UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Discontinuous Galerkin methods for Friedrichs systems with irregular solutions

Jensen, Max; (2004) Discontinuous Galerkin methods for Friedrichs systems with irregular solutions. Doctoral thesis (D.Phil), University of Oxford. Green open access

[thumbnail of thesisjensen.pdf]
Preview
Text
thesisjensen.pdf - Accepted Version

Download (1MB) | Preview

Abstract

This work is concerned with the numerical solution of Friedrichs systems by discontinuous Galerkin “nite element methods (DGFEMs). Friedrichs systems are boundary value problems with symmetric, positive, linear “rst-order partial differential operators and allow the uni“ed treatment of a wide range of elliptic, parabolic, hyperbolic and mixed-type equations. We do not assume that the exact solution of a Friedrichs system belongs to a Sobolev space, but only require that it is contained in the associated graph space, which amounts to differentiability in the characteristic direction. We show that the numerical approximations to the solution of a Friedrichs system by the DGFEM converge in the energy norm under hierarchicalh- and p- re“nement. We introduce a new compatibility condition for the boundary data, from which we can deduce, for instance, the validity of the integration-by-parts formula. Consequently, we can admit domains with corners and allow changes of the inertial type of the boundary, which corresponds in special cases to the componentwise transition from in- to out”ow boundaries. To establish the convergence result we consider in equal parts the theory of graph spaces, Friedrichs systems and DGFEMs. Based on the density of smooth functions in graph spaces over Lipschitz domains, we study trace and extension operators and also investigate the eigensystem associated with the differential operator. We pay particular attention to regularity properties of the traces, that limit the applicability of energy integral methods, which are the theoretical underpinning of Friedrichs systems. We provide a general framework for Friedrichs systems which incorporates a wide range of singular boundary conditions. Assuming the aforementioned compatibility condition we deduce well-posedness of admissible Friedrichs systems and the stability of the DGFEM. In a separate study we prove hp-optimality of least-squares stabilised DGFEMs.

Type: Thesis (Doctoral)
Qualification: D.Phil
Title: Discontinuous Galerkin methods for Friedrichs systems with irregular solutions
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Mathematics
URI: https://discovery.ucl.ac.uk/id/eprint/10163898
Downloads since deposit
Loading...
47Downloads
Download activity - last month
Loading...
Download activity - last 12 months
Loading...
Downloads by country - last 12 months
Loading...

Archive Staff Only

View Item View Item