,
which we term adaptive truncation (Section 3.3).

“Learning via retracing” can be integrated into any representation learning method that utilises a
transition model, under both the model-free and model-based RL frameworks. Here we propose
Cycle-Consistency World Model (CCWM), a self-supervised instantiation of “learning via retracing”,
for joint representation learning and generative model learning under the model-based RL setting.
We empirically evaluate CCWM on challenging visual-based continuous control benchmarks. Experi-
mental results show that CCWM achieves state-of-the-art performance in terms of sample efficiency
and asymptotic performance, whilst providing additional benefits such as stronger generalisability
and extended planning horizon, indicative of stronger representation learning is achieved.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

We consider reinforcement learning problems in Markov Decision Processes (MDPs). An MDP
can be charaterised by the tuple,M = 〈S,A,R,P, γ〉, where S,A are the state and action spaces,
respectively; R : S → R is the reward function (we assume determinisitc reward functions unless
stated otherwise), P : S ×A×S → [0, 1] is the transition distribution of the task dynamics; γ ∈ R is
the discounting factor. The control policy, π : S ×A → [0, 1], represents a distribution over actions
at each state. The goal is to learn the optimal policy, π∗, such that the expected future reward is
maximised across all states, i.e.,

π∗ = arg max
π∈Π

Eπ

[∑
t

γtR(st, at)|s0 = s

]
,∀s ∈ S, where st ∼ P(·|st−1, at−1) for t = 1, 2, . . .

(1)
Here we consider tasks in which the perceivable observation space, O, is high-dimensional, due to
either redundant information or simply because only visual inputs are available. Hence it is necessary

2

Published as a conference paper at ICLR 2022

to learn an embedding function, φ : O → Z , such that the embedded observation space, φO, could
act as S in the MDP, to support efficient learning of the optimal policy using existing RL algorithms.

2.2 GENERATIVE MODELLING OF DYNAMICS

Modelling the transition dynamics using a sequential VAE-like structure enables joint learning of the
latent representation and the associated latent transitions. Specifically, the dynamics model is defined
in terms of the following components (see also top part in Figure 2b).

Observation (context) embedding: et = qφ(Ot),

Latent posterior distribution: p(zt+1|zt, at, Ot+1),

Latent variational transition (prior) distribution: qψ1
(zt+1|zt, at),

Latent variational posterior distribution: qψ2
(zt+1|zt, at, et+1),

Generative distribution: pθ(Ot+1|zt+1),

(2)

where ψ = {ψ1, ψ2, φ} and θ represent the parameters associated with the recognition and generative
models respectively. Latent variables z ∈ Z are introduced for more flexible modelling of the
distribution of the observed variables. A variational approximation is employed since the true
posterior p(zt+1|zt, at, Ot+1) is usually intractable in practice.

At each time step t, the agent receives an observation Ot, which is then embedded into a context
vector et = qφ(Ot). After initialisation, the latent space vector is rolled out in a forward fashion
given the action at, yielding one-step prediction into the future following the variational transition
(prior) distribution qψ1(zt+1|zt, at) (we assume standard first-order Markovian structure in the latent
space). The dynamics model is trained via maximum likelihood learning, and due to intractability, we
adopt standard amortised variational inference, and the parameters of the recognition and generative
models in Eq. 2 are learned by maximising the variational free energy (also known as the ELBO;
(Wainwright and Jordan, 2008; Higgins et al., 2016)).
Lforward(Ot+1) = Ezt+1∼qψ2

[log pθ(Ot+1|zt+1)− βDKL [qψ2
(zt+1|zt, at, et+1)||qψ1

(zt+1|zt, at)]],
(3)

The variational free energy objective consists of the reconstruction error, pθ(Ot+1|zt+1), and the KL-
divergence between the variational posterior distributions and the predictive prior as regularisation.
The intuitive autoencoder-like structure nicely separates the generative process from the inference
process, with the variational posterior (qψ2(zt+1|zt, at, et+1)) serving as the main inference engine of
the optimal latent representations. Note that the β parameter controls the degree of factored structure
(disentanglement) of the latent code, which by default is set to 1 (Higgins et al., 2016).

3 METHOD

We firstly introduce learning via retracing in its most general format, then provide a concrete model-
based instantiation based on generative dynamics modelling We finally propose a novel adaptive
truncation scheme for dealing with the “irreversibility” issue in “learning via retracing”.

3.1 LEARNING VIA RETRACING

We always assume the usage of an approximate dynamics model, regardless of the overall RL agent
being model-free or model-based (the dynamics model would only be used for representation learning
under the model-free setting, hence it is possible to have separate dynamics models for forward
and “reversed” transitions). Given a set of observations, O = {O1, . . . , OT }, a dynamics model,
M : S ×A× S → [0, 1], most existing methods of self-supervised representation learning involve
learning an encoder (Eφ) and a decoder (Dθ), trained via minimising the predictive reconstruction.

L(φ, θ) = d(O1:T ,Dθ(f(Eφ(O1:T);A1:T−1,M)) (4)
where d is some metric of the observable space (e.g., the L2 distance). The function f(e;M, a)
is some function specifying the schedule for predictions, e.g., f(et,M, at) = M(et, at) = êt+1

corresponds to learning the representations based on one-step predictive reconstruction.

Existing methods explore predictive supervision in a temporally forward direction, however, we argue
that the “reversed” transitions can also contain useful signals for learning. Consider a transition tuple,
(s, a, s′), we define the “reversed” transitions being the tuple (s′, a′, s), where a′ is the “reversed” ac-
tion. In situations where the same set of rules apply to forward and backward transitions, the reversed
transition given a′ could contribute to representation learning via Eq. 4 as an additional training

3

Published as a conference paper at ICLR 2022

s ŝ′ š

a ǎ′

d(s, š)
(a)

· · ·
zt zt+1 zt+2

· · ·

at at+1 at+2

Ot Ot+1 Ot+2

Õt Õt+1 Õt+2

ρζ

ǎt+2

ρζ

ǎt+1

žt+2žt+1žt

žt+2 = ẑt+2Lretrace

forward
pass

backward
pass

(b)

Figure 2: Graphical illustration of “learning via
retracing”. (a) “learning via retracing” addition-
ally constrains the similarity between the retraced
and original states for representation learning; (b)
Graphical model of CCWM. The empty circle and
filler square nodes represent the stochastic and de-
terministic variables, respectively.

sample (utilising a potentially different loss
function from the forward supervision, see Fig-
ure 2a).

Hence by utilising the additional reversed transi-
tion for representation learning, we improve the
sample efficiency of learning without additional
interaction with the environment. As mentioned
previously, in situations where perfect reversibil-
ity is not preserved across all transitions, such
“irreversible” transitions could negatively impact
the overall learning. Correct identification of
such states is hence essential for the successful
implementation of “learning via retracing”. To
this end, we propose a novel adaptive truncation
scheme in Section 3.3.

Despite the intuitive simplicity of learning via
retracing, it offers a number of advantages com-
paring to existing representation learning meth-
ods. In addition to the improved sample effi-
ciency, we can interpret learning with “reversed”
transitions as explicit inference of the current la-
tent state given future information. In combina-
tion with the forward predictive supervision, the
joint learning dynamics is similar to the smooth-
ing operation in dynamical systems, which is
often superior than filtering (corresponds to us-
ing solely the forward predictive supervision)
in terms of inference accuracy (Kalman, 1960;
Murphy, 2012). Hence learning via retracing
could support stronger representation learning
for the downstream RL task. We note that the
overall RL agent could still benefit from the representations obtain from learning via retracing even in
tasks without perfect reversibility, such as a moving car where the external state feature, such as the
absolute location, and controllable internal state features, such as the velocity and acceleration, are not
jointly reversible. In such cases, we expect learning via retracing would dissect out the controllable
internal features from the external features and prioritise the training with respect to such features.

We have introduced learning via retracing in its most general form, where a large degree of freedom
exists such that the method can be tailored and integrated with many of the existing representation
learning approaches. There are many free model choices, such as being model-free or model-based;
whether or not to use a separate “reversed” dynamics model; loss function for constraining the
“retraced” transitions; deterministic or probabilistic dynamics model, just to name a few. Below we
provide one concrete instantiation of learning via retracing, the Cycle-Consistency World Model
(CCWM), under the model-based framework based on generative dynamics modelling.

3.2 CYCLE-CONSISTENCY WORLD MODEL

CCWM is a model-based RL agent that utilises a generative world-model, trained given both the
predictive reconstruction of future states, and constraining the temporal cycle-consistency of the
“retraced” states (i.e., constraining the retraced states to match the original states). For notational
convenience, we denote all predictive prior estimates, posterior estimates, and the retraced predictive
latent estimates as ẑ, z̃ and ž, respectively.

We use the similar dynamics model described in Section 2.2 (top panel in Figure 2b). We additionally
define a reverse action approximator, ρζ : Z × Z → A, which takes in a tuple of latent states
(zt+1, zt) and outputs an action ǎt+1 that approximates the “reversed” action that leads the transition
from zt+1 back to zt. Instead of introducing a separate “reversed” dynamics model, we use the
same dynamics model for both the forward and retracing transitions, which lead to improved sample
efficiency of model learning in addition to representation learning. The parameters of ρ, ζ, can be

4

Published as a conference paper at ICLR 2022

either learned jointly with the model in an end-to-end fashion, or trained separately (see Appendix D).
The graphical model of CCWM is shown in Figure 2b.

During training, given a sample trajectory {O1:T+1, a1:T }, we firstly perform a one-step forward
sweep through all timesteps to compute the variational prior and posterior estimates of latent states.

ẑτ+1 ∼ qψ1
(z|z̃τ , aτ)

z̃τ+1 ∼ qψ2(z|ẑτ , aτ , qφ(Oτ))
(5)

for τ = 0, . . . , T , where ẑ0 is randomly initialised. Note that we also include reward prediction as
part of the dynamics modelling, and we have omitted showing this for simplicity.

Given the predictive estimates in the forward direction, we compute the “retracing” estimates, utilising
the same latent transition dynamics (variational predictive prior distribution).

žτ ∼ qψ1
(z|z̃τ+1, ǎτ+1), where ǎτ+1 = ρζ(z̃τ+1, z̃τ), for τ = 1, . . . , T (6)

The forward and retracing predictive supervision separately contributes to the model learning of
CCWM. For the forward pass, the parameters of the dynamics model are trained to maximise the
likelihood of the sampled observations via predictive reconstruction. We follow the variational
principle, by maximising the variational free energy (Eq. 3), computed by Monte Carlo estimate
given the posterior predictive samples. For the “retracing” operation, model learning is based on
constraining the deviation of the retraced states from the original states. Intuitively, this utilises the
temporal cycle-consistency of the transition dynamics: assuming that the action-dependent transition
mapping is invertible across all timesteps (Dwibedi et al., 2019). The loss function for constraining
the cycle-consistency is another degree of freedom of “learning via retracing”. For CCWM, we
choose bisimulation metric as the loss function for the retracing operations, which has been shown to
yield stronger constraints of the latent states on the MDP level, and also leads to more robust and
noise-invariant representation without reconstruction (Ferns et al., 2011; Zhang et al., 2020).

Lretrace(z̃t, žt) = Ežt
[
(||z̃t − žt||1 −DKL[R̂(·|z̃t)||R̂(·|žt)]− γW2(qψ1

(·|z̃t, π(z̃t)), qψ1
(·|žt, π(žt))))

2
]
,

(7)

where R̂(r|z) represents the learned reward distributions (we assume stochastic rewards), andW2(·, ·)
represents the 2-Wasserstein distance (see Eq. 11 in Appendix D). The advantage of choosing the
bisimulation metric as the retrace loss function is further empirically shown in Appendix G through
careful ablation studies (Figure 11). Multiple retracing trajectories can be simulated and the retrace
loss is again a Monte Carlo estimate based on sampled “retracing” states, but empirically we observe
that one “retracing” sample is sufficient as we do not observe noticeable improvements for increasing
the number of “retraced” samples. We note that here we utilise the same transition dynamics model
for both forward and reversed rollouts, which might cause issues in model learning due to the absence
of perfect “reversibility” across all valid transitions. Hence we need a method for dynamically
assessing the “reversibility” so as to know when to apply learning via retracing (see Section 3.3).

The overall objective for the CCWM dynamics model training is thus a linear combination of the
forward and “retracing” loss functions.

L(θ, ψ, ζ) =
1

NT

N∑
n=1

T∑
τ=1

[Lforward(Onτ ; θ, ψ) + λLretrace(z̃
n
τ , ž

n
τ ;ψ, ζ)] , (8)

where λ is the scalar multiplier for the retrace loss, and N is the batch size. We implement CCWM
using a Recurrent State-Space Model (RSSM; Hafner et al. (2019)). The complete pseudocode for
CCWM training is shown in Algorithm 1 in Appendix A. We note that “learning via retracing” is also
applicable under the model-free setting, we describe one such instantiation in Appendix B.

3.3 REVERSIBILITY AND TRUNCATION

As we noted above, perfect reversibility is not always present across all transitions in many environ-
ments. For instance, consider the falling android presented in Figure 1b, it is trivial to observe that
no valid action is able to transit a falling android to its previous state. Under such situations, naive
application of “learning via retracing”, by constraining the temporal cycle-consistency, will corrupt

5

Published as a conference paper at ICLR 2022

representation learning (and dynamics model learning in CCWM). Here we propose an approach to
deal with such “irreversibility”.

Our approach is based on adaptive identification of “irreversible” transitions. We propose that the
value function of the controller (e.g., an actor-critic agent) possesses some information about the
continuity of the latent states (Gelada et al. (2019); see Appendix C for further discussion). Hence
we use the value function as an indicator for sudden change in the agent’s state. Specifically, for each
sampled trajectory, we firstly compute the values of each state-action pair using the current value
function approximator, [Q(z1, a1), . . . , Q(zT , aT)]. We then compute the averages of the values
over a sliding window of size S through the value vectors of each sampled trajectory, resulting in
a (T − S)-length vector [Q̄1, . . . , Q̄T−S]. Any drop/increase in the sliding averages (above some
pre-defined threshold) indicates a sudden change in the value function, hence a sudden change in the
latent representation given the continuity conveyed by the value function. Given some timestep, τ , at
which the sudden change occurs, we then remove the transitions {zτ−S:τ , aτ−S:τ} from “learning
via retracing”. Such adaptive scheduling allows us to deal with “irreversibility”.

4 RELATED WORKS

Representation learning in RL. Finding useful state representations that could aid RL tasks has
long been studied. Early works have investigated representations based on a fixed basis such as
tile coding and Fourier basis (Mahadevan, 2005; Sutton and Barto, 2018). With the development
of deep learning techniques, recent works explored automatic feature discovery based on neural
network training, which can be categorised into three large classes. The first class of methods
studies the usage of data augmentation for broadening the data distribution for training more robust
feature representation (Laskin et al., 2020; Kostrikov et al., 2020; Schwarzer et al., 2021; Yarats
et al., 2021). The second class explores the role of auxiliary tasks in learning representations,
such as weakly-supervised classification and location recognition, for dealing with sparse and
delayed supervision (Lee et al., 2020b; Mirowski et al., 2017; Oord et al., 2018). The third class
of methods, specifically tailored to model-based RL models, leverages generative modelling of
environment dynamics, enabling joint learning of the representations and the dynamics model (Ha and
Schmidhuber, 2018; Buesing et al., 2018; Hafner et al., 2019; 2020a; Lee et al., 2020a; Schrittwieser
et al., 2020; Hafner et al., 2020b).

Cycle-Consistency. Cycle-consistency is a commonly adopted approach in computer vision and
natural language processing (Zhou et al., 2016; Zhu et al., 2017; Yang et al., 2017; Dwibedi et al.,
2019), where the core idea is the validation of matches between cycling through multiple samples. We
adopt similar design principles for sequential decision-making tasks: rollouts in a temporally forward
direction alone yield under-constrained learning of the world model. By additionally incorporating
backwards rollouts into model learning in a self-supervised fashion, we enforce the inductive bias
that the same transition rules govern the dynamics of the task.

Concurrent to our work, Yu et al. (2021) proposed PlayVirtual, a model-free RL method that
integrates a similar cycle-consistency philosophy into training representations with data augmen-
tations (Schwarzer et al., 2021). We note that PlayVirtual falls under the proposed “learning via
retracing” framework, but lying on the opposite spectrum comparing to the CCWM agent, being
model-free and utilising a separate reversed dynamics model, with the latter being the main difference
between the premises of PlayVirtual and CCWM. By using the same dynamics model for both the for-
ward and reversed transitions, we hope to exploit and embed the context prior of reversible transitions
into the learnt representations, hence the induced advantages extend beyond the explicit advantage of
improved sample efficiency, but also stronger generalisation, improved predictive rollouts (leads to
more accurate policy gradient hence improving policy training).

5 EXPERIMENTAL STUDIES

The experimental studies aim at examining if “learning via retracing” truly helps with the overall RL
training and planning, improves the generalisability of the learned representation, and whether the
truncation schedule proposed in Section 3.3 deals with the irreversibility of some state transitions.

5.1 EXPERIMENT SETUP

CCWM can be combined with any value-based or policy-based RL algorithms. We implement CCWM
with a simple actor-critic RL agent with generalised advantage estimation based on standard model-

6

Published as a conference paper at ICLR 2022

(a)

0.2 0.4 0.6 0.8 1.0
1e6

0
250
500
750

1000

Ev
al

ua
tio

n
Re

tu
rn

Cheetah Run

0.5 1.0 1.5 2.0
1e6

0

250

500

750

1000
Finger Spin

1 2 3 4 5
1e5

0

100

200

Hopper Hop

0.2 0.4 0.6 0.8 1.0
1e6

0
250
500
750

1000
Hopper Stand

0.5 1.0 1.5 2.0
Steps 1e6

0

200

400

600

Ev
al

ua
tio

n
Re

tu
rn

Quadruped Run

0.5 1.0 1.5
Steps 1e6

0

500

1000

Reacher Easy

0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

200

400

Walker Run

0.2 0.4 0.6 0.8 1.0
Steps 1e6

0
250
500
750

1000
Walker Walk

CCWM-A3C Dreamer A3C (state) D4PG (state) SAC (state)
(b)

Figure 3: Evaluation of CCWM on DeepMind Control Suite. (a): Graphical demonstration of
selected continuous control task environments, from left to right: hopper stand/hop, walker run/walk,
finger spin, reacher easy, cheetah run, quadruped run. (b): Average evaluation returns (±1 s.d.) during
training (5 random seeds). “Learning via retracing” generally improves the performance of learning
from pixel inputs in presented tasks comparing to the main baseline Dreamer agent (which could
approximately be viewed as CCWM without retracing). CCWM reaches the asymptotic performance
of state-of-the-art model-free methods (SAC, D4PG at 108 steps) on several tasks.

based RL framework using model-based rollouts1 (Sutton and Barto, 2018; Konda and Tsitsiklis,
1999; Schulman et al., 2015). We base our experimental studies on the challenging visual-based
continuous control benchmarks for which we choose 8 tasks from the DeepMind Control Suite (Tassa
et al. (2018); Figure. 3a). The details of training and the architecture can be found in Appendix D.

Baselines: We implement Dreamer as our main model-based baseline (Hafner et al., 2020a), which
represents the current state-of-the-art world-model-type model-based RL agent on visual-based
continuous control tasks.We also compare with the following model-free baselines: SAC Haarnoja
et al. (2018), D4PG Barth-Maron et al. (2018), A3C Mnih et al. (2016). We implement the SAC
agent given the state inputs and directly report the asymptotic performance of the D4PG and A3C
algorithms from Tassa et al. (2018). We report the asymptotic scores for the model-free algorithms
due to the large gap in sample efficiency comparing to the model-based methods.

5.2 EVALUATION ON CONTINUOUS CONTROL TASKS

The performance of CCWM and selected baseline algorithms is shown in Figure 3b. The empirical
results show that CCWM (without adaptive truncation introduced in Section 3.3) generally achieves
faster behaviour learning comparing to the baselines, which conforms with our hypothesis that
utilising backward passes in addition to forward passes provides additional supervision, hence
improving the sample efficiency of learning (see also Appendix E). CCWM outperforms Dreamer on
5 of the selected tasks, and is comparable to Dreamer on 2 of the remaining 3 tasks, in terms of both
the sample efficiency and final convergence performance. We note the relative poor performance
of CCWM on the Hopper Stand task, which might be accredited to the inherent large degree of
irreversibility of the task, we shall examine how to deal with such irreversible tasks in Section 5.4.

Moreover, in the “Cheetah Run” task, CCWM converges at ∼ 900 score with ∼ 5 × 105 steps,
whereas Dreamer, by the time it has received 1 × 106 training steps, is yet to reach a comparable

1Note that for the maximally fair comparison with our main baseline, Dreamer (Hafner et al., 2020a), we
utilise the same policy agent as Dreamer in order to fully demonstrate the utility of “learning via retracing” .

7

Published as a conference paper at ICLR 2022

Tr
u

e
C

C
W

M
D

re
am

er

Context 10 15 20 25 30 35 40 45 50

Tr
u

e
C

C
W

M
D

re
am

er

6

w
alker w

alk
ch

eetah
 ru

n

Figure 4: Qualitative comparison of long-range predictive reconstruction of CCWM and
Dreamer. Predictive rollouts over 30 time-steps given the actions are computed using the rep-
resentation models. CCWM consistently generates more accurate predictive reconstructions further
into the future than Dreamer, with CCWM becoming noticeably inaccurate by 25− 30 timesteps, and
Dreamer by 10− 15 timesteps. See implementation details and further discussion in Appendix F.

CHANGED COMPONENTS CCWM DREAMER P-VALUE SIGNIFICANT?
(MEAN ±1 S.D.) (MEAN ±1 S.D.) (3 S.F.) (α = 0.01)

R + M + F 628.07± 36.95 468.82± 94.73 7.27× 10−6 YES
R +M + S + F 641.89± 28.67 562.58± 93.91 3.97× 10−3 YES

Table 1: Evaluation of trained CCWM and Dreamer on the ability of zero-shot transfer in cheetah run
tasks with different configurations. (R: Reward; M: Mass; F: Friction; S: Stiffness.)

score. This demonstrates that “learning via retracing” brings more benefits beyond plain sample
efficiency, i.e., doubling the training steps does not eliminate the performance gap. This corresponds
to our hypothesis that by explicitly conveying future information back to previous states, “learning
via retracing” enables the learning of task-aware representations that support stronger behaviour
learning. To test our hypothesis, we empirically evaluate CCWM’s ability of long-term predictive
reconstructions and compare with Dreamer. To ensure fair comparison, we provide further training
for Dreamer whenever necessary, such that the asymptotic performance is comparable with CCWM
(see Appendix D for details). Figure 4 shows that CCWM consistently yields more accurate predictive
reconstructions over a longer time span, on both the walker walk and cheetah run tasks. The empirical
evidence confirms our hypothesis that by incorporating “learning via retracing” into model learning
enables the resulting latent space to support more accurate latent predictions, hence leading to stronger
behaviour learning. Increased range of accurate latent prediction additionally enables CCWM to
perform better planning. We provide further analysis of predictive reconstruction in Appendix F.

5.3 ZERO-SHOT TRANSFER

Based on the motivation that “learning via retracing” will improve the generalisability of the agent
(Figure 1a), we empirically test the generalisability of CCWM on the basis of zero-shot transfer tasks.
Specifically, we modify a number of basic configurations of the cheetah run task, such as the mass of
the agent and the friction coefficients between the joints. The details of the changes can be found
in Appendix D. Despite the increased sample efficiency of CCWM over Dreamer during training
(Figure 3b), both methods converge at similar values at 2×106 steps. We directly evaluate the trained
agents on the updated cheetah run task without further training to test their abilities on zero-shot
transfer. We report the mean evaluation scores (± 1 s.d.) of both agents over 15 random seeds, as well
as the one-sided t-test statistics and significance of the difference between the two sets of evaluations
in Table 1. The overall performance on zero-shot transfer of our approach is comparable with Dreamer
on simpler transfer tasks (full results shown in Appendix 5.3), and significantly outperforms Dreamer
on more non-trivial modifications to the original task. The introduction of retracing also improves the
stability of zero-shot transfer in general (reduced variance in evaluation). These confirm our previous
hypothesis that “learning via retracing” improves the ability of within-domain generalisation.

8

Published as a conference paper at ICLR 2022

5.4 ADAPTIVE TRUNCATION OF “LEARNING VIA RETRACING”

We wish to examine the effects of the proposed adaptive scheduling of truncation (Section 3.3). From
Figure 3b, we observe that the original CCWM is outperformed by Dreamer on the Hopper Stand
task, probably due to the large degree of “irreversibility” of the task comparing to the others such that
the naive representation learning by enforcing “learning via retracing” leads to suboptimal training.

0 1e5 2e5 3e5 4e5 5e5
steps

0

200

400

600

800

1000

Av
er

ag
e

Ev
al

ua
tio

n

walker walk

CCWM
Dreamer
CCWM-AT

0 1e5 2e5 3e5 4e5 5e5
steps

0

200

400

600

800

hopper stand
CCWM
Dreamer
CCWM-AT

Figure 5: Evaluation of Adaptive Truncation on
tasks with varying degrees of “irreversibility”.
Minimal improvement is observed on tasks with
low degree of “irreversibility” (walker walk in the
left panel); whereas significant improvements are
observed on tasks with high degree of “irreversibil-
ity” (hopper stand in the right panel).

From Figure 5, we observe that augmenting
CCWM with the proposed flexible truncation
schedule yields significant performance increase
on the Hopper-Stand task, with consistently bet-
ter sample efficiency than both Dreamer and the
standard CCWM. For tasks with less degree of
“irreversibility”, such as Walker-Walk (Figure 5
right), we do not observe significant improve-
ment by the introduction of adaptive truncation
since the amount of negative impacts were al-
ready minimal in the original settings. Similar
patterns are observed across the other tasks (no
noticeable improvement except for the Hopper-
Stand/Hop tasks). We extend our discussion on
adaptive truncation in Appendix C.

6 DISCUSSION

We proposed “learning via retracing”, a novel representation learning method for RL problems
that utilises the temporal cycle-consistency of the transition dynamics in addition to the predictive
reconstruction in the temporally forward direction. We introduce CCWM, a concrete model-based
instantiation of “learning via retracing” based on generative dynamics modelling. We empirically
show that CCWM yields improved performance over state-of-the-art model-based and model-free
methods on a number of challenging continuous control benchmarks, in terms of both the sample-
efficiency and the asymptotic performance. We also show that “learning via retracing” supports
stronger generalisability and more accurate long-range predictions, hence stronger planning, both
adhere nicely to our intuition and predictions.We note that “learning via retracing” is strongly affected
by the degree of “irreversibility” of the task. We propose an adaptive truncation scheme for alleviating
the negative impacts caused by the “irreversible” transitions, and empirically show the utility of the
proposed truncation mechanism in tasks with a large degree of “irreversibility”.

Hippocampal replay has long been thought to play a critical role in model-based decision-making in
humans and rodents (Mattar and Daw, 2018; Evans and Burgess, 2019). Recently, Liu et al. (2021)
showed how reversed hippocampal replays are prioritised due to its utility in non-local (model-based)
inference and learning in humans. CCWM can be interpreted as an immediate model-based instantia-
tion of the reversed hippocampal replay. Similar to intuitions from the computational neuroscience
literature (Penny et al., 2013), we also find that “learning via retracing” brings a number of merits
comparing to its counterparts that only uses forward rollouts. In addition to improved sample effi-
ciency and asymptotic performance, we show that CCWM also supports stronger generalisability
and extends the planning horizon, indicating that stronger model-based inferences are obtained.
Moreover, as discussed previously, “learning via retracing” can enable the learning of reversible “con-
trollable” internal states of the agent even when external features (e.g. location) are irreversible. Such
representation could be combined with task-specific global contextual information/representation
provided by an independent system to facilitate stronger policy learning. The independent system
could be supported by the hippocampal area, where reversed hippocampal “replay” of the allocentric
“cognitive map” could in turn drive reverse replay of egocentric sensory or motoric representations.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGEMENT

C.Y. is supported by the DeepMind studentship funded through UCL CDT in Foundational Artificial
Intelligence. N.B. is supported by the Wellcome Trust. The authors would like to thank Maneesh
Sahani, Peter Dayan, Jessica Hamricks, and the anonymous reviewers for helpful comments and
discussions.

REFERENCES

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.org/.
Software available from tensorflow.org.

G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, T. Dhruva, A. Muldal, N. Heess,
and T. Lillicrap. Distributed distributional deterministic policy gradients. ArXiv, abs/1804.08617,
2018.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym. arXiv preprint arXiv:1606.01540, 2016.

L. Buesing, T. Weber, S. Racanière, S. Eslami, D. J. Rezende, D. P. Reichert, F. Viola, F. Besse,
K. Gregor, D. Hassabis, and D. Wierstra. Learning and querying fast generative models for
reinforcement learning. ArXiv, abs/1802.03006, 2018.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

J. V. Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D. Moore, B. Patton, A. Alemi,
M. Hoffman, and R. A. Saurous. Tensorflow distributions. arXiv preprint arXiv:1711.10604, 2017.

D. Dwibedi, Y. Aytar, J. Tompson, P. Sermanet, and A. Zisserman. Temporal cycle-consistency
learning. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
1801–1810, 2019.

T. Evans and N. Burgess. Coordinated hippocampal-entorhinal replay as structural inference. In
NeurIPS, volume 32. NIPS, 2019.

N. Ferns, P. Panangaden, and D. Precup. Bisimulation metrics for continuous markov decision
processes. SIAM J. Comput., 40:1662–1714, 2011.

D. J. Foster and M. Wilson. Reverse replay of behavioural sequences in hippocampal place cells
during the awake state. Nature, 440:680–683, 2006.

C. Gelada, S. Kumar, J. Buckman, O. Nachum, and M. G. Bellemare. Deepmdp: Learning continuous
latent space models for representation learning. In International Conference on Machine Learning,
pages 2170–2179. PMLR, 2019.

D. R. Ha and J. Schmidhuber. World models. ArXiv, abs/1803.10122, 2018.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In ICML, 2018.

D. Hafner, T. Lillicrap, I. S. Fischer, R. Villegas, D. R. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. ArXiv, abs/1811.04551, 2019.

10

https://www.tensorflow.org/

Published as a conference paper at ICLR 2022

D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. ArXiv, abs/1912.01603, 2020a.

D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models. arXiv
preprint arXiv:2010.02193, 2020b.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner.
beta-vae: Learning basic visual concepts with a constrained variational framework. 2016.

R. E. Kalman. A new approach to linear filtering and prediction problems. 1960.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

V. R. Konda and J. Tsitsiklis. Actor-critic algorithms. In NIPS, 1999.

I. Kostrikov, D. Yarats, and R. Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learning with
augmented data. arXiv preprint arXiv:2004.14990, 2020.

A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep reinforcement
learning with a latent variable model. ArXiv, abs/1907.00953, 2020a.

L. Lee, B. Eysenbach, R. Salakhutdinov, S. Gu, and C. Finn. Weakly-supervised reinforcement
learning for controllable behavior. ArXiv, abs/2004.02860, 2020b.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies. The
Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Y. Liu, M. G. Mattar, T. E. Behrens, N. D. Daw, and R. J. Dolan. Experience replay is associated
with efficient nonlocal learning. Science, 372(6544), 2021.

S. Mahadevan. Proto-value functions: Developmental reinforcement learning. In Proceedings of the
22nd international conference on Machine learning, pages 553–560, 2005.

M. Mattar and N. Daw. Prioritized memory access explains planning and hippocampal replay. Nature
neuroscience, 21:1609 – 1617, 2018.

P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre,
K. Kavukcuoglu, D. Kumaran, and R. Hadsell. Learning to navigate in complex environments.
ArXiv, abs/1611.03673, 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Riedmiller.
Playing atari with deep reinforcement learning. ArXiv, abs/1312.5602, 2013.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. ArXiv, abs/1602.01783, 2016.

K. P. Murphy. Machine learning: a probabilistic perspective. 2012.

A. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding. ArXiv,
abs/1807.03748, 2018.

I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped dqn. Advances
in neural information processing systems, 29, 2016.

W. D. Penny, P. Zeidman, and N. Burgess. Forward and backward inference in spatial cognition.
PLoS Comput Biol, 9(12):e1003383, 2013.

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart,
D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver. Mastering atari, go, chess and shogi by
planning with a learned model. Nature, 588 7839:604–609, 2020.

11

Published as a conference paper at ICLR 2022

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous control
using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

M. Schwarzer, A. Anand, R. Goel, R. D. Hjelm, A. Courville, and P. Bachman. Data-efficient
reinforcement learning with self-predictive representations. In ICLR, 2021.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. nature, 550(7676):
354–359, 2017.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. Casas, D. Budden, A. Abdolmaleki, J. Merel,
A. Lefrancq, T. Lillicrap, and M. A. Riedmiller. Deepmind control suite. ArXiv, abs/1801.00690,
2018.

L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning research,
9(11), 2008.

O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A. Makhzani, H. Küttler,
J. Agapiou, J. Schrittwieser, et al. Starcraft ii: A new challenge for reinforcement learning. arXiv
preprint arXiv:1708.04782, 2017.

M. Wainwright and M. Jordan. Graphical models, exponential families, and variational inference.
Found. Trends Mach. Learn., 1:1–305, 2008.

Z. Yang, W. Chen, F. Wang, and B. Xu. Improving neural machine translation with conditional
sequence generative adversarial nets. arXiv preprint arXiv:1703.04887, 2017.

D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved
data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

T. Yu, C. Lan, W. Zeng, M. Feng, and Z. Chen. Playvirtual: Augmenting cycle-consistent virtual
trajectories for reinforcement learning. arXiv preprint arXiv:2106.04152, 2021.

M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. Deconvolutional networks. In 2010 IEEE
Computer Society Conference on computer vision and pattern recognition, pages 2528–2535. IEEE,
2010.

A. Zhang, R. McAllister, R. Calandra, Y. Gal, and S. Levine. Learning invariant representations for
reinforcement learning without reconstruction. ArXiv, abs/2006.10742, 2020.

T. Zhou, P. Krähenbühl, M. Aubry, Q. Huang, and A. A. Efros. Learning dense correspondence via
3d-guided cycle consistency. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 117–126, 2016.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE international conference on computer
vision, pages 2223–2232, 2017.

12

Published as a conference paper at ICLR 2022

A PSEUDOCODE FOR CCWM

The pseudocode for CCWM training is shown in Algorithm 1. In the current instance, we show
the full algorithm with the augmentation of adaptive truncation (Section 3.3). Given the adaptive
truncation, we need to slightly modify the loss function in Eq. 8.

L(θ, ψ, ζ) =
1

NT

N∑
n=1

T∑
τ=1

[LELBO(Onτ ; θ, ψ) + λMn
τ Lretrace(z̃

n
τ , ž

n
τ ;ψ, ζ)] , (9)

where Mn
τ is the entry τ of the mask vector Mn with values in {0, 1}, which we describe in

Algorithm 1.

Algorithm 1 Cycle-Consistency World Model (CCWM)

1: Given: policy π(a|s), encoders qφ(O), qψ1
(z′|z, a), qψ2

(z′|z, a, qφ(O′)), decoder qθ(O|z),
reverse action approximator ρζ(z, z′), latent horizon K, average loss Lavg = 0, counter c = 0,
adaptive truncation threshold, η, adaptive truncation sliding window size, S, current estimate of
the Q-function, Qγ , CCWM parameters: Θ = {φ, ψ1, ψ2, θ, ζ}.

2: Input: Batch of N sampled trajectories of length T , {On
tn:tn+T ,a

n
tn:tn+T }Nn=1.

3: for n = 1 to N do
4: O = {On

tn+k}Tk=1, a = {antn+k}T−1
k=0 .

5: for k = 1 to T −K do
6: Compute prior ẑk+1:k+K and posterior estimates z̃k+1:k+K using Eq. 5
7: Compute the sliding window average, [Q̄1, . . . , Q̄K−S], where Q̄i =

1
S

∑S
s=1Qγ(z̃i+s, ai+s)

8: Compute the step-wise difference, ∆ = [| Q̄2−Q̄1

Q̄1
|, . . . , | Q̄K−S−Q̄K−S−1

Q̄K−S−1
|]

9: Compute the adaptive truncation mask, M ∈ {0, 1}K , where Mk = 1 if ∨kj=k−S(∆j < η),
and 0 otherwise

10: Compute retraced states žk:k+K using Eq. 6
11: Compute the latent model loss Lk using Eq. 9.
12: Update Lavg ← c

c+1Lavg + 1
c+1Lk.

13: Increment counter, c← c+ 1.
14: end for
15: end for
16: Compute the gradient,∇ΘLavg.
17: Update the model parameters, Θ← Θ + α∇ΘLavg.

B MODEL-FREE INSTANTIATION OF “LEARNING VIA RETRACING”

As mentioned in Section 3, “learning via retracing” admits many degrees of freedom in its implemen-
tation. CCWM provides one such instantiation under the model-based RL setting, here we provide an
alternative model based on “learning via retracing” under the model-free RL setting. The graphical
illustration of the model-free instantiation is shown in Figure 6.

Visual inspection indicates the high similarity between the graphical models of the model-free version
and the model-based version (CCWM), but there are essential differences. Similar to PlayVirtual (Yu
et al., 2021), due to the model-free nature of the model, we no longer requires further supervisory
signals obtained from ”learning via retracing” to contribute to training of the dynamics model, hence
we are free to employ an independent ”reversed” dynamics model (denoted by the red arrows in
the reversed direction in Figure 6) for performing the retracing operations. Moreover, given the
independent ”reversed” dynamics model, we no longer requires approximation of the ”reversed”
actions, hence removing the necessity of using ρ as in Figure 2b, and we only need to use the ground-
truth forward actions for the retracing operations. The learned representation in this case would
benefit the downstream model-free RL agent since the resulting state representation is efficient for the
prediction of future states. We note a key difference between our model-free instantiation of learning
via retracing and PlayVirtual (Yu et al., 2021), that we have consistently employed probabilistic

13

Published as a conference paper at ICLR 2022

· · ·
zt zt+1 zt+2

· · ·

Ot Ot+1 Ot+2

at−1 at at+1

Õt Õt+1 Õt+2

žt+2žt+1žt

žt+2 = ẑt+2Lretrace

forward
pass

backward
pass

Figure 6: Graphical illustration of a model-free instantiation of ”learning via retracing”. The forward
model is a state-space model and is trained in a generative fashion under the variational principles.
The retracing operations are now performed with a separate ”reversed” dynamics model (indicated by
the red arrows). Given the independent ”reversed” dynamics model, we can use the same action as in
the forward model for retracing, removing the necessity of using the ”reversed” action approximator.

models over deterministic models for modelling the embedding and latent transitions, which naturally
provides posterior predictive uncertainty that can be used for various downstream tasks, such as
exploration (Osband et al., 2016).

Here we stick with the general architectural choice of using a sequential state-space model for the
forward dynamics model as in CCWM, but the ”reversed” dynamics model can be chosen to be
deterministic and trained discriminatively jointly with the entire model. Note that Figure 6, like
CCWM, only describes one of many possible instantiations of ”learning via retracing”, we leave
further investigation to future work.

C FURTHER DISCUSSION ON TRUNCATION AND THE DEGREE OF
“IRREVERSIBILITY”

In Section 3.3, we introduced the adaptive truncation as a general-purpose method for improving
the performance of CCWM in continuous control tasks. On a high level, we choose to remove
the transitions from model/representation learning through ”learning via retracing” whenever large
changes in the Q-values occur, hence the ”irreversibility” of the transitions depend on the local
continuity of the corresponding Q-values. Our argument is largely based on Theorem 1 from Gelada
et al. (2019), which we re-iterate below for consistency.

Theorem 1 For an MDP M = 〈S,A,R,P, γ〉 and the corresponding DeepMDP M̄ =
〈S̄,A, R̄, P̄, γ〉 (see Section 2.2 in Gelada et al. (2019) for detailed definition of DeepMDP), let dS̄
be a metric over S̄ , φ : S → S̄ be the embedding function, L∞R̄ = sups∈S,a∈A |R(s, a)−R̄(φ(s), a)|
and L∞P̄ = sups∈S,a∈AW (φP(·|s, a), P̄(·|φ(s), a)) be the global loss function (for training the
DeepMDP, where W (·, ·) is the Wasserstein distance). For any KV̄ -Lipschitz policy π̄ ∈ Π̄, the
representation φ guarantees that for all s1, s2 ∈ S, and a ∈ A,

|Qπ̄(s1, a)−Qπ̄(s2, a)| ≤ KV̄ dS̄(φ(s1), φ(s2)) + 2
L∞R̄ + γKV̄ L

∞
P̄

1− γ (10)

The proof of Theorem 1 can be found in Appendix A.2 in Gelada et al. (2019). The high-level
interpretation for Theorem 1 is that the learned representation space should admit the situation where
two states with different values collapse onto the same representations. Theorem 1 tells us that
given a good representation (embedding function), the absolute difference between the Q-values

14

Published as a conference paper at ICLR 2022

of two latent states should lower-bound the distance (some metric over the representation space)
between the representations of the two states (up to some additive and scalar multiplicative constants).
Hence whenever there is a large change in the Q-values of between the adjacent states in a trajectory,
there must also be a large jump in the representation space, which we interpret as an ”irreversible”
transition. The latter interpretation can be substantiated with the visualisation of the low-dimensional
embeddings of the learned representations at different stages in Figure 7 and Figure 8. Figure 7
shows the TSNE embeddings of a trajectory taken by a successfully trained agent in the Cheetah
Run task (we focus on the left figure in both Figure 7(a) and (b), please refer to the full discussion of
Figure 7 in Appendix E). We see that the resulting TSNE-embeddings of the representation along a
trajectory show that the magnitude of the transitions in the representation space is consistently low,
hence respecting the temporal locality of the states along the trajectory. However, in Figure 8, where
we show the TSNE-embeddings of the representation along a trajectory in an under-trained CCWM
agent in the Hopper Stand task (∼ 2 × 105 training steps), we observe clear clusters of the state
representations along the same trajectory. Moreover, the clustered structure also shows locality with
respect to the temporal ordering (along the trajectory), showing that even in tasks such as Hopper
Stand, which we view as the more ”irreversible” task, a large proportion of all transitions allows
retracing operations, which can contribute as additional samples for the training of representation
and the dynamics model through ”learning via retracing”. The quality of the overall representation
learning is dependent on the correct identification of the ”irreversible” transitions (large jumps
between adjacent states in Figure 8), which necessitates the usage of the adaptive truncation approach
to identify and remove the ”irreversible” transitions from corrupting the learning process. These
evidence further substantiate our proposal of the overall framework of ”learning via retracing” and
the adaptive truncation technique.

We note that as the agent is undergoing a sequence of consecutive ”irreversible” transitions, such as
when the walker agent is falling down shown in Figure 1(b) of the main paper, the transitions the agent
goes through are ”irreversible” albeit having similar Q-values (all leading to the inevitable fallen
down state). In order to deal with such ”continuity” in the ”irreversibility” of the transitions along
the same trajectory, the adaptive truncation is introduced by detecting the changes in the average
Q-values over a sliding window instead of the single Q-values, which allows a delayed detection
of the sudden (and extended) changes in the state values along the same trajectory (the degree of
delay depends on the choice of the threshold of adaptive truncation and the sliding window size,
see Section 3.3 and Algorithm 1 for more details). Hence upon the ”delayed” identification of the
”irreversible” transition at state st, we remove the state as well as a certain number of states preceding
st (i.e., {st−τ , st−τ+1, . . . , st}) from ”learning via retracing”. We note that the choice of the sliding
window size, S, threshold, η and the number of preceding states to remove, τ , are all chosen based
on hyperparameter tuning at this stage. We leave the automatic determination of the parameters
associated with adaptive truncation to future work.

We additionally propose an intermediate approach for ruling out the “irretraceable” states from
“learning via retracing”, based on fixed scheduling of truncating out the final proportions of each
collected episode (but still use these samples for representation learning in the forward direction). In
many episodic environments, (e.g., LunarLander; Brockman et al. (2016)), each episode terminates
upon either successful completion of the task or failing the task (e.g., crashing in LunarLander). For
the failure cases, which is more often during the early phase of training, even the transitions leading
to the failure states might be considered “irreversible” (falling android; Figure 1b). Hence early
truncation of each episode is able to rule out many such “irreversible” transitions from contributing
to representation/model learning. We additionally propose annealing schedules for the truncation
proportion as given the training of the controller, successful completion will be more frequently
encountered comparing to the failure cases.

D IMPLEMENTATION DETAILS

We implement the latent transition dynamics model of CCWM using the RSSM (Hafner et al., 2019),
utilising a Gated Recurrent Unit (GRU) as the core component (Chung et al., 2014) in combination
with multi-layer perceptrons (MLP). The RSSM is used for modelling the predictive inferences,
qψ1

(zt+1|zt, at) and qψ2
(zt+1|zt, at, et+1), from Eq. 2. The context embedding function is given

by a convolutional encoder that deterministically embeds the high-dimensional observation into
a context vector. The dimension of the latent space is set to equal 32, there is low sensitivity of

15

Published as a conference paper at ICLR 2022

the performance with respect to the dimension of the latent embedding. The generative function
qθ(Ot|zt) is implemented with the combination of an MLP and a deconvolution network (Zeiler
et al., 2010), outputting the means of the Gaussian distributions for each pixel value of the decoded
observation. The reward distribution R̂(r|z) is modelled by an MLP, outputting a univariate Gaussian
distribution. The supervision of the model learning is based on the ELBO and the bisimulation metric
as described in Section 3.

In the implementation of our policy agent, A3C, we implement the critic (value network) using an
MLP, with latent state inputs. The value network models a Gaussian distribution with means and
variances. The policy network also describes a Gaussian distribution, with means and variances
parameterised by an MLP. We used distributed actors for interacting with the environment for more
efficiency collection of sampled episodes as in (Mnih et al., 2016). The value function is optimised by
maximising the probability of the “ground-truth” values estimated by the lambda return (Sutton and
Barto, 2018). The policy network is updated using policy gradient estimated based on generalised
advantage estimation (GAE) ()schulman2015high.

We use the Adam optimiser for updating the parameters for the model, value function, and policy
networks (Kingma and Ba, 2014).

The specific configurations for the neural network implementations is summarised in Table 2. Note
that the activation functions for all non-output layers are assumed to be ReLU activation function
unless otherwise stated.

All neural network implementation are carried out using TensorFlow (Abadi et al., 2015) and
TensorFlow Distributions (Dillon et al., 2017).

For the actual training, the batch size is chosen to be 64, and all sampled trajectories are taken
to be 50 timesteps long. Greedy evaluation is performed every 104 training steps. The reported
evaluation scores are averaged values over 5 random seeds. We adopt the same scheme for setting the
action repeats equal to 2 across all tested environments as in (Hafner et al., 2020a). The parameter λ
controlling the weights of the retrace auxiliary loss in Eq. 8 is set to 1.0. The discounting factor for
the expected value function is set to 0.99.

The predictive reconstruction (Figure 4, Figure 10) is performed by firstly applying the dynamics
model to the first 5 frames of the trajectory, and starting from the posterior latent estimates at step 5,
the latent predictions are performed given solely the action inputs, and the predicted latent estimates
are then decoded back into the observable space. To ensure fair comparison, as well as to demonstrate
that CCWM improves model learning beyond solely sample efficiency, the model of the baseline
Dreamer is provided further training, until the training steps is twice the training steps of CCWM and
the final performance reaches a comparable score of CCWM. Specifically, for both the walker walk
and cheetah run tasks, the Dreamer model used for reconstruction is provided with 2× 106 training
steps.

For the implementation details of the generalisability experiments in Section 5.3, we man-
ually changed the corresponding settings of the agent in the task-dependent XML file (see
e.g., https://github.com/deepmind/dm_control/blob/master/dm_control/
suite/cheetah.xml). We choose the semantically interpretable physical quantities that we
hypothesise to alter the underlying task MDP, including changing mass from 14 to any one of the
list: [6, 8, 10, 20], changing the friction constants from (0.4, 0.1, 0.1) to any element of the list:
{(i, j, k)|i ∈ {0.6, 0.8}, j ∈ {0.4, 0.5}, k ∈ {0.3, 0.4}}, changing the stiffness constants from 8
to any of the element in {2, 6, 10}. We directly evaluate (without any further training) the trained
CCWM and Dreamer on the original task structure on the tasks corresponding to each of the above
changes and any combination of the individual changes. The change in reward setting is merely a
constant reward reshaping across all transitions, and should not result in any difference in the task
dynamics, hence the evaluations, and we use this as the sanity check and a baseline.

Note that in Eq. 7, we follow (Zhang et al., 2020) to replace the 1-Wasserstein distance with the
2-Wasserstein distance, since the 2-Wasserstein distance between two Gaussians has closed-form
expression:

W2(N (µi,Σi),N (µj ,Σj) = ||µi − µj ||22 + ||Σ1/2
i − Σ

1/2
j ||2F (11)

where || · ||F is the matrix Frobenius norm. This admits analytical computation instead of having
sample from the joint distribution hence reducing the variance of loss function.

16

https://github.com/deepmind/dm_control/blob/master/dm_control/suite/cheetah.xml
https://github.com/deepmind/dm_control/blob/master/dm_control/suite/cheetah.xml

Published as a conference paper at ICLR 2022

COMPONENT ATTRIBUTE VALUE

RSSM INTERNAL STATE DIMENSION 256
MLP LAYER 1 UNITS 256
MLP LAYER 2 UNITS 64

EMBEDDING FUNCTION CONV LAYER 1 NUMBER OF FILTERS 32
CONV LAYER 1 KERNEL SIZE 4

CONV LAYER 2 NUMBER OF FILTERS 64
CONV LAYER 2 KERNEL SIZE 4

CONV LAYER 3 NUMBER OF FILTERS 128
CONV LAYER 3 KERNEL SIZE 4

CONV LAYER 4 NUMBER OF FILTERS 256
CONV LAYER 4 KERNEL SIZE 4
FINAL OUTPUT OPERATION CONCATENATION

GENERATIVE MODEL MLP LAYER 1 NUMBER OF UNITS 1024
DECONVOLUTION LAYER 1 NUMBER OF FILTERS 128

DECONVOLUTION LAYER 1 KERNEL SIZE 5
DECONVOLUTION LAYER 2 NUMBER OF FILTERS 64

DECONVOLUTION LAYER 2 KERNEL SIZE 5
DECONVOLUTION LAYER 3 NUMBER OF FILTERS 32

DECONVOLUTION LAYER 3 KERNEL SIZE 6
DECONVOLUTION LAYER 4 NUMBER OF FILTERS 3

DECONVOLUTION LAYER 4 KERNEL SIZE 6

REWARD MODEL MLP LAYER 1 NUMBER OF UNITS 512
MLP LAYER 2 NUMBER OF UNITS 512
MLP LAYER 3 NUMBER OF UNITS 1

VALUE MODEL MLP LAYER 1 NUMBER OF UNITS 512
MLP LAYER 2 NUMBER OF UNITS 512
MLP LAYER 3 NUMBER OF UNITS 512
MLP LAYER 4 NUMBER OF UNITS 1

POLICY MODEL ALL FULLY CONNECTED LAYERS ACTIVATION ELU
MLP LAYER 1 NUMBER OF UNITS 512
MLP LAYER 2 NUMBER OF UNITS 512
MLP LAYER 3 NUMBER OF UNITS 512
MLP LAYER 4 NUMBER OF UNITS 512
MLP LAYER 5 NUMBER OF UNITS 2

ADAM OPTIMISER LEARNING RATE FOR MODEL LEARNING 6× 10−4

LEARNING RATE FOR VALUE MODEL 8× 10−5

LEARNING RATE FOR POLICY MODEL 8× 10−5

Table 2: Configurations for the neural network implementations of CCWM.

For our implementation of the adaptive truncation technique (Section 3.3), the associated parameters
that require pre-specification are the detection threshold, η, adaptive truncation sliding window size,
S. There are also the optional parameters, the number of states preceding the detected changes to be
omitted from ”learning via retracing” (which is set to equal to S by default, see Line 9 in Algorithm 1
and Section 3.3), τ , and the number of initial steps to be omitted from adaptive truncation (due to
under-training of the critic, which is set to 0 by default), ξ. The default values for the parameters
we used for the empirical evaluation shown in Figure 5 are: η = 0.10, S = 10, τ = 5, ξ = 1× 105.
The hyperparameters are determined through standard grid search, and we leave the automatic
determination of the parameters associated with adaptive truncation to future work.

The python implementation of CCWM can be found at https://github.com/changmin-yu/
CCWM_code.

17

https://github.com/changmin-yu/CCWM_code
https://github.com/changmin-yu/CCWM_code

Published as a conference paper at ICLR 2022

20 10 0 10 20

20

10

0

10

20
true states

20 10 0 10 20
20

10

0

10

20
retraced states

0 100 200 300 400

(a)

6 5 4 3 2 1 0

2

4

6

8

0

1

2
34

5
6

7

8

9
10 11 12 13

14

15

16
17

18
19

2021
22

23

24

25
26

27 28 29 30

31

32
33343536

37
3839

40

41

42
43 44 45 46

47

48

49
505152

53
54

55

56

57
58 59 60

61
62

63
64

65
66

67
6869

70
71

72

73
74

true states

4 2 0 2 4

0

2

4

6

75

74
73 72

71
70
69

68
676665

6463

62

61
60 59 58 57 56 55

54

53

52
515049

48
47

46

45

44
43 42

41
40

39

38
37
36
35343332

31

30

2928
27

26
25 24

23

22

21
201918

1716
15

14

13
12 11 109

8 7

6

5

4
321

retraced states

0 10 20 30 40 50 60 70

(b)

Figure 7: Visualisation of similarity between the ground-truth states and retraced states using
tSNE. The two-dimensional embeddings for a 500-step trajectory (a) and a 76-step subtrajectory (b)
is shown. Color of the scatters indicates the temporal ordering of the states within the trajectories.

30 20 10 0 10 20 30
40

30

20

10

0

10

20

30

0

100

200

300

400

Figure 8: Visualisation of state representations along the same trajectory in Hopper Stand task.
We show the TSNE-embeddings of the state representations over a trajectory of length 500 steps in
Hopper Stand task, with a standard CCWM agent (without adaptive truncation) that has received
2×105 training steps. Clear clustered structured can be observed in the visualisation, which indicates:
(a) the existence of ”irreversible” transitions, and (b) the majority of the transitions are ”reversible”,
hence ”learning via retracing” should still apply to facilitate improved sample efficiency.

75 50 25 0 25 50 75

75

50

25

0

25

50

75

5.5

6.0

6.5

7.0

7.5

8.0

100 50 0 50 100

75

50

25

0

25

50

75

90

95

100

105

110

115

Figure 9: Visualisation of the structure of the state representations with respect to the Q-values.
We show the TSNE-embeddings of the state representations of 10000 randomly sampled states (from
the cached replay buffer) of CCWM (left) and Dreamer (right) in the Walker Walk task. Visual
inspections show that CCWM leads to more disentangled state representations with respect to the
state-values, hence potentially supports stronger generalisability (Higgins et al., 2016).

18

Published as a conference paper at ICLR 2022

Tr
u

e
C

C
W

M
D

re
am

er

Context 10 15 20 25 30 35 40 45 50

Tr
u

e
C

C
W

M
D

re
am

er
w

alker w
alk

ch
eetah

 ru
n

6

Figure 10: Qualitative comparison of long-range predictive reconstruction of CCWM and
Dreamer. Predictive rollouts over 45 time-steps given the actions are computed using the rep-
resentation models. Comparing to Dreamer, CCWM consistently generates more accurate predictive
reconstructions over longer time spans. CCWM generates accurate predictions up to ∼ 18 steps on
Walker task, and ∼ 35 steps on Cheetah task; Dreamer generates accurate predictions up to ∼ 8 steps
on Walker task, and ∼ 15 steps on Cheetah task (evaluated over 5 randomly sampled trajectories).

E FURTHER INVESTIGATION OF THE EFFECTS OF “LEARNING VIA
RETRACING” IN THE SAMPLE EFFICIENCY OF LEARNING

In order to demonstrate that “learning via retracing” indeed brings additional “valid” supervision
signals for model learning, we need to examine whether the retracing operation is correctly learned.
In Figure 7 we show the t-SNE embeddings of the true and retraced latent states over a trajectory
of 500 steps of the trained agent on the cheetah run task (Van der Maaten and Hinton, 2008). We
observe a similar dominant ring structure in both embeddings. This matches our intuition, since
during running, the simulated cheetah repeats its states periodically to resume running at a high speed.
This is more clearly observed from a sub-trajectory towards the end of the entire episode in Figure 7b,
where most states are densely distributed on both sides of the ring and more loosely distributed on the
paths connecting the two sides for both the original and retraced states. Moreover, during the early
stage of the episode (darker dots in Figure 7a), the agent starts to accelerate from stationary and the
states of the agent are periodic in nature but differs from the states when the agent is running at full
speed. Such early-phase structure is correctly captured by the retracing operation. Collectively these
evidence support that the retracing is correctly learned hence provides useful supervision signals for
model training.

F LONG-RANGE PREDICTION RECONSTRUCTION

In Figure 10, we show the complete 45-step predictive reconstructions for CCWM and Dreamer on
“walker walk” and “cheetah run” tasks. We see that CCWM is able to retain accurate predictions
over the entire 45 predictive time-steps in the cheetah task, whereas Dreamer fails to do so. By
looking more carefully at Figure 10, latent rollouts in the embedding space learned by CCWM
yield less accurate predictions for the “irrecoverable” states (e.g., when the agent is falling, see
Section 5.4 for further discussion). This property of the learned representation enables “task-aware
planning”, i.e., the behaviour learning agent is trained to acquire more precise control policy such that
the “irrecoverable” states that might hinder the overall learning process are minimally encountered,
leading to improved efficiency and quality of learning.

19

Published as a conference paper at ICLR 2022

0.2 0.4 0.6 0.8 1.0
1e6

0
250
500
750

1000

Ev
al

ua
tio

n
Re

tu
rn

Cheetah Run

0.5 1.0 1.5 2.0
1e6

0

250

500

750

Finger Spin

1 2 3 4 5
1e5

0

50

100

150

200
Hopper Hop

0.2 0.4 0.6 0.8 1.0
1e6

0

250

500

750

1000
Hopper Stand

2 4 6 8
Steps 1e5

0

200

400

Ev
al

ua
tio

n
Re

tu
rn

Quadruped Run

2 4 6 8
Steps 1e5

0

500

1000

Reacher Easy

0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

200

400

Walker Run

0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

250

500

750

1000
Walker Walk

L2 CCWM-A3C reconstruction

Figure 11: Full ablation studies of the retracing loss function. CCWM with bisimulation metrics
as the retracing loss function consistently outperforms the alternatives using the L2 and reconstruction
retracing error.

CHANGED COMPONENTS CCWM DREAMER P-VALUE SIGNIFICANT?
(MEAN ±1 S.D.) (MEAN ±1 S.D.) (3 S.F.) (α = 0.01)

R 630.40± 6.49 629.00± 47.01 5.22× 10−1 NO
R + M 635.37± 40.12 597.43± 87.68 7.84× 10−2 NO
R + F 643.58± 9.29 649.27± 3.96 9.76× 10−1 NO
R + S 634.80± 10.92 646.07± 7.78 9.98× 10−1 NO
R + M + F 628.07± 36.95 468.82± 94.73 7.27× 10−6 YES
R +M + S + F 641.89± 28.67 562.58± 93.91 3.97× 10−3 YES

Table 3: Evaluation of trained CCWM and Dreamer on the ability of zero-shot transfer in cheetah run
tasks with different configurations. (R: Reward; M: Mass; F: Friction; S: Stiffness.)

G FULL ABLATION STUDIES ON THE RETRACE LOSS FUNCTION

In Figure 11, we show the full ablation studies of the retracing loss function in CCWM. We observe
that the bisimulation metric retracing loss function consistently outperforms the other alternatives (L2
and reconstruction error). This result conforms with our hypothesis that cycle-consistency supervision
given bisimulation metrics poses a stronger constraint on the learning of the representation, leading
to a learned representation that better respect the cycle-consistency properties of the environment.

H FULL RESULTS OF ZERO-SHOT TRANSFER

Please refer to Table 3 for full results on the zero-shot transfer experiment. Note that the R-changes
only rescale the reward function by a constant, hence should not count towards a transfer task.

20

