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Abstract

Discontinuous Galerkin Methods

for Friedrichs Systems with Irregular Solutions

Max Jensen Doctor of Philosophy

Corpus Christi College Michaelmas Term 2004

This work is concerned with the numerical solution of Friedrichs systems by discontinuous

Galerkin finite element methods (DGFEMs). Friedrichs systems are boundary value problems

with symmetric, positive, linear first-order partial differential operators and allow the unified

treatment of a wide range of elliptic, parabolic, hyperbolic and mixed-type equations. We do

not assume that the exact solution of a Friedrichs system belongs to a Sobolev space, but only

require that it is contained in the associated graph space, which amounts to differentiability

in the characteristic direction.

We show that the numerical approximations to the solution of a Friedrichs system by the

DGFEM converge in the energy norm under hierarchical h- and p- refinement. We introduce

a new compatibility condition for the boundary data, from which we can deduce, for instance,

the validity of the integration-by-parts formula. Consequently, we can admit domains with

corners and allow changes of the inertial type of the boundary, which corresponds in special

cases to the componentwise transition from in- to outflow boundaries.

To establish the convergence result we consider in equal parts the theory of graph spaces,

Friedrichs systems and DGFEMs. Based on the density of smooth functions in graph spaces

over Lipschitz domains, we study trace and extension operators and also investigate the eigen-

system associated with the differential operator. We pay particular attention to regularity

properties of the traces, that limit the applicability of energy integral methods, which are the

theoretical underpinning of Friedrichs systems. We provide a general framework for Friedrichs

systems which incorporates a wide range of singular boundary conditions. Assuming the afore-

mentioned compatibility condition we deduce well-posedness of admissible Friedrichs systems

and the stability of the DGFEM. In a separate study we prove hp-optimality of least-squares

stabilised DGFEMs.
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Introduction

In 1958 Friedrichs introduced a class of boundary value problems which admits the study

of a wide range of differential equations in a unified framework. Although these boundary

value problems, today known as Friedrichs systems, consist of systems of linear differential

equations of first-order, transformations of second-order elliptic, parabolic and hyperbolic

equations into the setting of Friedrichs are known. Also, many other equations, such as first-

order symmetric hyperbolic systems and second-order equations with anisotropic diffusion,

can be analysed with Friedrichs’ methodology. Yet, while the exploration of such diverse

boundary value problems in a unified framework is of great theoretical value, Friedrichs’ main

motivation was of more practical nature. A number of important physical phenomena are

attributed in the mathematical model to a change of type of the governing equations. We

highlight, in particular, the study of transonic flow, which is of great practical significance. In

this setting, regions of subsonic flow correspond to a local model of elliptic type while regions

of supersonic flow are represented by a hyperbolic equation.

With Friedrichs’ aim in mind to provide a unified treatment for these diverse classes of

equations, it is inevitable that solutions to Friedrichs systems incorporate the mathematical

characteristics of solutions of the individual differential equations. Thus a solution to a

Friedrichs system may be discontinuous as this is not an unusual feature when considering

hyperbolic equations. A solution may exhibit poles at corners of the domain as is well-

documented in the case of elliptic boundary value problems. The list could be extended

further, giving reference to holomorphy, boundary and interior layers and many other familiar

features. Clearly, trying to capture all of these characteristics simultaneously is a major

challenge which remains an unresolved problem at present. The main difficulty is the correct

implementation of the boundary conditions and the treatment of corners of the domain.

Indeed, in order to prove existence and uniqueness of solutions Friedrichs had to impose

constraints on the boundary conditions which severely restricted the range of problems he

was able to analyse. In the language of fluid dynamics he demanded that the number of

in- and outflow components of the differential operator is constant on each simply connected

3



INTRODUCTION 4

component of the domain boundary. In this case one says that the boundary is of constant

multiplicity. Also, he only covered corners by means of case studies rather than within

the general theory. Many authors have since then attempted to overcome these limitations;

we name Morawetz, Lax, Rauch, Phillips and Sarason in particular. Significant progress

has been achieved on individual problems such as the Frankl equation, which serves as a

prototype for transonic flow, cf. (Morawetz 1958) and (Lax and Phillips 1960). Also the

general theory has been advanced steadily. Under certain conditions one can now ensure the

well-posedness of Friedrichs systems with a boundary of non-constant multiplicity, cf., for

instance, (Rauch 1994). Similarly, a number of criteria for boundary value problems on non-

smooth domains have been introduced to guarantee the existence and uniqueness of solutions.

We give a more detailed account on these results in Section 2.6 of this dissertation.

Already in his original paper Friedrichs considered the numerical solution of Friedrichs systems

by means of a finite difference scheme. Several alternative methods have been proposed to

find approximate solutions of Friedrichs systems, including finite volume and finite element

methods. In this dissertation we focus on the application of discontinuous Galerkin finite

element methods (DGFEMs) to Friedrichs systems. These finite element methods include

jump terms originating from a weak formulation of the boundary value problem due to a lack

of continuity within the finite-dimensional approximation space.

DGFEMs exhibit a number of advantages over competing schemes, which are crucial for the

numerical solution of Friedrichs systems. We emphasise their main features:

• DGFEMs for Friedrichs systems are stable in the associated energy norm, which is

stronger than the L2-norm, without requiring the presence of additional stabilising

terms. The constant in the stability bound does not depend on the exact solution u and

is therefore insensitive to discontinuities of u. However, we remark that this constant

does depend on the coefficients of the differential operator; hence it is advisable to

stabilise the method, when it is employed at an intermediate stage, in the course of the

solution of a nonlinear problem.

• Typically, the regularity of the exact solution of a Friedrichs system varies significantly

throughout the domain. Results from approximation theory show that in regions of high-

regularity the exact solution is well approximated by polynomials of high degree, while

in regions of low regularity it is preferable to locally decrease the mesh size. DGFEMs

allow the coupling of elements with high and low polynomial degrees without loss of

efficiency. It is far more intricate to deal with a non-uniform distribution of polynomial

degrees when continuous finite elements are used. In this case care must be taken that
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the numerical solution in elements with a high polynomial degree is continuously linked

to the solution in neighbouring elements where a lower degree polynomial solution has

been used.

• The weak continuity requirements between finite elements in the formulation of the

discontinuous Galerkin finite element method allows one to easily combine elements

of different shape with each other. Indeed, curved boundaries and other geometrical

features can be naturally implemented in the discontinuous Galerkin framework. This

makes the method suitable for computations on complicated domains.

• The implementation of inhomogeneous boundary conditions follows naturally from the

underlying weak formulation of the boundary value problem. In contrast, continuous fi-

nite element schemes such as the one proposed in (LeSaint 1973/74) enforce the bound-

ary conditions by restriction of the trial space. Yet, if the inhomogeneous boundary

conditions cannot be satisfied exactly by functions in the trial space, e.g. because they

are not of polynomial type, then a technique has to be devised to single out functions

which satisfy the boundary conditions in an approximate sense. Ensuring the stability

of such a technique, in particular in view of type-changes, is a non-trivial task that can

be avoided in the framework of DGFEMs.

• For equations of hyperbolic type with a uniform direction of hyperbolicity, cf. Sec-

tion 2.5, the discontinuous Galerkin solution can be calculated element by element.

This is closely related to the fact that discontinuous Galerkin methods can also be

utilised for the time-discretisation of partial differential equations.

These benefits highlighted the fact that the discontinuous Galerkin finite element method

is capable of solving a wide range of Friedrichs systems in a natural and efficient manner.

Clearly, the advantages of the DGFEMs over other schemes are most apparent for problems

of variable regularity and for complicated domains. In fact, we point out that if the exact

solution is globally smooth and if the computational domain is sufficiently simple, then it

should not be expected that the discontinuous Galerkin method outperforms carefully selected

finite difference schemes and simpler continuous finite element methods. Nevertheless, in

early publications, a priori estimates for the discontinuous Galerkin method were limited

to Friedrichs systems whose solution u is globally smooth, i.e. where u is contained in a

Sobolev space W k,p(Ω), Ω being the domain of the boundary value problem and k ∈ N, see

(LeSaint and Raviart 1974) or (Bey and Oden 1996). This shortfall was addressed in (Houston,

Schwab and Süli 2000b) where scalar differential equations were considered. In this paper the

exact solution is only required to be elementwise contained in a Sobolev space so that local
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differences in the regularity could be accounted for by the error bound. Nevertheless, this

paper excludes a very important situation when the exact solution exhibits a discontinuity

along a characteristic curve. There is only one exception, namely when the computational

mesh is exactly aligned with the discontinuity of u, in which case the error bound in (Houston

et al. 2000b) can be applied.

The aim of this dissertation is to extend the analysis of the discontinuous Galerkin method

to Friedrichs systems with discontinuous solutions. More specifically we want to give a mean-

ingful description of the method in this more general setting and prove its convergence. It

is easily seen that for this endeavour the scale of Sobolev spaces is quite unsuitable. On

the one hand, for the spaces W s,2(Ω) = Hs(Ω) with index s ∈ [0, 1/2 ) the construction of

a trace operator by means of density of smooth functions is not possible and thereby the

notion of the boundary value problem and also of the DGFEM becomes unclear. On the

other hand if s ≥ 1/2 then discontinuous solutions cannot be treated in sufficient generality,

as is demonstrated by the following example.

Example 1 Let χ be the characteristic function of the interval (−1/2 ,
1/2 ) in R and let

x = (x1, x2, . . . , xn) = (x1, x
′) where x′ = (x2, . . . , xn). We consider the function

u(x) = χ(x1) e−|x′|2/2, x ∈ R
n.

The Fourier transformation of this function is

(Fu)(ξ) = (2π)n−1 sin(ξ1/2)
ξ1/2

e−|ξ′|2/2, ξ ∈ R
n.

Therefore the Sobolev norm ‖u‖2
W s,2(Ω) is equal to∫

Rn

(1 + |ξ|2)s|Fu|2 dξ= (2π)2n−2

∫
Rξ1

(1 + |ξ1|2)s
∣∣∣sin(ξ1/2)

ξ1/2

∣∣∣2∫
Rξ′

(1 + |ξ|2)s
(1 + |ξ1|2)s e−|ξ′|2/2 dξ′ dξ1

≥C

∫
Rξ1

(1 + |ξ1|2)s
∣∣∣sin(ξ1/2)

ξ1/2

∣∣∣2 dξ1,

where C is a positive real constant. The last integral is divergent if s ≥ 1/2 .

In view of the example we carry out the analysis of Friedrichs systems in a different class of

spaces, namely in the so-called graph spaces. Given a differential operator L a function v is

contained in the associated graph space if v and the image Lv are Lq-integrable. Conceptually,

the graph space contains all functions which are weakly differentiable along the characteristics

of L.

In order to carry out the analysis of Friedrichs systems and of discontinuous Galerkin methods

within the framework of graph spaces we develop, in Chapter 1, the relevant mathematical
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properties of these spaces since we require an array of results which are not available from

the literature.

To introduce the notion of the trace of functions in the graph space we start our investigations

with the density of smooth functions. We only need to require the segment property of

Ω to show that bounded C∞-functions are dense in the graph space. The density results

in (Friedrichs 1958) and (Rauch 1994), concerned with graph spaces on smooth domains,

do not allow us to incorporate geometric singularities such as corners when Ω is, say, a

polyhedron. The handling of corners makes up an essential part in the analysis of finite

element methods for Friedrichs systems. Even if the computational domains, consisting of the

polygonal finite elements, approximate the original smooth domain of a well-posed Friedrichs

system arbitrarily well in the refinement process, it is an open problem whether from a

certain point onwards in the course of the refinement the associated Friedrichs systems on

the computational domains are well-posed, too. Sarason, who addressed a related problem in

(Sarason 1962), had to impose strong assumptions on polygonal domains to prove results in

this direction. For instance, he required that the polygonal domain under consideration can

be uniformly approximated by smooth domains which are of uniform constant multiplicity.

We can now define the trace operator on the basis of the integration by parts formula for

smooth functions. The vector space of all traces is called the trace space. It naturally inherits

a norm from the graph space by infimising the graph space norm over all functions with the

same trace. This norm is distinguished by a number of important properties. In particular,

it is, up to homeomorphy, the only norm under which boundary operators on the graph

space can be continuously factorised in terms of the trace operator; we clarify the notion of

boundary operators in the text, however we remark here that they are of great significance in

the statement of boundary conditions for Friedrichs systems. The proof of this factorisation

relies on a description of the kernel of the trace operator in terms of zero extensions, which we

study in Section 1.4. Conceptually, the factorisation confirms that the trace operator collects

all information available, near the boundary, about elements of the graph space. The existence

of a bounded extension operator EL from the trace space into the graph space follows directly

from the uniform convexity and reflexivity of the graph space.

We point out that the formal extension of the integration-by-parts formula to the entire

graph space does not anymore represent an identity between integrals over the domain of the

boundary value problem and its boundary. The failure of the integration-by-parts formula in

its classical sense has profound implications on our investigations into Friedrichs systems as

will be seen in Chapters 2 and 3.

Another difficulty in understanding the well-posedness of Friedrichs systems is that it is
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not possible at present to give an intrinsic definition of the norm of the trace space. An

intrinsic definition of the trace norm does not make reference to functions whose support is not

contained in the boundary ∂Ω. A different example of an intrinsic definition is, for instance,

formula (1.10) on page 25 which describes the norm of the Besov space Bq′,q′,q−1/q′(∂Ω),

which is the trace space of W 1,q′(Ω). An intrinsic definition of the trace space leads to an

intrinsic description of which boundary conditions can be satisfied by functions in the graph

space and provides insight into the dependence of the solution of the Friedrichs system on the

boundary data.

Although we do not give a complete intrinsic description of the trace norm, we elucidate

important aspects. In the Hilbert space setting, that is when q = 2, we begin the analysis of

the trace space with the characterisation of the trace norm by identification with the formal

boundary integral (∫
∂Ω

LELv · ELv dS
)1/2

. (1)

In order to turn (1) into an intrinsic formula one needs to eliminate the reference to L in the

integrant. This is a delicate task, which depends in part on understanding the eigenspaces

of L, an issue we address later in Chapter 1. We remark here that (1) may also serve as a

starting point for an investigation of the trace spaces in the spirit of Dirichlet-to-Neumann

maps arising in the theory of inverse problems, cf. (Uhlmann 2003), where operators similar

to L are studied by means of pseudo-differential operators.

For the analysis of Friedrichs systems we can concentrate on differential operators with a

Hermitian principal part. In this setting we show that functions from ∂Ω to R
m whose

support is either contained in the in- or outflow boundary of the domain, are integrable in an

L2-sense; yet, that coupling in the tangential direction of in- and outflow components may

result in traces of B2,2,−1/2(∂Ω)-type. This difference decides if energy integral methods are

applicable since these methods are restricted to functions which have a square product, which

is not defined for functions in B2,2,−1/2(∂Ω). We also exemplify the presence of strong poles

in the vicinity of characteristic points and corners of the boundary. Still assuming that the

principal part of L is Hermitian, we return to the spectral properties of L. In particular, we

give an explicit description of the eigenvalues and eigenprojections of L for functions in the

image of EL, making use of a modification of the reaction term of L.

After a detailed analysis of trace spaces, we turn to general boundary value problems on graph

spaces. Bearing in mind the low degree of regularity of traces of the graph space, we introduce

a general framework for boundary value problems which underlies the mild assumption that

edges of the domain and points of non-constant multiplicity are a null set in the Hausdorff
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measure of the boundary. In this setting we also consider weak and adjoint formulations of

the original boundary value problem.

We conclude the first chapter with an outlook on operators with skew-Hermitian coefficients

and remarks on the duality properties of graph spaces for q �= 2. In particular, we represent the

dual space of the graph space as cone in a vector-valued Lq-space and extend the construction

of W q,−1/q(Ω) to the graph space setting.

In Chapter 2 we pursue the analysis of Friedrichs systems in two stages. In the first stage we

focus on incorporating a large class of boundary value problems into the analysis. We extend

the definition of Friedrichs systems to the setting of boundary value problems considered in

Chapter 1. We then generalise the proof by Friedrichs on the existence of solutions to our

framework. The boundary conditions we impose at that point are formulated abstractly.

How boundary conditions can be implemented by means of matrix functions is the topic of

Section 2.2. Here we also make a connection to the pointwise descriptions of the boundary

conditions introduced by Friedrichs. Our main interest in this section concerns the smoothness

requirements on the matrix functions to render the boundary value problem in our framework

meaningful. We underline that these requirements can be significantly weakened if the trace

space is of L2-type.

When we turn to the question of well-posedness of Friedrichs systems, it becomes evident

that in our general framework, which we designed to incorporate a wide variety of domains

and boundary conditions, solutions may lack important properties. We exemplify the failure

of the integration-by-parts formula and discuss the continuous dependence of the solution on

the boundary data. Other authors have explored the loss of the well-posedness of Friedrichs

systems in the presence of corners and type-changes as well; we refer for instance to (Rauch

1994). However, these investigations are typically targeted at understanding certain analytical

phenomena in the vicinity of singularities and do not provide a suitable foundation for the

error analysis of the discontinuous Galerkin method we have in mind. For more details we

refer to Section 2.6.

In the second stage of our analysis of Friedrichs systems we identify that the loss of well-

posedness is connected to an imbalance between the rank of the boundary conditions and the

rank of the graph space trace operator. Taking this observation into consideration we present a

setting for Friedrichs systems in which we can verify the well-posedness of the boundary value

problem while still admitting type-changes and corners. Certain ill-posed problems, such as

the famous example by Moyer, are discarded automatically. In consequence, this formulation

is a suitable basis for the error analysis of the discontinuous Galerkin method. We end the

second chapter with an outline of a number of important differential equations which can be
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transformed into Friedrichs systems and present a review of the relevant literature on the

subject.

Based on the work in Chapters 1 and 2, we are in the position to construct the discontinuous

Galerkin method for Friedrichs systems with discontinuous solutions. We demonstrate that

the DGFEM is stable and has a unique solution for approximation spaces which are contained

in the so-called broken graph space. The broken graph space is the product of the graph

spaces over the finite elements. Furthermore, we estimate the error of the discontinuous

Galerkin method with the distance between the exact solution of the Friedrichs system and the

continuous functions within the finite element space. An immediate consequence of this result

is the convergence of the discontinuous Galerkin solution to the exact solution for polynomial

approximation spaces. We explicitly include Friedrichs systems with discontinuous solutions

in our analysis.

After having established the main result of the dissertation, namely the convergence of the

discontinuous Galerkin method in broken graph spaces, we focus our attention on the more

classical problem of studying the performance of the DGFEM in Sobolev spaces. At present,

error bounds which are simultaneously optimal in h and p are only known under additional

assumptions. Indeed, optimal error bounds are only known for differential operators, which

have elementwise constant coefficients, and for the streamline diffusion stabilised discontinu-

ous Galerkin method, cf. (Houston et al. 2000b) and (Houston, Schwab and Süli 2002b). The

error bound for general scalar linear first-order differential operators in (Houston et al. 2002b)

is suboptimal in p by p3/2. The error bound due to Georgoulis is suboptimal in h by h1/2 and

in p by one order, cf. (Georgoulis 2003). We improve the bound, for certain problems, by half

an order in p. In the remaining part of Chapter 3 we investigate the influence of least-squares

terms in the discontinuous Galerkin framework. While our main interest is the stabilisation

of the original discontinuous Galerkin method, the parameterised family of finite element

methods we introduce to facilitate a systematic error analysis also contains a least-squares

method of discontinuous type. We prove for all members of the family an a priori error bound

that is optimal in both h and p. We conclude the dissertation with numerical examples which

clarify that for a range of parameters the additional least-squares terms not only lead to a

stronger stability bound but also improve the approximation properties of the method.

Notation

Given normed spaces X and Y , we denote the space of all bounded linear operators from

X to Y by B(X,Y ). For Λ ∈ B(X,Y ), we call Y the codomain of Λ. The codomain is in
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general not equal to the image or range of Λ, which is the set

Im Λ := {y ∈ Y : ∃x ∈ X : Λx = y}.

We put B(X) := B(X,X). We write the operator norms in B(X,Y ) and B(X) as ‖·‖B(X,Y )

and ‖ · ‖B(X), respectively. Consider the product space

Xm :=
m∏
i=1

X = X × · · · ×X︸ ︷︷ ︸
m-times

.

Let x = (x1, . . . , xm) ∈ Xm and q ∈ [1,∞]. Then

‖x‖X,q :=

⎧⎨
⎩

q

√∑
i ‖xi‖qX : for q ∈ [1,∞),

maxi ‖xi‖X : for q = ∞

defines a norm on Xm. Given a submanifold M of R
n, we generally assume that the function

spaces Lq(M)m and W 1,q(M)m are normed by

‖ · ‖Lq(M)m := ‖ · ‖Lq(M),q and ‖ · ‖W 1,q(M)m := ‖ · ‖W 1,q(M),q,

respectively. The most important cases are when M is equal to an open subset Ω ⊂ R
n or to

its boundary ∂Ω.

Most theorems in this text which concern function spaces, hold for the codomains C
l and R

l,

l ∈ N. However occasionally we have to distinguish between the real and complex case. In

such situations we extend the notation of the function space by an additional argument, which

identifies the codomain. For instance, we write Lq(M,Rm) for the space of all Lq-integrable

functions which map M into R
m. The space of complex-valued Lq-functions is denoted by

Lq(M,Cm). In accordance with our notation we also write Lq(M,R)m and Lq(M,C)m.

We shall often employ the Einstein summation convention. This means that when an index

occurs more than once in the same expression then the expression is implicitly summed over

this index. For instance, the term

∑
i

ai bi

is abbreviated by ai bi. If the summation convention is employed the range of the index will

always be clear from the context.

The complex conjugate of z ∈ C is z. The Hermitian conjugate of a matrix B = (Bij)ij is

the matrix (Bji)ij , which we denote by BH.
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By 〈f, g〉M we mean the sesquilinear product
∫
M f · g dx over M , where the functions f and

g are chosen so that their dot product is integrable. We do not require that f and g are

elements of the same function space.

Finally, we denote the ball with radius δ centred at x by Bδ(x) and the identity matrix by I.

We make use of the space of distributions D ′(Ω) over open subsets Ω ⊂ R
n. The space of test

functions of D ′(Ω) is D(Ω).



Chapter 1

Graph Spaces

1.1 Definition of Graph Spaces

Consider a non-empty open set Ω ⊂ R
n with boundary ∂Ω. To simplify the notation we

assume that n is greater than or equal to 2 and remark that the theorems in the subsequent

text can be extended to the one-dimensional case with only minor modifications of the proofs.

Choose a conjugate pair q, q′, i.e., q, q′ ∈ R such that

1 < q <∞, q′ =
q

q − 1
.

Let l,m ∈ N. Given a tensor B ∈ W 1,∞(Ω)l×m×n and a matrix C ∈ L∞(Ω)l×m, we are

interested in the graph space of the linear differential operator

L : Lq(Ω)m → D ′(Ω)l, v �→ ∂k(Bijk vj) + Cij vj .

The formal adjoint of L is defined as

L′ : Lq′(Ω)l → D ′(Ω)m, w �→−∂k(Bjik wj) + (Cji + ∂kBjik)wj .

The graph space of L is the set

W q
L (Ω) := {v ∈ Lq(Ω)m : Lv ∈ Lq(Ω)l},

which is equipped with the graph norm

‖v‖L,q := ‖v‖L,q,Ω := q
√
‖v‖qLq(Ω)m + ‖Lv‖q

Lq(Ω)l .

Generally, we assume that functions in W q
L (Ω) map into C

l, however we also allow the case

that W q
L (Ω) contains only the functions which map into R

l. Where it is necessary for clarity,

13
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we denote the graph space of complex-valued functions by W q
L (Ω,Cl) and the graph space of

real-valued functions by W q
L (Ω,Rl). We shall require that the coefficients B and C of L are

real whenever we consider the space W q
L (Ω,Rl).

In addition to the graph norm, we use the graph semi-norm

|v|L,q := |v|L,q,Ω := ‖Lv‖Lq(Ω)l

and, for v, w ∈W 2
L (Ω), the graph scalar product

〈v, w〉L := 〈v, w〉L,Ω := 〈v, w〉Ω + 〈Lv,Lw〉Ω.

By the graph of L we understand the subspace

Γ(L) := {(v, w) ∈ Lq(Ω)m × Lq(Ω)l : Lv = w},

which is endowed with the norm inherited from Lq(Ω)m × Lq(Ω)l. The embedding

I : W q
L (Ω) → Lq(Ω)m × Lq(Ω)l, v �→ (v,Lv) (1.1)

is an isometry between W q
L (Ω) and Γ(L). Thus, depending on our preference, we can under-

stand W q
L (Ω) as a subspace of Lq(Ω)m or of Lq(Ω)m × Lq(Ω)l. The latter perception is the

motivation for the name ‘graph space’. We also consider the adjoint graph which is

Γ′(L′) := {(v, w) ∈ Lq
′(Ω)m × Lq

′(Ω)l : v = −L′w}.

Example 2 Assume that l = n and m = 1. The scalar-valued Sobolev space W 1,q(Ω)

coincides with the graph space W q
L (Ω) if L is chosen to be gradient, that is if Bijk = δik where

δik is the Kronecker delta. Then

‖v‖q
W 1,q(Ω)

= ‖v‖qLq(Ω) + ‖ grad v‖qLq(Ω)n = ‖v‖qL,q.

Example 3 Assume that l = 1 and m = n. If L = div then W q
L (Ω) is equal to the space

W q(div,Ω) = {v ∈ Lq(Ω)m : div v ∈ Lq(Ω)}

since the graph norm is in this case

‖v‖qW q(div,Ω) := ‖v‖qLq(Ω)m + ‖div v‖qLq(Ω) = ‖v‖qL,q.

Example 4 Assume that l = m = n = 3 and let

Lv = rot v =
(∂v3
∂x2

− ∂v2
∂x3

,
∂v1
∂x3

− ∂v3
∂x1

,
∂v2
∂x1

− ∂v1
∂x2

)
.

Then W q
L (Ω) is equal to W q(rot,Ω) := {v ∈ Lq(Ω)3 : rot v ∈ Lq(Ω)3} since

‖v‖qW q(rot,Ω) := ‖v‖q
Lq(Ω)3

+ ‖rot v‖q
Lq(Ω)3

= ‖v‖qL,q.
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Remark 1 Consider the notation L̇v = Bijk(∂kvj)+Cijvj . This does not have an immediate

meaning if v ∈ W q
L (Ω) because there is no standard definition for the product between

distributions ∂kvj and W 1,∞-functions Bijk. For our analysis, we shall suppose that the term

Bijk(∂kvj) +Cijvj represents the distribution ∂k(Bijkvj) + (Cij − ∂kBijk)vj , to which we can

apply the above definition for graph spaces. Adopting this convention for the formal adjoint,

we obtain the more common definition

L′ : w �→ −Bjik ∂kwj + Cjiwj .

1.2 Density

Our first investigations of the graph space W q
L (Ω) concern the density of the set of smooth

functions in this space. Consider the approximate identity δ �→ ψδ, δ > 0, with non-negative

C∞(Ω)-functions ψδ(x) = δ−n ψ1(δ−1x), satisfying the conditions that the support of ψ1 lies

within the unit ball centred at the origin and that ‖ψ1‖L1(B1(0)) = 1. We write, for v ∈W q
L (Ω),

vδ = (vδ1, . . . , v
δ
m) = (v1 ∗ ψδ, . . . , vm ∗ ψδ).

We shall write Ω′ � Ω if Ω′ is relatively compact in Ω, i.e. Ω′ ⊂ Ω and Ω′ compact.

Theorem 1 Let Ω′ � Ω and suppose that for v ∈ W q
L (Ω), 1 < q < ∞, the support of v is a

subset of Ω′. Then, for every ε > 0 there exists a function vε ∈ C∞
0 (Ω′)m with

‖v − vε‖L,q < ε.

Proof. Step I: Transformation of ∂(Bv) ∗ ψ and of ∂(Bvδ)

Choose v as in the statement of the theorem. Let u ∈ Lq′(Ω′)l and assume that δ <

dist(supp(v), ∂Ω′) and δ′ < dist(∂Ω′, ∂Ω). We denote differentiation with respect to the

variable ẋ by ∂̇k; this implies that

∂̇kψδ(x− ẋ) = −∂kψδ(x− ẋ).

Hence, by extending u to Ω by setting u(x) = 0 outside Ω′, we have that∫
Ω
(∂k(Bijk vj) ∗ ψδ)(x)ui(x) dx=

∫
Ω

∫
Ω
∂̇k(Bijk(ẋ) vj(ẋ))ψδ(x− ẋ) dẋ lim

δ′→0
uδ

′
i (x) dx

= lim
δ′→0

∫
Ω
∂̇kBijk(ẋ) vj(ẋ)

∫
Ω
ψδ(x− ẋ)uδ′i (x) dxdẋ
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= lim
δ′→0

∫
Ω
−Bijk(ẋ) vj(ẋ) ∂̇k

∫
Ω
ψδ(x− ẋ)uδ′i (x) dxdẋ

= lim
δ′→0

∫
Ω

∫
Ω
−Bijk(ẋ) vj(ẋ) ∂̇kψδ(x− ẋ) dẋ uδ′i (x) dx

=
∫

Ω

∫
Ω
∂k(Bijk(ẋ)ψδ(x− ẋ)) vj(ẋ) dẋ ui(x) dx.

In the course of integration by parts we used the fact that(
ẋ �→

∫
Ω
ψδ(x− ẋ)uδ′i (x) dx

)
∈ D(Ω)l.

As Lq′(Ω′)l is the dual space of Lq(Ω′)l and supp(ψδ ∗∂k(Bijk vj)) ⊂ Ω′, we obtain the identity

of the Lq(Ω′)l functions

x �→ (∂k(Bijk vj) ∗ ψδ)(x) = x �→
∫

Ω
∂k(Bijk(ẋ)ψδ(x− ẋ)) vj(ẋ) dẋ.

Similarly, we have that

x �→ ∂k(Bijk (ψδ ∗ vj))(x) = x �→ ∂k

(
Bijk(x)

∫
Ω
vj(ẋ)ψδ(x− ẋ) dẋ

)
= x �→

∫
Ω
∂k(Bijk(x)ψδ(x− ẋ)) vj(ẋ) dẋ.

Step II: Boundedness of (B(x) −B(ẋ))(∂ψδ)v

Suppose that δ < dist(supp(v), ∂Ω′). We consider the operator

Tδ : L1
loc(Ω)m → L1

loc(Ω)l, (Tδv)i(x) =
∫

Ω
(Bijk(ẋ) −Bijk(x)) ∂kψδ(x− ẋ) vj(ẋ) dẋ.

The support of ẋ �→ ∂kψδ(x− ẋ) is contained in Bδ(x). Since the Sobolev embedding theorem

holds in Bδ(x), the restrictions of components Bijk to Bδ(x) are Lipschitz continuous functions

for which

‖B‖ := ‖B‖W 1,∞(Ω)l×m×n

is a Lipschitz constant. Therefore we obtain continuity of Tδ on the subspace L1(Ω)m:

‖Tδv‖L1(Ω)l =
∑
i,j,k

∫
Ω

∣∣∣∫
Ω
(Bijk(ẋ) −Bijk(x)) ∂kψδ(x− ẋ) vj(ẋ) dẋ

∣∣∣ dx
≤
∑
i,j,k

∫
Ω

∫
Ω

∣∣∣Bijk(ẋ) −Bijk(x)
δ

∣∣∣ |δ ∂kψδ(x− ẋ)| |vj(ẋ)|dẋdx

≤
∑
j,k

l ‖B‖
∫

Ω

∫
Ω
|δ ∂kψδ(x− ẋ)|dx |vj(ẋ)|dẋ

= l ‖B‖ ‖∇ψ1‖L1(Ω)n ‖v‖L1(Ω)m ,
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where we used that δ ∂kψδ(x) = δ−n (∂kψ1)(δ−1x) and the transformation of variables x �→ δx.

In the case of v ∈ L∞(Ω)m, a similar bound holds with respect to the L∞-norm, since

‖Tδv‖L∞(Ω)l = max
i

ess-sup
x

∣∣∣∑
j,k

∫
Ω
(Bijk(ẋ) −Bijk(x)) ∂kψδ(x− ẋ) vj(ẋ) dẋ

∣∣∣
≤max

i
ess-sup

x

∑
j,k

∫
Ω

∣∣∣Bijk(ẋ) −Bijk(x)
δ

∣∣∣ |δ ∂kψδ(x− ẋ)| |vj(ẋ)|dẋ

≤m ‖B‖
(∑

k

∫
Ω
|δ ∂kψδ(x− ẋ)|dẋ

)
‖v‖L∞(Ω)m

=m ‖B‖ ‖∇ψ1‖L1(Ω)n ‖v‖L∞(Ω)m .

Next we apply the Riesz-Thorin interpolation theorem to derive a bound for v ∈ Lq(Ω)m,

cf. Theorem 58 in the Appendix. We select θ = 1 − 1/q = 1/q′ and p = q, so that, for

v ∈ Lq(Ω)m,∥∥∥∫
Ω
(Bijk(ẋ) −Bijk( ·)) ∂kψδ(( ·) − ẋ) vj(ẋ) dẋ

∥∥∥
Lq(Ω)l

= ‖Tδv‖Lq(Ω)l ≤ 2 lqm1−q ‖B‖ ‖∇ψ1‖L1(Ω)n ‖v‖Lq(Ω)m .

The constant 2 is included to cover both the real and the complex case, cf. Theorem 58.

Step III: Boundedness of (Lv)δ − Lvδ

Since ψδ(x) ≥ 0 for all x ∈ R
n, we deduce that∥∥∥∑

j,k

∫
Ω
∂k(Bijk(ẋ)− Bijk( ·))ψδ(( ·) − ẋ) vj(ẋ) dẋ

∥∥∥
Lq(Ω)l

(1.2)

≤
( l∑
i=1

∫
Ω

(∑
j,k

∫
Ω
|∂k(Bijk(ẋ) −Bijk(x))| |ψδ(x− ẋ) vj(ẋ)|dẋ

)q
dx
)1/q

≤ 2 l m ‖B‖ ‖ψδ ∗ |v| ‖Lq(Ω)m ≤ 2 l m ‖B‖ ‖ψ1‖L1(Ω) ‖v‖Lq(Ω)m .

After applying the identities from Step I, we use the product rule:

‖∂k(Bijk vj) ∗ ψδ − ∂k(Bijk vδj )‖Lq(Ω)l

=
∥∥∥∫

Ω
∂k
(
(Bijk(ẋ) −Bijk( ·))ψδ(( ·) − ẋ)

)
vj(ẋ) dẋ

∥∥∥
Lq(Ω)l

(1.3)

≤ 2 l m ‖B‖ ‖ψ1‖W 1,1(Ω) ‖v‖Lq(Ω)m .

Notice that the parentheses in (1.2) and (1.3) are set differently. Finally, as in (1.2),

‖(Cijvj) ∗ ψδ − Cij v
δ
j‖Lq(Ω)l =

∥∥∥∫
Ω
((Cij(ẋ) − Cij( ·))ψδ(( ·) − ẋ)) vj(ẋ) dẋ

∥∥∥
Lq(Ω)l

≤ 2 l ‖C‖L∞(Ω)l×m ‖ψ1‖L1(Ω) ‖v‖Lq(Ω)m .
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Step IV: Weakly converging sequence

The last step shows that the sequence

s1(	) = L(v) ∗ ψ1/� − L(v ∗ ψ1/�)

is bounded in Lq(Ω)l. Hence by the Banach-Alaoglu theorem there exists a sequence t1 :

N → N such that s1 ◦ t1 is weakly converging to an element v̇ ∈ Lq(Ω)l. We want to show

that v̇ = 0. Since supp(v) ⊂ Ω′ it is enough to test v̇ with functions w ∈ Lq′(Ω′)l. We let

	̇ = 1/t1(	) and δ′ < dist(∂Ω′, ∂Ω):∫
Ω
v̇iwi dx= lim

δ′→0

∫
Ω
v̇iwδ

′
i dx

= lim
δ′→0

lim
�→∞

∫
Ω

(
L(v) ∗ ψ�̇ − L

(
v ∗ ψ�̇

))
wδ′ dx

= lim
δ′→0

lim
�→∞

∫
Ω

(
vj − vj ∗ ψ�̇

)
L′wδ′ dx = 0,

and so v̇ = 0. We used that wδ
′ ∈ D(Ω)l.

Step V: Strongly converging sequence

Given ε > 0, we can select a sequence t2 : N → N, such that t3 = t1 ◦ t2 has the property that

for all 	 ∈ N we have 	̈ := 1/t3(	) < δ and

‖v − v ∗ ψ�̈‖Lq(Ω)m <
ε

3 · 2� , ‖L(v) − L(v) ∗ ψ�̈‖Lq(Ω)l <
ε

3 · 2� .

Using Mazur’s theorem, cf. (Rudin 1991, p. 67), there exists a finite convex combination

vε =
s∑
�=0

λ� v ∗ ψ�̈,
s∑
�=0

λ� = 1, λ� ∈ [0, 1], s ∈ N,

such that ∥∥∥( s∑
�=0

λ� L(v) ∗ ψ�̈
)
− L(vε)

∥∥∥
Lq(Ω)l

=
∥∥∥ s∑
�=0

λ� s1(	)
∥∥∥
Lq(Ω)l

<
ε

3
. (1.4)

Hence

‖v − vε‖Lq(Ω)m ≤
s∑
�=0

λ�‖v − v ∗ ψ�̈‖Lq(Ω)m <

∞∑
�=0

ε

3 · 2� <
ε

3
.

Similarly, but by using (1.4) and the triangle inequality, we have that

‖L(v) − L(vε)‖Lq(Ω)l <
ε

3
+
ε

3
.

Consequently, ‖v − vε‖L,q < ε and vε ∈ C∞
0 (Ω′)m. ////
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Corollary 1 For δ, ε > 0 there exists a non-negative function φ ∈ C∞
0 (Bδ(0)) such that, for

v as in Theorem 1,

‖v − v ∗ φ‖L,q < ε.

Proof. Choose φ =
∑

� λ�ψ�̈ for λ� and ψ�̈ defined in Step V. ////

The transformations in Step I and the first bound in Step II are based on ideas in (Friedrichs

1954). We can extend Theorem 1 to all functions inW q
L (Ω) using the techniques introduced by

Meyers and Serrin in (Meyers and Serrin 1964), see also (Adams and Fournier 2003, p. 67).

In this case it becomes necessary to admit approximations by functions with noncompact

support.

Theorem 2 The space C∞(Ω)m ∩W q
L (Ω) is dense in W q

L (Ω), 1 < q <∞.

Proof. Let Ωi be open subsets in Ω such that Ωi � Ωi+1 and
∞⋃
i=1

Ωi = Ω.

Let F be a partition of unity of Ω subordinate to the covering (Ωi+1 \ Ωi−1)i∈N, where Ω−1

is taken as the empty set. Let ḟi be the sum of all fj ∈ F for which i is the smallest index

such that supp(fj) ⊂ Ωi+1 \Ωi−1. Then the ḟi sum to one, too. Choose ε > 0. For i ∈ N and

v ∈ W q
L (Ω) there exists, according to the last theorem, a function vε,i in C∞

0 (Ωi+1 \ Ωi−1)m

such that

‖ḟi v − vε,i‖L,q <
ε

2i
.

By construction Ωj+1 \ Ωj−1 is only intersected by the supports of vε,j−2, vε,j−1 and vε,j .

Hence the sum

vε = lim
j→∞

j∑
i=0

vε,i

is defined and is a member of C∞(Ω)m. Notice that because of the layout of the supports of

the vε,i, the sequence

j �→
(j+1∑
i=0

vε,i

)
+

∣∣∣
Ωj

of Lq(Ω)m-functions exhibits monotonic and pointwise convergence to (vε)+ as j → ∞. Its

members are bounded in the Lq(Ω)m-norm by ‖v‖Lq(Ω)m + ε because

∥∥∥(j+1∑
i=0

vε,i

)
+

∥∥∥
Lq(Ωj)m

≤
∥∥∥j+1∑
i=0

ḟi v
∥∥∥
Lq(Ωj)m

+
j+1∑
i=0

‖ḟi v − vε,i‖Lq(Ωj)m .
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Hence by the monotone convergence theorem (vε)+ is Lq(Ω)m-integrable. The same argument

applied to (vε)− and to (Lvε)+ and (Lvε)− asserts that vε ∈W q
L (Ω). We conclude that

‖v − vε‖L,q ≤
∞∑
i=0

∥∥fi v − vε,i
∥∥

L,q
< ε.

This proves the density of smooth functions in W q
L (Ω). ////

Theorem 3 The space W q
L (Ω) is a Banach space.

Proof. Theorem 2 states that the graph space is a subset of the completion of C∞(Ω)m∩W q
L (Ω)

in the graph norm. Let (vi)i∈N be a Cauchy sequence in C∞(Ω)m ∩ W q
L (Ω). Then (vi)i

converges to an element v̇ ∈ Lq(Ω)m in the Lq(Ω)m-norm and (Lvi)i converges to an element

v̇L ∈ Lq(Ω)l in the Lq(Ω)l-norm. But v̇L is the image of v̇ under L in the distributional sense

since, for all φ ∈ D(Ω)l,∫
Ω
vL′φdx = lim

i→∞

∫
Ω
vi L′φdx = lim

i→∞

∫
Ω

Lvi φdx =
∫

Ω
Lv φdx.

Therefore, C∞(Ω)m ∩W q
L (Ω) is a subset of W q

L (Ω). ////

As for W 1,q(Ω), one needs to consider density of C∞(Ω)m and of C∞
0 (Rn)m separately. In

our context C∞
0 (Rn)m is the set of all functions on Ω which are the restriction of a smooth

function with compact support in R
n.

Example 5 Given Ω = (−1, 0) ∪ (0, 1), B = 1 and C = 0, consider the function

v : Ω → {−1, 1}, x �→ sign(x).

The function v lies in C∞(Ω) and therefore also in the W q
L (Ω)-closure of C∞(Ω). However it

is not a member of C∞
0 (R). A good approximation by a C∞

0 (R)-function to v in the L2-sense

has a large gradient around the origin and hence it is a bad approximation in the W q
L (Ω)

semi-norm. For details we refer to (Adams and Fournier 2003, p. 68).

A sufficient condition for the density of C∞
0 (Rn)m in W q

L (Ω) is that Ω has the segment

property. This means that there exists a family N which associates to every x ∈ ∂Ω a

neighbourhood Nx of x and a nonzero vector yx such that for z ∈ Ω ∩ Nx and 0 < τ < 1

the vector z + τ yx is an element of Ω. Visually the definition means that Ω is not allowed

to lie on both sides of its boundary. The definition of the segment property admits ∂Ω = ∅,
i.e. Ω = R

n.
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Theorem 4 If Ω fulfills the segment property, then C∞
0 (Rn)m is dense in W q

L (Ω).

Proof: Let f be a fixed function in C∞
0 (Rn,R) such that

‖x‖ < 1 ⇒ f(x) = 1 and ‖x‖ > 2 ⇒ f(x) = 0.

Let fε(x) := f(εx) for ε ∈ (0, 1). Then fε(x) = 1 if ‖x‖ ≤ 1/ε. If v ∈W q
L (Ω), then

vε := (fε v1, . . . , fε vn)

belongs to W q
L (Ω) and has bounded support. We abbreviate ‖B‖ := ‖B‖L∞(Ω)l×m×n and

Ωε := {x ∈ Ω : ‖x‖ > 1/ε}. It follows from the chain of inequalities

|vε|L,q,Ωε ≤‖fε‖L∞(Ω) |v|L,q,Ωε + ‖B‖ |fε|W 1,∞(Ω) ‖v‖Lq(Ωε)m ≤ (1 + ‖B‖) ‖f‖W 1,∞(Ω) ‖v‖L,q,Ωε

that

‖v − vε‖L,q,Ω = ‖v − vε‖L,q,Ωε ≤ ‖v‖L,q,Ωε + ‖vε‖L,q,Ωε ≤ C ‖v‖L,q,Ωε .

The right-hand side tends to zero as ε tends to 0. In other words, all v ∈ W q
L (Ω) can be

approximated by W q
L (Ω)-functions with bounded support. In order to prove density we may

therefore assume, in combination with Theorem 2, that v is an element of C∞(Ω)m ∩W q
L (Ω)

and that supp(v) is bounded.

We define N to be the family of neighbourhoods Nx referred to in the definition of the segment

property. Thus the set

F = supp(v) \
⋃

Nx∈N

Nx

is compact and is contained in Ω. There exists an open set N0 such that F � N0 � Ω. Since

supp(v) is compact, we can select a finite number of neighbourhoods N1, . . . , Nκ ∈ N, such

that supp(v) ⊂ N0 ∪N1 ∪ · · · ∪Nκ. Moreover, we can select subsets Ṅi � Ni, i ∈ {0, . . . , κ},
such that supp(v) ⊂ Ṅ0 ∪ Ṅ1 ∪ · · · ∪ Ṅκ, too.

Let F be a finite partition of unity of the union of the Ṅi subordinate to the Ṅi. Let ḟi be

the locally finite sum of all fj ∈ F for which i is the smallest index such that supp(fj) ⊂ Ni.

Let vi = ḟiv on Ω. Suppose that for each i we can find a vε,i ∈ C∞
0 (Rn)m such that

‖vi − vε,i‖L,q <
ε

κ+ 1
. (1.5)

Then, putting vε =
∑κ

i=0 vε,i, we obtain

‖v − vε‖L,q ≤
κ∑
i=0

‖vi − vε,i‖L,q < ε.
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Since supp(v0) � Ṅ0 � Ω, clearly v0 ∈ C∞
0 (Rn)m and therefore vε,0 := v0.

Fix i ∈ {1, . . . , κ}. We extend vi to be identically zero outside Ω. Then vi ∈ C∞(Ω \ Γ)m

where Γ := ∂Ω ∩ Ṅi. Let y be the nonzero vector associated with Ni in the definition of the

segment property. We define, for τ ∈ R,

vτ (x) := vi(x+ τ y). (1.6)

A positive τ corresponds to a translation out of Ω. We first show that finite convex combina-

tions of functions vτi for suitably chosen values τi approximate vi arbitrarily well. In a second

step we replace the convex combination by functions in C∞
0 (Rn)m.

Select ϕ ∈ D(Ω)m. The support of ϕ is bounded away from ∂Ω. Therefore, there exists a

vϕ ∈ C∞
0 (Rn)m ⊂ Lq(Ω)m such that vϕ equals vi on the restriction to supp(ϕ) +Bδ(0) where

0 < δ < dist(supp(ϕ), ∂Ω). Similarly to (1.6), we set, for τ ∈ R,

vϕ,τ (x) := vϕ(x+ τ y).

Because translation and pointwise multiplication are continuous in Lq(Ω)m, we observe weak

convergence of Lvτ as τ → 0: if τ ∈ (0, δ)∫
Ω

Lvτ ϕ dx =
∫

Ω
Lvϕ,τ ϕ dx→

∫
Ω

Lvϕ ϕ dx =
∫

Ω
Lvi ϕ dx as τ → 0.

According to (1.6), v1/(j+�) denotes vτ with τ = 1/(j+ 	). By Mazur’s theorem we can select

a sequence (v̇j)j∈N of finite convex combinations

v̇j =
s∑
�=0

λ� v1/(j+�),
s∑
�=0

λ� = 1, λ� ∈ [0, 1], s ∈ N, (1.7)

such that (v̇j)j∈N converges strongly in the first component of the operator:

‖(Lv̇j)1 − (Lvi)1‖Lq(Ω) < 1/j.

In view of ∣∣∣∫ L(v̇j − vi)ϕ dx
∣∣∣ ≤ s∑

�=0

λ�

∣∣∣∫ L(v(j+�) − vi)ϕ dx
∣∣∣,

the sequence (v̇j)j∈N is weakly convergent in the remaining components of the operator.

Repeating the application of Mazur’s theorem inductively for the second, third up to the

n-th component, we construct a sequence (v̈j)j∈N which converges to vi in the graph space

semi-norm. Continuity of translation in Lq(Ω)m implies strong convergence of (v̈j)j∈N to vi
in W q

L (Ω).
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We now replace v̈j by a function in C∞
0 (Rn)m. Let α := min(1, dist(Ṅi,R

n \ Ni)/‖y‖). We

then have Ṅi ∩ Ω � R
n \ (Γ − τ y) for τ ∈ (0, α). To prove this claim, choose an N ′ with

Ṅi � N ′ � Ni such that dist(N ′,Rn \Ni)/‖y‖ > τ .

Hence Γ′ − τ y with Γ′ := ∂Ω ∩N ′ lies compactly in Ni. Choose β > 0 such that τ + β < 1

and β < min(τ, dist(Γ′ − τ y,Rn \Ni)). Then

Nτ := {x ∈ R
n : ∃ τ ′ ∈ (−β, β) : x+ τ ′ y ∈ (Γ′ − τ y)}

is a neighbourhood of Γ − τ y which does not intersect Ṅi ∩ Ω.

N ′
Ni

Ṅi

Ω

Γ

Nτ

y

We select j ∈ N such that

‖vi − v̈j‖L,q <
ε

κ+ 1
and 1/j < α.

By construction v̈j is a finite convex combination of translations vτ with τ ∈ (0, α), so that

we can expand v̈j like in (1.7). For each v1/(j+�) there exists a function ˙̈v1/(j+�) ∈ C∞
0 (Rn)m

which coincides with v1/(j+�) on R
n \N1/(j+�). Then

vi,ε =
s∑
�=0

λ� ˙̈v1/(j+�)

is a C∞
0 (Rn)m-function which fulfills inequality (1.5) as required. ////

Corollary 2 The set of W q
L (Ω)-functions with compact support is dense in W q

L (Ω).

The proof uses ideas from the proof of the corresponding result for W 1,q(Ω); compare with

(Adams and Fournier 2003, p. 68). However, because the proof in (Adams and Fournier 2003)

relies on the fact that W 1,q(Ω) is closed under translation, we reversed the order in which

smooth approximation and translation are used and included weak convergence and Mazur’s

theorem in the argument.
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Remark 2 It is an interesting question, whether the above density results carry over to

higher-order graph spaces; these are spaces {v ∈ Lq(Ω)m : Lv ∈ Lq(Ω)l} where L contains

higher-order derivatives. We would like to draw the reader’s attention to Step II in the proof

of Theorem 1. Observe how Tδ is bounded by cancelling the 1/δ-term, which is introduced

by differentiating ψδ, and by using the Lipschitz continuity of B. In the case of an 	th-order

operator, differentiation would introduce a factor 1/δ� instead. Suppose one continues the

argument of Theorem 1 by requiring that∣∣∣Bijα(ẋ) −Bijα(x)
δ�

∣∣∣ (1.8)

is bounded independently of x and ẋ. We assume here that Bijα is the coefficient tensor of the

symbol of L, where α is the multi-index of the partial derivatives. With this requirement the

proof of the higher-order analogue of Theorem 1 could be analogously completed like most of

the remainder of this section. However (1.8) implies also that B is constant for 	 > 1. But if L

has constant coefficients one can in any case bypass Theorem 1 and directly use the sequence

i �→ (v ∗ψ1/i) in the other proofs of this section. It is beyond the scope of this dissertation to

resolve in which circumstances smooth functions are dense in higher-order graph spaces if L

has non-constant coefficients.

1.3 Lipschitz Domains and Besov Spaces

The properties of W q
L (Ω) strongly depend on the regularity of Ω. In addition to the segment

property, we consider Lipschitz domains, domains with a strong local Lipschitz condition,

polyhedra as well as Ck-regular and analytic domains, k ∈ N.

We say that Ω is a Lipschitz domain or, equivalently, has a Lipschitz boundary if for each

point x ∈ ∂Ω there exists a neighbourhood Nx of x, an orthogonal coordinate transformation

and a Lipschitz continuous function fx : R
n−1 → R such that

Ω ∩Nx = {y = (y1, . . . , yn) ∈ Nx : yn > f(y1, . . . , yn−1)},

where (y1, . . . , yn) are the transformed coordinates of y.

Let Ω be a Lipschitz domain. We say that Ω is a domain with strong local Lipschitz property

if there exist positive numbers δ, L ∈ R, R ∈ N, and a locally finite subcover N out of the Nx

above such that:

1. no point in R
n is contained in more than R of the Nx ∈ N;

2. the functions fx|Nx have the Lipschitz constant L;
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3. for all y, ẏ ∈ {y ∈ Ω : dist(y, ∂Ω) < δ} with dist(y, ẏ) < δ there exists an Nx ∈ N such

that y, ẏ ∈ {y ∈ Nx : dist(y, ∂Nx) > δ}.

The definition of the strong local Lipschitz property is due to (Adams and Fournier 2003).

For a comparison with similar notions of Lipschitz regularity we refer to the classification

of domains by Fraenkel, cf. (Fraenkel 1979). Lipschitz domains with compact boundary, for

example bounded domains, have the strong local Lipschitz property. Lipschitz domains satisfy

the segment property.

Let x be in ∂Ω and choose Nx and fx as above. According to Rademacher’s theorem, the

classical derivative of a Lipschitz function exists almost everywhere, cf. (Federer 1969, p. 216).

Consider

x = (y1, . . . , yn−1, fx(y1, . . . , yn−1))

in the local coordinate system. If the classical derivative of f exists at x we assign to x the

outward normal

ν(x) :=
(∂1fx(y1, . . . , yn−1), . . . , ∂n−1fx(y1, . . . , yn−1),−1)
‖(∂1fx(y1, . . . , yn−1), . . . , ∂n−1fx(y1, . . . , yn−1),−1)‖2

. (1.9)

We remark that if there is a second neighbourhood Ṅx ∈ N of x to which the functions ḟx is

associated, then ḟx applied to formula (1.9) defines almost everywhere in Ṅx ∩Nx ∩ ∂Ω the

same outward normal as fx.

We call a domain Ck-regular, k ≥ 1, or analytic if its boundary is a Ck-differentiable or

analytic manifold, respectively.

Let us consider a domain Ω satisfying the strong local Lipschitz condition which is the in-

tersection of finitely many Ck-regular domains Ωi. Then ∂Ω is a subset of the union of the

boundaries ∂Ωi. Let E be the set of all x ∈ ∂Ω which are contained in more than one ∂Ωi.

If the closure of E is a null set in the (n − 1)-dimensional Lebesgue measure, we call Ω a

Ck-regular polyhedron. Let Fi be the set of all points in ∂Ω which are only contained in the

boundary ∂Ωi. Then we name the simply connected components of Fi faces of Ω. Finally, a

non-empty intersection between the closures of two distinct faces is called an facet.

We introduce Besov spaces on the boundary of Ω in order to define a trace operator of

the graph space. To avoid unnecessary technicalities we only consider the Besov space

Bq′,q′,1−1/q′(∂Ω) and its dual Bq,q,−1/q(∂Ω), q′ ∈ (1,∞). A function f is contained in

Bq′,q′,1−1/q′(∂Ω) if, and only if, f is an Lq′(∂Ω)-function, for which the Besov space norm

‖f‖Bq′,q′,1−1/q′ (∂Ω) :=
(
‖f‖q′Lq′(∂Ω) +

∫
x,y∈∂Ω

dist(x,y)<1

|f(x) − f(y)|q′
dist(x, y)n+q′ dS(x, y)

)1/q′
(1.10)
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is finite with respect to the Hausdorff measure on ∂Ω.

Some authors call the space Bq′,q′,1−1/q′(∂Ω) a fractional-order Sobolev space and use the

notation W 1−1/q′,q′(∂Ω). However this terminology is not used consistently in the literature.

For instance, in (Adams and Fournier 2003) fractional-order Sobolev space are constructed

by the complex method of interpolation and differ from the class of Besov spaces, which is

defined via the real method of interpolation, cf. (Adams and Fournier 2003, pp. 230 & 250).

Provided Ω is a Lipschitz domain, we have the characterisation

Bq′,q′,1−1/q′(∂Ω) = {v ∈ Lq
′(∂Ω) : ∃w ∈W 1,q′(Rn) : v = w|∂Ω}, (1.11)

where the restriction operation is defined, for instance, by virtue of a density argument.

Equation (1.11) describes a special case of a theorem in (Jonsson and Wallin 1984). Jonsson

and Wallin replace ∂Ω by a closed set for which it is merely required that it has a Hausdorff

dimension which lies strictly between 0 and n. In the proof of (1.11), the authors demonstrate

the existence of an extension operator

E∂Ω,Rn : Bq′,q′,1−1/q′(∂Ω) →W 1,q′(Rn), (E∂Ω,Rnv)|∂Ω = v.

If Ω fulfills the strong local Lipschitz property, there also exists an extension operator

EΩ,Rn : W 1,q′(Ω) →W 1,q′(Rn), (EΩ,Rnv)|Ω = v.

This result is due to Stein, cf. (Stein 1970). Hence we can define the surjective W 1,q′(Ω)-trace

operator

TW 1,q′(Ω) : W 1,q′(Ω) → Bq′,q′,1−1/q′(∂Ω), v �→ (EΩ,Rnv)|∂Ω

and its right inverse

E∂Ω,Ω : Bq′,q′,1−1/q′(∂Ω) →W 1,q′(Ω), v �→ (E∂Ω,Rnv)|Ω.

We remark that all the operators considered in this section are continuous and linear. As

usual, we shall represent linear functionals Λ contained in Bq,q,−1/q(∂Ω) with the bracket

notation:

Λv =: 〈Λ, v〉∂Ω, v ∈ Bq′,q′,1−1/q′(∂Ω). (1.12)

Definition (1.12) is motivated by the observation that Lq(∂Ω) is dense in Bq,q,−1/q(∂Ω). Thus

we can find a sequence (Λi)i∈N with Λi ∈ Lq(∂Ω) which converges to Λ. Then,

〈Λ, v〉∂Ω = lim
i→∞

∫
∂Ω

Λi v dS.

For the reader’s convenience we prove the density of Lq(∂Ω) in Bq,q,−1/q(∂Ω) next.
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Theorem 5 The Besov space Bq′,q′,1−1/q′(∂Ω) is reflexive.

Proof: Let

M := {(x, y) ∈ ∂Ω × ∂Ω : dist(x, y) < 1}.

Observe that ∂Ω and M are disjoint subsets of ∂Ω ∪M since the elements of M are pairs.

We define on ∂Ω ∪M the measure

µ(κ) :=
∫
κ∩∂Ω

dS +
∫
κ∩M

dS(x, y)
dist(x, y)n+q′−2

,

where κ is a subset in ∂Ω ∪M , element in the σ-algebra induced by the Hausdorff measure

on ∂Ω. Consider the operator

Φ : Bq′,q′,1−1/q′(∂Ω) → Lq
′
(∂Ω ∪M,µ), v �→ w,

where

w(z) =

{
v(z) : if z ∈ ∂Ω

v(x) − v(y) : if z = (x, y) ∈M.

Then Φ maps Bq′,q′,1−1/q′(∂Ω) isometrically onto a closed subspace of Lq
′
(∂Ω ∪M,µ). We

now use that closed subspaces of reflexive Banach spaces are reflexive themselves. ////

Given two reflexive Banach spaces X and Y and a continuous linear operator A : X → Y , we

have that A is injective if, and only if, the image of the dual operator A′ : Y ′ → X ′ is dense

in X ′, cf. (Wloka 1987, pp. 261-262). Clearly, the embedding of Bq′,q′,1−1/q′(∂Ω) into Lq′(∂Ω)

is injective and therefore the dual Lq(∂Ω) is dense in Bq,q,−1/q(∂Ω).

1.4 The Closure of D(Ω)m

We denote the closure of D(Ω)m in W q
L (Ω) by

W q
L,0(Ω) := D(Ω)m. (1.13)

Just as for Sobolev spaces, the closure of D(Ω)m constitutes an important subspace of W q
L (Ω).

It is particularly helpful that there are a number of different but equivalent descriptions of

W q
L,0(Ω). In this section we investigate how W q

L,0(Ω) can be defined in terms of zero extensions,

which we shall define next.
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Given a function v ∈W q
L (Ω) we call the function

v̇(x) =

{
v(x) if x ∈ Ω,

0 if x ∈ R
n \ Ω

the zero extension of v. Let Ḃ be a tensor function in W 1,∞(Rn)l×m×n and let Ċ be a matrix

function in L∞(Rn)l×m so that Ḃ|Ω = B and Ċ|Ω = C. Given

L̇ : Lq(Rn)m → D ′(Rn)m, v �→ ∂k(Ḃijkvj) + Ċij vj ,

we call the graph space W q
L̇

(Rn) an extension of W q
L (Ω).

Suppose that Ω is a domain with strong local Lipschitz condition; then by the Sobolev embed-

ding theorem the coefficient tensor B is Lipschitz continuous, cf. (Adams and Fournier 2003,

p. 85). Kirszbraun’s theorem states that every Lipschitz function defined on a subset of R
n

can be extended to all of R
n without increasing the Lipschitz constant, cf. (Federer 1969,

p. 201). Therefore the strong local Lipschitz condition ensures the existence of an extension

W q
L̇

(Rn) of W q
L (Ω). However in many cases W q

L (Ω) can also be extended from more general

domains, provided the coefficients B and C possess additional regularity. For instance if B

and C are constant then W q
L (Ω) can be extended from all open sets Ω to R

n.

Theorem 6 Let Ω be a Lipschitz domain. Suppose that Ḃ and Ċ are chosen as above so

that W q
L̇

(Rn) is an extension of W q
L (Ω). Then v ∈W q

L (Ω) is a member of W q
L,0(Ω) if, and only

if, the zero extension v̇ of v belongs to W q
L̇

(Rn).

Proof. Suppose that v is a member of W q
L,0(Ω). Let (vi)i∈N be a sequence in D(Ω)m converging

to v. The image L̇v̇ is the distribution which is defined for w ∈ D(Rn)l by∫
Rn

v̇ L̇′w dx =
∫

Ω
vL′w dx = lim

i→∞

∫
Ω
vi L′w dx = lim

i→∞

∫
Ω
(Lvi)w dx =

∫
Rn

(Lv)
.
w dx,

where (Lv)
.

denotes the zero extension of Lv and L̇′ the formal adjoint of L̇. Therefore

L̇v̇ ∈ Lq(Rn)l and v̇ ∈ W q
L̇

(Rn). Notice that this part of the proof does not require the

Lipschitz continuity of ∂Ω.

Suppose that the zero extension v̇ of v is an element of W q
L̇

(Rn). For fε as in the proof of

Theorem 4, the product fεv̇ is a member of W q
L̇

(Rn) and approximates v̇ as ε→ 0. Hence on

replacing v̇ with fεv̇, we may assume that v̇ has bounded support.

Since Ω is a Lipschitz domain, we can assign to every x ∈ ∂Ω a bounded neighbourhood Nx

and an orthonormal coordinate system {y1, . . . , yn} of R
n such that ∂Ω∩Nx is the graph of a
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Lipschitz function M ⊂ span(y1, . . . , yn−1) → R yn and such that Ω∩Nx lies above ∂Ω∩Nx.

Select, for every Nx, a neighbourhood Ṅx � Nx and define the set

F = supp(v̇) \
⋃
x∈∂Ω

Ṅx,

which is compact and contained in Ω. There exists an open set Ṅ0 such that F � Ṅ0 � Ω.

Since supp(v̇) is compact, we can select a finite number of neighbourhoods Ṅi := Ṅxi , i ∈
{1, . . . , κ}, such that supp(v̇) ⊂ Ṅ0 ∪ Ṅ1 ∪ · · · ∪ Ṅκ.

As in the proof of Theorem 4, define the functions ḟi by a partition of unity subordinate to

the Ṅi and set v̇i := ḟiv̇. By Theorem 1, v̇0 is an element of W q
L,0(Ω). Fix i ∈ {1, . . . , κ} and

let L be a Lipschitz constant of ∂Ω ∩ Nx with respect to the local coordinate system. We

denote by C the cone

{ n∑
j=1

µjyj ∈ R
n : µn > L

(n−1∑
j=1

µ2
j

)1/2}
.

Select an approximate identity δ �→ ψδ such that supp(ψ1) � C. By applying Corollary 1

with an ε > 0, δ := dist(∂Nx, ∂Ṅx)/2 and with the above approximate identity, we obtain a

mollifier φ which satisfies

‖v̇i − v̇i ∗ φ‖L,q < ε.

The construction of φ implies that supp(φ) � Bδ ∩ C. Hence the support of v̇i ∗ φ is subset

of supp(v̇i) + (Bδ ∩ C) ⊂ Ω ∩Nx. We define, for τ ∈ R,

v̇τ (x) := (v̇i ∗ φ)(x− τ yn).

Notice that, in contrast with equation (1.6), the translation is directed inwards for positive τ .

For τ ∈ (0, δ) the support of v̇τ remains in Ω∩Nx and therefore v̇τ is an element of C∞
0 (Rn)m.

Like in the proof of Theorem 4, we use the weak continuity of the translation operator to

construct a sequence of finite convex combinations of v̇τ which converges strongly to the

element v̇i ∗ φ. ////

The corresponding theorem for W 1,q(Ω) is given, for instance, in (Adams and Fournier 2003,

p. 71, p. 159). However, for W 1,q(Ω), it is not necessary to construct v̇i ∗ φ, which is the

reason for requiring Lipschitz continuity of ∂Ω. Indeed if B and C are translation invariant,

i.e. constant, then it is possible to prove the theorem by demanding only the segment property

of Ω.
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1.5 Trace and Integration by Parts

The construction of the trace operator of W 1,p(Ω) via density of smooth functions is well

known. Similar definitions for W q(div,Ω) and W q(rot,Ω) exist, too. In this section we

extend the concept of the trace operator to general first-order graph spaces, subject to the

assumption that Ω fulfills the strong local Lipschitz condition.

We set B(ν) := B(ν, x) := (Bijk(x) νk(x))ij . For v ∈W 1,q(Ω)m and w ∈W 1,q′(Ω)l,

〈B(ν) v, w〉∂Ω = 〈Lv, w〉Ω − 〈v,L′w〉Ω. (1.14)

By the Hölder inequality

|〈B(ν) v, w〉∂Ω| ≤ ‖v‖L,q ‖w‖L′,q′ . (1.15)

This, together with the continuity of E∂Ω,Ω, shows that for all v ∈W 1,q(Ω)m the functional

〈B(ν) v, ·〉∂Ω : Bq′,q′,1−1/q′(∂Ω)l → R, g �→ 〈B(ν) v, g〉∂Ω

is a continuous mapping. Therefore, 〈B(ν) v, ·〉 belongs to the dual Bq,q,−1/q(∂Ω)l. From

(1.15) we also obtain the continuity of the linear operator

ṪL : W 1,q(Ω)m → Bq,q,−1/q(∂Ω)l, v �→ 〈B(ν) v, ·〉∂Ω

in ‖ · ‖L,q. As W 1,q(Ω)m is dense in W q
L (Ω), ṪL extends to a continuous linear operator, which

is defined on the entire graph space. We have therefore proven the following theorem.

Theorem 7 Let Ω be a Lipschitz domain. Suppose that, for a given v, the sequence (vi)i∈N

of W 1,q(Ω)m-functions converges to v in W q
L (Ω) as i→ ∞. Then, the operator

ṪL : W q
L (Ω) → Bq,q,−1/q(∂Ω)l, v �→ lim

i→∞
〈B(ν) vi, ·〉∂Ω =: 〈B(ν) v, ·〉∂Ω

exists and is continuous. The operator norm of ṪL depends on the norms ‖B‖W 1,∞(Ω)l×m×n

and ‖E∂Ω,Ω‖B(Bq′,q′,1−1/q′ (∂Ω)l,W 1,q′ (Ω)) only. Here E∂Ω,Ω refers to the extension operator de-

fined on page 26.

As a byproduct of the above construction, we can formally extend the integration by parts

formula to all functions v in W q
L (Ω) and w in W q′

L′(Ω). We define the continuous bilinear form

W q
L (Ω) ×W q′

L′(Ω) → R, (v, w) �→ 〈v, w〉B(ν) := 〈Lv, w〉Ω − 〈v,L′w〉Ω. (1.16)

Assume that v ∈W q
L (Ω) and w ∈W q′

L′(Ω) and let (vi)i∈N and (wj)j∈N be sequences of smooth

functions which converge to v and w, respectively. Then, due to equation (1.14),

lim
i→∞

lim
j→∞

〈B(ν) vi, wj〉∂Ω = 〈v, w〉B(ν).
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Remark 3 We emphasise here we are dealing with three different bilinear forms which are

conceptually identical, but have different domains. In equation (1.14) we find on the left-hand

side the mapping

Bq,q,1−1/q(∂Ω)m ×Bq′,q′,1−1/q′(∂Ω)l, (v, w) �→ 〈B(ν)v, w〉∂Ω.

In Theorem 7, we exchange the domain of the first argument but keep the same notation:

W q
L (Ω) ×Bq′,q′,1−1/q′(∂Ω)l, (v, w) �→ 〈B(ν)v, w〉∂Ω.

Finally, in equation (1.16) we consider the bilinear form 〈v, w〉B(ν). We use a different notation

here to emphasise that 〈·, ·〉B(ν) acts in both arguments on functions with domain Ω rather

than on functions with domain ∂Ω, cf. also Example 25.

We do not want to conceal that there is a certain degree of arbitrariness in our choice of

the codomain Bq,q,−1/q(∂Ω)l of ṪL. On the one hand, the image of ṪL can be a proper

subspace of Bq,q,−1/q(∂Ω)l. Consider for example a hyperbolic convection equation which has

characteristics tangential to the boundary. In this case B(ν) vanishes on ∂Ω and therefore

the image of ṪL is {0}. On the other hand, we could have defined ṪL with an even larger

codomain, for instance by choosing a smaller space of test functions in equation (1.14) and

the subsequent construction of ṪL.

Of all possible choices there is certainly one distinguished codomain, namely the image of

ṪL. We therefore call Im ṪL the trace space of W q
L (Ω) and denote it by W q

TL
(∂Ω). We equip

W q
TL

(∂Ω) with the norm

‖v‖TL ,q := inf{‖w‖L,q ∈ R : ṪL(w) = v}, (1.17)

which we call the trace norm of W q
TL

(∂Ω). We then introduce, as a substitution for ṪL, the

operator

TL : W q
L (Ω) →W q

TL
(∂Ω), v �→ ṪLv.

We call TL the trace operator of W q
L (Ω). Where unambiguous we abbreviate TL by T. By

construction ‖T‖B(W q
L (Ω),W q

T (∂Ω)) = 1.

Theorem 8 Let v ∈ W q
T (∂Ω). There exists a unique element v̇ ∈ W q

L (Ω) with Tv̇ = v such

that ‖v̇‖L,q = ‖v‖T,q.

Proof. Recall the embedding I from page 14. Since W q
L (Ω) is complete, it is isometric to a

closed subset of Lq(Ω)m × Lq(Ω)l. A closed subspace W of a uniformly convex Banach space
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X is uniformly convex itself. Equally, reflexivity of X implies reflexivity of W . The inverse

image T−1v is a closed convex set in W q
L (Ω). The result now follows since in uniformly convex

and reflexive Banach spaces, closed convex sets contain a unique point which is closest to the

origin, cf. (Benyamini and Lindenstrauss 2000, p. 40). ////

Corollary 3 The graph space is reflexive and uniformly convex.

Theorem 8 asserts that the infimum in the definition of the trace norm, i.e. in equation (1.17),

is attained. Choosing v̇ as above, we define the extension map

EL,q : W q
T(∂Ω) →W q

L (Ω), v �→ v̇. (1.18)

If q = 2 then EL,q v is the orthogonal projection of 0 ∈ W q
L (Ω) to T−1v. In particular EL,2 is

linear.

One consequence of the next theorem is that W q
T(∂Ω) is complete, cf. (Rudin 1991, Theorem

1.41).

Theorem 9 The kernel of T is equal to W q
L,0(Ω).

Proof. Every function in D(Ω)m has a trivial boundary trace and therefore, by continuity,

W q
L,0(Ω) ⊂ ker T. It remains to show the implication in the other direction.

Suppose that v lies in the kernel of TL. Let v̇ be the zero extension of v and let L̇ be an

extension of L. By L̇′ we understand the formal adjoint of L̇, which is an extension of L′.

According to Theorem 6 we only need to prove that v̇ is an element of W q
L̇

(Rn). It is apparent

that v̇ ∈ Lq(Ω)m. We apply L̇ to v̇ in the sense of distributions. Let φ ∈ D(Rn)l, then∫
Rn

v̇ L̇′φ dV =
∫

Ω
vL′φdV =

∫
Ω

Lv φ dV − 〈B(ν)v, φ〉∂Ω =
∫

Ω
Lv φ dV.

Hence the zero extension of Lv is equal to L̇v̇ and therefore L̇v̇ ∈ Lq′(Ω)l. ////

The operator T earns its designation ‘trace operator’ by virtue of the next theorem. Let V

be a metrisable vector space. An operator J : W q
L (Ω) → V is called boundary operator if J is

continuous and if

∀ v, v̇ ∈ C∞
0 (Rn) : v|∂Ω = v̇|∂Ω ⇒ Jv = Jv̇. (1.19)

Clearly, T and ṪL are boundary operators.

Theorem 10 The continuous operator J : W q
L (Ω) → V is a boundary operator if, and only

if, Tv = Tv̇ implies that Jv = Jv̇ for v, v̇ ∈W q
L (Ω).
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Proof. Suppose that J is a boundary operator and that Tv = Tv̇. Hence v − v̇ ∈ ker T. Ap-

proximation by D(Ω)m-functions shows that Jv = Jv̇. The implication in the other direction

follows since v|∂Ω = v̇|∂Ω forces Tv = Tv̇ for v, v̇ ∈ D(Ω)m. ////

Theorem 11 For every boundary operator J : W q
L (Ω) → V there exists a unique linear

operator J̇ : W q
T (∂Ω) → V such that J = J̇ ◦ T, i.e. such that the following diagram is

commutative:

W q
L (Ω) W q

T(∂Ω)

J̇
J

T

V

(1.20)

Moreover if V is a normed vector space then the operator norms of J and J̇ are equal, that is

‖J̇‖B(W q
T (∂Ω),V ) = ‖J‖B(W q

L (Ω),V ).

Proof. The existence of J̇ is a direct consequence of the previous theorem. The chain of

equalities

‖J̇‖B(W q
T (∂Ω),V ) = sup

w∈W
q

L
(Ω)

w �=0

‖(J̇ ◦ T)w‖V
‖Tw‖T,q

= sup
w∈W

q
L

(Ω)

w �=0

‖(J̇ ◦ T)w‖V
‖w‖L,q

= ‖J‖B(W q
L (Ω),V )

implies that J and J̇ have the same operator norm. ////

By Theorem 11 we can identify the set of boundary operators with the set of continuous

operators whose domain is W q
T(∂Ω). The trace space is, up to equivalence of norms, the only

space for which this identification is valid.

Theorem 12 Consider a normed space W and a continuous operator TW : W q
L (Ω) → W .

Suppose that for all boundary operators J : W q
L (Ω) → V there exist continuous operators

J̇ : W → V such that J = J̇ ◦ TW . Then W q
T(∂Ω) is homeomorphic to the image of TW .

Proof. Consider the associated operators T̈L : W → W q
T (∂Ω) so that TL = T̈L ◦ TW and

T̈W : W →W q
T(∂Ω) so that TW = T̈W ◦ TL. Hence

TL = T̈L ◦ TW = T̈L ◦ T̈W ◦ TL, TW = T̈W ◦ TL = T̈W ◦ T̈L ◦ TW .

Thus T̈L ◦ T̈W is the identity operator of W q
T (∂Ω) and T̈W ◦ T̈L is the identity operator of

Im TW . Therefore T̈L|ImW = T̈−1
W . By the hypotheses T̈L|ImW and T̈W are continuous. ////
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We have learned that boundary operators can be viewed as operators which map W q
T (∂Ω)-

functions instead of W q
L (Ω)-functions. However, in order to assess the continuity of a mapping

W q
T(∂Ω) → V , we need to return to the norm of W q

L (Ω) as before; this is due to the definition

of the trace norm. In order to remedy this shortcoming one needs to construct a norm on

W q
T (∂Ω) which is equivalent to the trace norm but is defined with only intrinsic properties

of W q
T (∂Ω). For a number of well-known spaces an intrinsic definition of the trace norm is

known; we consider three classical examples.

Example 6 As illustrated in Example 2, W 1,q(Ω) is isomorphic to W q
L (Ω) if L = grad. On

page 26 we already introduced the surjective trace operator

TW 1,q(Ω) : W 1,q(Ω) → Bq,q,1−1/q(∂Ω).

The operator Tgrad, defined via Theorem 7, is

Tgrad : W q
grad(Ω) → Bq,q,−1/q(∂Ω)l, v �→ (w �→ 〈v, ν · w〉∂Ω).

Since

Bq,q,−1/q(∂Ω)l → Bq,q,−1/q(∂Ω), w �→ ν · w.

maps surjectively, we obtain the natural identification of Tgradv with the functional w �→
〈v, w〉∂Ω, which is an element of Bq,q,−1/q(∂Ω). Similarly TW 1,q(Ω)v can be understood as a

functional in Bq,q,−1/q(∂Ω) by using the canonical embedding of Bq,q,1−1/q(∂Ω) into the space

Bq,q,−1/q(∂Ω):

v �→ (w ∈ Bq,q,1−1/q(∂Ω) �→ 〈v, w〉∂Ω).

Both identifications are consistent with each other because both are based on density of

smooth functions. Hence Im Tgrad is equal to Bq,q,1−1/q(∂Ω).

Example 7 For domains with smooth boundary the trace space of W 2(rot,Ω) is isomorphic

to H−1/2(div, ∂Ω), cf. (Cessenat 1996). The result has recently been generalised to bounded

Lipschitz domains. It remains true if H−1/2(div, ∂Ω) is defined as

{v ∈ H−1/2(∂Ω)3 : ∃ η ∈ H−1/2(∂Ω)∀φ ∈ H2(Ω) : 〈v, gradφ〉 = 〈η, φ〉};

for details we refer to (Buffa, Costabel and Sheen 2002) and (Tartar 1997).

Example 8 So far all examples of trace spaces we have considered were proper subsets of

the codomain Bq,q,−1/q(∂Ω). In contrast, the trace space of W 2(div,Ω) equals B2,2,−1/2(∂Ω).

The proof for bounded Lipschitz domains can be found, for instance, in volume 3, p. 204 in

(Dautray and Lions 1988-93).
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We conclude the section with a theorem which is similar to Theorem 9. In both cases we

examine density of smooth functions vε in the pre-image T−1w: for Theorem 13 assuming

that w ∈ W q
T (∂Ω), while for Theorem 9 we only considered w = 0. In contrast to Theorem

13, in Theorem 9 we required that the functions for which density is assumed have compact

support.

Theorem 13 For each v ∈W q
L (Ω) and ε > 0 there exists a vε ∈ C∞(Ω)m ∩W q

L (Ω) such that

‖v − vε‖L,q < ε and such that Jv = Jvε for every boundary operator J.

Proof. Let ε > δ > 0. Select vε, vε,i as well as vδ and vδ,i like in the proof of Theorem 2. We

define

vj :=
j−1∑
i=1

vδ,i +
∞∑
i=j

vε,i.

By the monotone convergence theorem, vj belongs to C∞(Ω)m ∩W q
L (Ω). Because vj − vε is

an element of C∞
0 (Ω)m, we deduce from (1.19) that Jvj = Jvε. However, by (1.5),

‖vδ − vj‖L,q ≤
∞∑
i=j

‖vδ − vε‖L,q ≤
∞∑
i=j

2 ε
2i

= 22−j ε.

Therefore,

‖Jvδ − Jvε‖V = ‖Jvδ − Jvj‖V ≤ ‖J‖ 22−j ε.

Letting j → ∞ proves that Jvδ and Jvε have the same trace, which coincides, by continuity,

with the trace of v. ////

1.6 Hilbert Space Setting

We assume in this section that W q
L (Ω) is a Hilbert space; that is, we require that q = 2.

We continue our study of the trace space of W 2
L (Ω). Obviously, W 2

T (∂Ω) is a Hilbert space

equipped with the scalar product

W 2
T (∂Ω) ×W 2

T (∂Ω) → R, (v, w) �→ 〈EL,2v,EL,2w〉L.

The starting point of our analysis is the observation that the extension operator EL := EL,2

maps into a subset of W 2
L (Ω) which contains smoother functions than the graph space in

general.
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We introduce the second-order linear differential operator

O : L2(Ω)m → D(Ω)m, v �→ L′Lv + v

and define the space

W 2
L,O(Ω) := {v ∈ L2(Ω)m : Lv ∈ L2(Ω)l and Ov ∈ L2(Ω)m}.

We equip the space W 2
L,O(Ω) with the norm

‖v‖L,O := ‖v‖L2(Ω)m + ‖Lv‖L2(Ω)l + ‖Ov‖L2(Ω)m .

Since W 2
L,O(Ω) is a subspace of W 2

L (Ω), the trace operator TL is defined for all functions in

W 2
L,O(Ω). However since the image of L|W 2

L,O(Ω) is contained in W 2
L′(Ω), we can define the

second trace operator

TL,O : W 2
L,O(Ω) → B2,2,−1/2(∂Ω)m, v �→ 〈B(ν)H Lv, ·〉∂Ω := (−TL′ ◦ L)v.

The integration by parts formula (1.14) applied to L′ takes for smooth function v, w the form

〈−B(ν)H v, w〉∂Ω = 〈L′v, w〉Ω − 〈v,Lw〉Ω.

Substituting v by −Lv, we obtain for v ∈W 2
L,O(Ω) and w ∈W 1,2(Ω)m

〈B(ν)H Lv, w〉∂Ω =−〈L′Lv, w〉Ω + 〈Lv,Lw〉Ω = 〈v, w〉L − 〈Ov, w〉Ω. (1.21)

We formally extend the integration-by-parts formula (1.21) and introduce the following no-

tation, motivated by Remark 3:

W 2
L,O(Ω) ×W 2

L (Ω) → R, (v, w) �→ 〈Lv, w〉B(ν)H := 〈v, w〉L − 〈Ov, w〉Ω.

Theorem 14 The image of EL, that is the set of minimisers in the graph norm for given

fixed traces, is equal to the kernel of O:

ker O := {v ∈W 2
L,O(Ω) : Ov = 0}.

Proof. Let v ∈ Im EL. It follows that v is the smallest element in v +W 2
L,0(Ω) with respect

to the graph norm and therefore 〈v, w〉L = 0 for all w ∈ W 2
L,0(Ω). Yet by (1.21), 〈v, w〉L =

〈Ov, w〉Ω and therefore Ov = 0 in the sense of distributions. Now let v ∈ {v ∈W 2
L,O(Ω) : Ov =

0} and v̇ = ELTLv. Clearly TLv̇ = TLv and O(v̇ − v) = Ov̇ − Ov = 0. Hence 〈v̇ − v, w〉L = 0

for w ∈W 2
L (Ω) and therefore v̇ = v. ////

Corollary 4 The image of EL is the orthogonal complement of W 2
L,0(Ω) in W 2

L (Ω).
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We carry over the result of Theorem 14 to the adjoint operator L′ by reversing the role of L′

and L. Let OL′ := LL′ + I. Then the image of EL′ is the space

{v ∈W 2
L′,OL′(Ω) : OL′v = 0}.

According to Theorem 14 the trace norm of v ∈W 2
T (∂Ω) fulfills the identities

‖v‖2
T = 〈ELv,ELv〉L = 〈LELv,ELv〉B(ν)H . (1.22)

If v is smooth, then the term on the right-hand side is an integral over ∂Ω instead of over Ω;

this property is advantageous for the construction of an intrinsic representation of the trace

norm. Thus, in order to make 〈LELv,ELv〉B(ν)H fully intrinsic, one would want to have a

better understanding of the mapping indicated in the diagram below by the dashed lines.

Theorem 15 The following diagram, not considering the dashed arrows, is commutative:

Im EL

−L′

Im EL′

L

W 2
T(∂Ω)

W 2
T′(∂Ω)

TL′,OL′

TL,O

−
−EL′

TL′

EL

TL

Proof. We first consider the vertical arrows on the left. Let v ∈ Im EL. Then

OL′Lv = (LL′)Lv + Lv = LOv = L0 = 0.

From Ov = 0 it follows that Lv ∈W 2
L′(Ω):

L′Lv = −v. (1.23)

Therefore Lv ∈ Im EL′ . We also have that OL′w = 0 for all w ∈ Im EL′ ; therefore

L(−L′)w = w. (1.24)

The combination of (1.23) and (1.24) implies that −L′|Im EL′ is the inverse of L|Im EL
. The

commutativity along the horizontal arrows on the top and also along the horizontal arrows

at the bottom follows directly from the definitions of TL and EL. Commutativity along the

descending diagonal arrow is a consequence of the definition of TL,O. Finally, the ascending

arrow follows by reversing the roles of L and of L′. ////
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Corollary 5 The spaces ImEL and Im EL′ are isometric with the isomorphism L.

Proof. We denote v̆ := Lv. Then

〈v, v〉L = 〈v, v〉Ω + 〈Lv,Lv〉Ω = 〈L′v̆,L′v̆〉Ω + 〈v̆, v̆〉Ω = 〈v̆, v̆〉L′

proves the result. ////

The isometry between Im EL and W 2
T (∂Ω) as well as between Im EL′ and W 2

T′(∂Ω) is a direct

consequence of Theorem 8 and (1.18). Therefore, according to the proof of Corollary 4, the

graph space is isometric to the orthogonal sum of the image and the kernel of the trace

operator.

1.7 Square Systems

If ImEL and ImEL′ coincide, we can examine the eigenvalues and eigenfunctions of L|Im EL
.

We can use the information about the eigensystem of L to characterise the trace space in

more detail.

Let m = l. We decompose the coefficients of L into their Hermitian and skew-Hermitian

parts

Bh
ijk := 1/2Bijk + 1/2Bjik, Chij := 1/2Cij + 1/2Cji,

Bs
ijk := 1/2Bijk − 1/2Bjik, Csij := 1/2Cij − 1/2Cji

and define

Lh : v �→ ∂k(Bh
ijkvj) + Chijvj , Ls : v �→ ∂k(Bs

ijkvj) + Csijvj .

Analogously to Remark 1, Lh and (Lh)′ may be rewritten as

Lh : v �→ 1/2B
h
ijk(∂kvj) + 1/2 ∂k(Bh

ijkvj) +Dh
ijvj ,

(Lh)′ : v �→− 1/2B
h
ijk(∂kvj) − 1/2 ∂k(Bh

ijkvj) +Dh
ijvj ,

(1.25)

where Dh
ij := Chij + 1/2 ∂kB

h
ijk. Similarly, Ls and (Ls)′ can be transformed to

Ls : v �→ 1/2B
s
ijk(∂kvj) + 1/2 ∂k(Bs

ijkvj) +Ds
ijvj ,

(Ls)′ : v �→ 1/2B
s
ijk(∂kvj) + 1/2 ∂k(Bs

ijkvj) −Ds
ijvj ,

(1.26)

where Ds
ij := Csij + 1/2 ∂kB

s
ijk. One can read off directly from (1.25) and (1.26) that

Lhv + (Lh)′v= 2Dhv, Lsv − (Ls)′v = 2Dsv. (1.27)
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Hence, for v ∈ Im EL,

L′v = (Lh)′v + (Ls)′v = −Lhv + Lsv + 2(Dh −Ds)v.

The two situations in which ImEL and ImEL′ are guaranteed to coincide are the purely

Hermitian case, that is L = Lh, and the purely skew-Hermitian case, that is L = Ls. In the

next two sections we concentrate on these two cases.

Replacing the coefficient matrix C in L by another matrix in L∞(Ω)m×m leaves the graph

space unchanged as set. However, the graph norm changes up to equivalence, at least if the

graph space is understood as a subset of L2(Ω)m and not as a subset of Lq(Ω)m × Lq(Ω)l, cf.

definition (1.1). Therefore we may select C freely as far as the definition of the trace space is

concerned. Later, in order to simplify the search for eigenvalues, we choose Cij = −1/2 ∂kBijk,

which results in Dh = Ds = 0.

1.8 The Hermitian Case

In this section we make the additional assumption that L = Lh. Our aim is to characterise

the trace space of W 2
L (Ω). In particular, we compare the trace space with the space L2

B(∂Ω),

which is similar to a weighted L2-space on the boundary. While an intrinsic definition of the

trace space for all differential operators with Hermitian coefficients remains out of reach, we

identify conditions under which an intrinsic description of W 2
T (∂Ω) can be given.

The Vector Space L2
B(∂Ω)

Given that B(ν, x) is Hermitian at x ∈ ∂Ω, we can find an unitary matrix X and a real

diagonal matrix Λ such that B(ν, x) = XHΛX. We define the (m×m)-matrices

(E+)ij :=

⎧⎨
⎩1 : Λij > 0,

0 : otherwise
and (E−)ij :=

⎧⎨
⎩1 : Λij < 0,

0 : otherwise

and E0 := I − E+ − E−. We set

B+(ν, x) :=XHΛE+X, B−(ν, x) :=XHΛE−X, |B|(ν, x) := B+(ν, x) −B−(ν, x).

The matrices B+(ν, x) and B−(ν, x) split B(ν, x) into its positive and negative semi-definite

part, i.e. B(ν, x) = B+(ν, x) + B−(ν, x) and for all v ∈ R
m we observe that vHB+(ν, x)v ≥ 0

and that vHB−(ν, x)v ≤ 0. Clearly, B+(ν), B−(ν) and |B|(ν) are Hermitian matrices. A

splitting with these properties is unique and in particular it does not depend on the choice

of X.
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Next, let us consider the vector space

L2
B(∂Ω) := {v : ∂Ω �→ R

m : v is measurable and ‖v‖B <∞}

where ‖ · ‖B is the norm which is induced by the scalar product

(v, w) �→
∫
∂Ω
vH |B|(ν)w dS.

The space L2
B(∂Ω) is isometric to a weighted L2-space. We consider the union of m disjoint

copies of ∂Ω. Formally that is the set

∂Ωm :=
m⋃
i=1

{{x, i} : x ∈ ∂Ω}.

We define on ∂Ωm the measure

µ(κ) =
m∑
i=1

∫
κ∩∂Ωi

|Λi|dS, κ ⊂ ∂Ωm.

Then the operator

Φ : L2
B(∂Ω) → L2(∂Ωm, µ), v �→ w such that w|∂Ωi = (Xv)i

is an isometry between L2
B(∂Ω) and the Hilbert space L2(∂Ωm, µ), provided we agree on the

assumption that X is measurable.

We decompose L2
B(∂Ω) by means of projections

P+ : L2
B(∂Ω) →L2

B(∂Ω) , v �→ XHE+Xv,

P− : L2
B(∂Ω) →L2

B(∂Ω) , v �→ XHE−Xv.

Conceptually, ImP+ contains the functions which vanish outside the outflow boundary and

Im P− contains the functions which vanish outside the inflow boundary. Clearly, P+ and P−
are projections and ImP+ is the orthogonal complement of ImP− in L2

B(∂Ω).

Sometimes we prefer to use the matrix functions XHE+X and XHE−X instead of to P+ and

P−. For that purpose we define the abbreviations

P+ : ∂Ω →R
n×n , x �→ XHE+X,

P− : ∂Ω →R
n×n , x �→ XHE−X.

Like B+(ν) and B−(ν) also the matrix functions P+ and P− are independent of the choice of

X because they are the projections onto the sum of the eigenspaces which are associated to

the positive and to the negative eigenvalues, respectively.
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Suppose that w ∈ W 2
L (Ω) is the W 2

L (Ω)-limit of the sequence (vi)i∈N where vi ∈ C(Rn)m ∩
W 2

L (Ω) and vi|∂Ω ∈ ImP+. Then (vi) is a Cauchy sequence in L2
B(∂Ω) because, according to

(1.15), for i, j ∈ N

‖vi − vj‖2
B = 〈B(ν) (vi − vj), (vi − vj)〉∂Ω ≤ ‖vi − vj‖2

L.

Let v be the limit of (vi) in L2
B(∂Ω). Then B(ν) v and TLw are equal in the sense of

B2,2,−1/2(∂Ω)m since for all φ ∈ B2,2,1/2(∂Ω)m we have

〈B(ν) v, φ〉∂Ω = lim
i→∞

〈B(ν) v, φ〉∂Ω = 〈B(ν)w, φ〉∂Ω.

The first equality holds because v → B(ν) v is a continuous mapping in L2
B(∂Ω); the second

follows from the continuity of TL. To summarise the observation in a theorem, we introduce

the notation

W 2
L,+(Ω) := {v ∈ C(Rn)m ∩W 2

L (Ω) : v|∂Ω ∈ ImP+}
W 2

L (Ω)
,

W 2
L,−(Ω) := {v ∈ C(Rn)m ∩W 2

L (Ω) : v|∂Ω ∈ ImP+}
W 2

L (Ω)
.

Theorem 16 The operators v ∈W 2
L,+(Ω) → v|∂Ω and v ∈W 2

L,−(Ω) → v|∂Ω map continuously

into ImP+ ⊂ L2
B(∂Ω) and Im P− ⊂ L2

B(∂Ω), respectively.

Proof. The result W 2
L,+(Ω) is proven above; the result for W 2

L,−(Ω) follows analogously. ////

In general, W 2
L,+(Ω) and W 2

L,−(Ω) are not dense in W 2
T (∂Ω). We consider an example with

constant coefficients.

Example 9 Let Ω = {(x, y) ∈ R
2 : x > 0} and

Lv = ∂x

⎛
⎜⎜⎝
−1 0 0

0 1 0

0 0 0

⎞
⎟⎟⎠ v +

∂y√
2

⎛
⎜⎜⎝

0 0 −1

0 0 1

−1 1 0

⎞
⎟⎟⎠ v. (1.28)

The space W 2
L,+(Ω) contains at least all functions in W 1,2(Ω) × {0} ×W 1,2(Ω) and W 2

L,−(Ω)

contains at least all functions in {0}×W 1,2(Ω)×W 1,2(Ω). Consider the change of coordinates

v �→ 1√
2

⎛
⎜⎜⎝
−1 1 0

1 1 0

0 0
√

2

⎞
⎟⎟⎠ v,

under which the operator L transforms to

L̇v = ∂x

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎟⎠ v + ∂y

⎛
⎜⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎟⎠ v.
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A function (v1, v2, v3) is an element of W 2
L̇

(Ω) if, and only if, v1 ∈ W 1,2(Ω) and (v2, v3) ∈
W 2(div,Ω). Consequently, W 2

L (Ω) is spanned by functions of the type (−v1/
√

2, v1/
√

2, 0)

and (v2/
√

2, v2/
√

2, v3). The trace space of W 2
L (Ω) is

{(u1 − u2, u1 + u2, 0) : u1 ∈ B2,2,1/2(∂Ω)m and u2 ∈ B2,2,−1/2(∂Ω)m}

with the intrinsic norm (‖u1‖2
B2,2,1/2(∂Ω)m + ‖u2‖2

B2,2,−1/2(∂Ω)m)1/2. Since u2 is in general not

an element of L2
B(∂Ω), we deduce that W 2

L,+(Ω) +W 2
L,−(Ω) is a proper subspace of W 2

L (Ω).

In the above example the spaces W 2
L,+(Ω) and W 2

L,−(Ω) are coupled by the second coefficient

matrix in (1.28). The situation is different for graph spaces for which W 2
L,+(Ω) and W 2

L,−(Ω)

are independent of each other. Let x be an element of ∂Ω and N ⊂ R
n be a neighbourhood

of x. For a fixed k ∈ {1, . . . , n} the entries Bijk form an (m ×m)-matrix which we denote

by Bk. Suppose that in N ∩ Ω there is a W 1,∞-coordinate transformation such that all

Bk have the same block diagonal structure, that is there are numbers r1, . . . , rs such that

1 = r1 < r2 < . . . < rs = m+ 1 and for t ∈ {1, . . . , s}

rt ≤ i < rt+1 and (j < rt or rt+1 ≤ j) ⇒ Bk
ij = Bijk = 0. (1.29)

It then follows that also B(ν) fulfills (1.29). Let us suppose that the s submatrices

(B(ν)ij)rt≤i,j<rt+1

are either positive or negative semi-definite on N ∩ ∂Ω. The block structure of the coefficient

matrices implies that we can separate W 2
L (Ω) into s individual graph spaces, that are the

subspaces with the coefficient matrices (Bk
ij)rt≤i,j<rt+1 . By means of a partition of unity we

can then show that v|∂Ω∩N is contained in L2
B(∂Ω ∩N) for any v ∈ W 2

L (Ω). Indeed, locally

the spaces which are associated to a positive semi-definite block in B(ν) constitute W 2
L,+ while

the subspaces associated to a negative semi-definite block in B(ν) constitute W 2
L,−. Hence, if

∂Ω can be covered by neighbourhoods such as N then W 2
L (Ω) is equal to W 2

L,+(Ω) +W 2
L,−(Ω).

Theorem 17 Suppose that there is a neighbourhood N ⊂ R
n of a point x ∈ ∂Ω and a

W 1,∞(N ∩ Ω)m×m-coordinate transformation such that the transformed coefficient matrices

of the principal part of L satisfy (1.29) on Ω ∩N . Moreover, assume that the blocks on the

diagonal of B(ν) are either positive or negative semi-definite on ∂Ω ∩N . Then, the operator

TN : C∞
0 (Rn)m → L2

B(∂Ω ∩N), v �→ v|∂Ω∩N

has a continuous extension to W 2
L (Ω). In addition, 〈B(ν)TN v, φ〉∂Ω = (TL v)(φ) for all test

functions φ ∈ B2,2,1/2(∂Ω ∩N)m.
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It is evident that a general principle for the intrinsic formulation of the trace norm cannot

depend on the coefficient B(ν) only.

Example 10 Let Ω = {(x, y) ∈ R
2 : x > 0} and Lv = (−∂xv1, ∂xv2, 0)H. According to

Theorem 17 the trace space is a subset of L2
B(∂Ω). The boundary matrix B(ν) coincides with

the corresponding term of the graph space considered in Example 9. However, the trace space

considered in this example is not contained in L2
B(∂Ω).

With Theorem 17 we do not cover the case where individual blocks of B(ν) change from

positive to negative semi-definite type. Theorem 17 cannot be extended to such settings.

Example 11 Let Ω := {(x, y) ∈ R
2 : y > |x| and y < 1} and L : v �→ yα ∂xv, α ∈ (0,∞).

We denote the union of the in- and outflow boundary by ∂Ω′, that is ∂Ω′ = ∂Ω \ {(x, y) ∈
∂Ω : y = 1}. Given x ∈ ∂Ω′, B(ν) is negative definite if x < 0 and positive definite if x > 0.

The extension ELg of a function g : ∂Ω′ → R is

(x, y) �→ cosech
(2 y
yα

)(
g(−y, y) sinh

(y − x

yα

)
+ g(y, y) sinh

(y + x

yα

))
.

It follows that the trace norm of g is

(∫ 1

0
yαcosech(2 y1−α)

(
cosh(2 y1−α)(g(y, y)2 + g(−y, y)2) − 2 g(y, y) g(−y, y)) dy)1/2. (1.30)

Suppose that

g(y, y) = g(−y, y). (1.31)

Then the integrand of (1.30) simplifies to 2 yα tanh(y1−α) g(y, y)2. Since tanh(y) is asymp-

totically equal to y as y → 0, the trace norm is, for functions which satisfy (1.31), equivalent

to (∫ 1

0
y g(y, y)2 dy

)1/2
.

Therefore

T∂Ω′ : C∞
0 (Rn)m → L2

B(∂Ω), v �→ v|∂Ω (1.32)

can only have a continuous extension to W 2
L (Ω) if α ≥ 1. We now examine boundary functions

for which g(−y, y) = 0. Then, the integrand of the trace norm is yα coth(2 y1−α) g(y, y)2. For

these functions the trace norm is equivalent to

(∫ 1

0
y2α−1 g(y, y)2 dy

)1/2
.
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Again we find that α ≥ 1 is a necessary condition for the existence of a continuous extension

of (1.32) to W 2
L (Ω). A corresponding result also holds if g(y, y) = 0.

Taking inspiration from this example, we illustrate a technique which can be used to clarify

when the restriction v|∂Ω is meaningful and contained in L2
B(∂Ω) for v ∈ W 2

L (Ω). Suppose

we can find a positive function ψ : Ω → (0, 1) such that the trace ψ|∂Ω equals 1 on the

inflow and 0 on the outflow boundary. Furthermore, let us assume that Bijk ψ is contained

in W 1,∞(Ω) for all admissible indices i, j, k. Then W 2
L (Ω) is the intersection of the graph

spaces associated to the operators v �→ ∂k(Bijk ψ vj) and v �→ ∂k(Bijk (1−ψ) vj). Since these

operators have as boundary matrices B−(ν) and B+(ν), respectively, their trace operators

map, by Theorem 17, into L2
Bψ(∂Ω) and L2

B(1−ψ)(∂Ω), respectively. This in turn proves that

the trace operator of W 2
L (Ω) maps into L2

B(∂Ω). In the example above, choosing the function

ψ(x, y) = (y − x)α/(2 y)α, we get that B1,1,x ψ = −1/2 (y − x)α is contained in W 1,∞(Ω) if,

and only if, α ≥ 1.

Example 11 makes it evident that L2
B(∂Ω) is in general not large enough to contain all traces

of W 2
L (Ω)-functions. However, if singularities only occur at certain locations we can embed

W 2
T (∂Ω) into a local version of the space L2

B(∂Ω). LetM be the union of all neighbourhoodsN

which satisfy the hypotheses of Theorem 17, that is in N the operator L is of block structure

after a coordinate transformation and each block in B(ν) is either positive or negative semi-

definite throughout N ∩ ∂Ω. We then introduce the space

L2
B,loc(∂Ω) :=

{
v : ∂Ω → R

m : v measurable and ∀K � M ∩ ∂Ω :
∫
K
v |B|(ν) v dS <∞

}
.

We would like to know if the restrictions v|∂Ω of functions v ∈ W 2
L (Ω) are contained in

L2
B,loc(∂Ω). Suppose that K � M , that v ∈W 2

L (Ω) and that (vk)k∈N is a sequence of smooth

functions which converges to v in W 2
L (Ω). Since K is compact, we can find a finite covering

of K with bounded neighbourhoods Ni of the kind described in Theorem 17. Let F be a

partition of unity subordinate to the Ni. Moreover, let ḟi be the finite sum of all fj ∈ F with

supp(fj)∩K �= ∅ for which i is the smallest index such that supp(fj) ⊂ Ni. We set vi := ḟi v

and vk,i := ḟi vk on Ω. Then vk,i → vi as k → ∞ in W 2
L (Ω). Applying Theorem 17 we verify

that ∫
K∩Ni

vi |B|(ν) vi dS <∞.

Thus v|∂Ω is a member of L2
B,loc(∂Ω).

We typically require in addition that S = ∂Ω \M is a null set in the (n − 1)-dimensional

Hausdorff measure of ∂Ω because only then is the embedding of W 2
T (∂Ω) into L2

B,loc(∂Ω)

injective.
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We conclude the section with remarks on the regularity of |B|(ν) and the transformation X.

If ∂Ω is C2-regular in a neighbourhood of x ∈ ∂Ω, then B(ν) is locally an element of W 1,∞. A

partial answer when B+(ν) and B−(ν) share this degree of regularity is given in the following

theorem. The proof of the theorem is based on perturbation theory of linear operators. For

an overview of the relevant prerequisites see the Appendix.

Theorem 18 Let x ∈ ∂Ω and assume that ∂Ω can be represented in a neighbourhood of x

by the graph of a twice continuously differentiable function. If there is an ε > 0 such that

Bε(0) contains at most one simple eigenvalue of B(ν, x), then B+(ν) and B−(ν) are of the

class B2,2,1/2 in a neighbourhood of x.

Proof. Because the eigenvalues of B(ν, x) change continuously with x, there is a neighbour-

hood Nx of x such that there is at most one eigenvalue contained in Bε/3(0) and no additional

eigenvalue contained in B2ε/3(0). As pointed out in the Appendix, by possibly reducing the

size of Nx, we can assume that all λ-groups and therefore all total projections are well-defined

in Nx. Clearly, the projection onto the sum of eigenspaces which are associated with eigen-

values larger than 2ε/3 is continuously differentiable. If Bε/3(0) contains an eigenvalue λ

then the eigenprojection is continuously differentiable as it is a total projection. Moreover, in

such a case λ itself is continuously differentiable so that |λ| is a Lipschitz function. Therefore

B+(ν) is Lipschitz continuous in Nx which implies that B+(ν) is contained in B2,2,1/2. An

analogous argument applies to B−(ν). ////

Corollary 6 If Ω is a C2-domain and the differential operator is scalar, i.e. m = 1, then

B+(ν) and B−(ν) are members of B2,2,1/2(∂Ω)m×m.

Proof. If m = 1, then B(ν) has only one eigenvalue. ////

The following example, which goes back to (Rellich 1937), demonstrates that even for very

smooth functions B(ν) the transformation X can be singular if a multiple eigenvalue branches

at the origin.

Example 12 Consider

T : R → R
2×2, x �→ e−

1
x2

⎛
⎝cos 2

x sin 2
x

sin 2
x − cos 2

x

⎞
⎠ , with T (0) :=

⎛
⎝0 0

0 0

⎞
⎠ .

The function is infinitely differentiable for all x ∈ R and the same is true for the eigenvalues,

which are ± exp(−1/x2) for x �= 0 and zero for x = 0. But the associated projections onto
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the eigenspaces are given, for x �= 0, by⎛
⎝ cos2 1

x cos 1
x sin 1

x

cos 1
x sin 1

x sin2 1
x

⎞
⎠ ,
⎛
⎝ sin2 1

x − cos 1
x sin 1

x

− cos 1
x sin 1

x cos2 1
x

⎞
⎠ .

These matrix functions are infinitely differentiable on R \ {0}, but they cannot be extended

continuously to x = 0 and do not have a uniform Lipschitz constant on R\{0}. Furthermore,

there is no function of eigenvectors of T that is continuous in a neighbourhood of 0 and that

does not vanish at 0.

As noted in the Appendix, singularities of the eigenprojections cannot occur under analytic

perturbations if the matrix function is real and symmetric. Therefore on a part ∂Ω′ of the

boundary which is analytic and on which B(ν) is real, symmetric and analytic, we find that

the transformation X is analytic, too.

Eigenvalues and Eigenvectors

Under the condition that not only L = Lh but also Dh = 0 holds, we can fully characterise the

eigensystem of L on the restriction to ImEL. We can use this information on the eigenspaces

to improve our understanding of the trace space.

From Dh = 0 we deduce that

L|Im EL
=−L′|Im EL

= L−1|Im EL
. (1.33)

It follows directly that L|Im EL
is normal. Moreover the graph norms with respect to L and

L′ coincide in Im EL:

〈v, w〉L = 〈v, w〉Ω + 〈Lv,Lw〉Ω = 〈v, w〉Ω + 〈L′v,L′w〉Ω = 〈v, w〉L′ .

We obtain, for v ∈ Im EL and v̆ := Lv, the two identities

v + v̆ = v + Lv = LLv + Lv = L(Lv + v) = (v + v̆)̆,

v − v̆ = v − Lv = LLv − Lv = L(Lv − v) =− (v − v̆)̆.
(1.34)

Theorem 19 The space Im EL is the orthogonal sum of the eigenspaces Eig(L|Im EL
, 1) and

Eig(L|Im EL
,−1). In addition, the operators

P 1 : Im EL →Eig(L|Im EL
, 1) , v �→ 1/2 (v + v̆),

P-1 : Im EL →Eig(L|Im EL
,−1) , v �→ 1/2 (v − v̆),

are projections onto Eig(L|Im EL
, 1) and Eig(L|Im EL

,−1), respectively.
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Proof. Equations (1.34) show that 1 and −1 are eigenvalues of L, i.e. the elements of the

point spectrum of the operator. Given v ∈ Im EL, we write v = 1/2 (v + v̆) + 1/2 (v − v̆)

where 1/2 (v + v̆) ∈ Eig(L|Im EL
, 1) and 1/2 (v − v̆) ∈ Eig(L|Im EL

,−1). The functions v1 ∈
Eig(L|Im EL

, 1) and v−1 ∈ Eig(L|Im EL
,−1) are orthogonal since

〈v1, v−1〉L = 〈v1, v−1〉Ω + 〈v1,−v−1〉Ω = 0.

The operators P 1 and P-1 are surjective because P 1v1 = v1 and P-1v−1 = v−1, which also

shows that P 1 and P-1 are projections. ////

Since the complement L|W 2
L,0(Ω) may have the eigenvalues 1 or −1 too, the eigenspaces

Eig(L|Im EL
, 1) and Eig(L|Im EL

,−1) do not have to coincide with Eig(L, 1) and Eig(L,−1).

Notice that the mappings P 1 and P-1 are nothing else but the orthogonal projections onto

Eig(L|Im EL
, 1) and Eig(L|Im EL

,−1). We extend their meaning to all of W 2
T (∂Ω): For

v ∈ W 2
T (∂Ω) we mean by P 1v and P-1v the elements of, respectively, Eig(L|Im EL

, 1) and

Eig(L|Im EL
,−1) which are closest to v.

We remark that one could also prove Theorem 19 by means of the factorisation

O = (L + I)(−L + I).

Example 13 Let Ω = (0, 1) and Lv = ∂xv. Then the space Im EL is equal to the space of

solutions of

−∂2
xv + v = 0,

which is the span of ex and e−x. In agreement with Theorem 19, we observe that Lex = ex,

that Le−x = −e−x and that 〈ex, e−x〉L = 0.

In the previous section we have used the projections P+ and P− to illustrate that under certain

conditions the restrictions v|∂Ω of functions in the graph space are contained in L2
B(∂Ω).

Similarly, we can utilise the projections P 1 and P-1 to identify classes of functions v in L2
B(∂Ω)

for which we can guarantee that B(ν) v is a member of the trace space.

We record that given a boundary function v ∈ W 2
T (∂Ω), all members u ∈ W 2

L (Ω) with trace

Tu = v differ only by W 2
L,0(Ω)-functions. Because Im P 1 and W 2

L,0(Ω) are orthogonal to each

other, all extensions of v have the same P 1-component. In this sense we extend the meaning

of P 1 and P-1 by defining

P 1 :W 2
T (∂Ω) →W 2

T (∂Ω), v �→ TL P 1 EL v,

P-1 :W 2
T (∂Ω) →W 2

T (∂Ω), v �→ TL P-1 EL v.
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Consider two functions v, w ∈ B2,2,1/2(∂Ω)m such that v ∈ Im P 1 and w ∈ Im P-1. Then

‖v‖2
T = 〈Lv, v〉B(ν)H = 〈B(ν) v, v〉∂Ω ≤ ‖v‖2

B,

‖w‖2
T = 〈Lw,w〉B(ν)H =− 〈B(ν)w,w〉∂Ω ≤‖w‖2

B.

Consequently, the sets

{B(ν) v : v ∈ B2,2,1/2(∂Ω)m ∩ Im P 1
‖·‖B},

{B(ν)w :w ∈ B2,2,1/2(∂Ω)m ∩ Im P-1
‖·‖B}

(1.35)

are contained in W 2
T (∂Ω). Equation (1.35) gives a lower bound on the size of the trace space.

In general, passing v through P 1 and P-1 leads to a loss in regularity in the sense of Besov

spaces. This is even true if the coefficients of L are of class C∞.

Example 14 Let Ω = (−1, 1) × (0, 1) and let

Lv(x, y) = B(x) ∂yv(x, y), where B(x) :=

{
e−1/x for x > 0,

0 for x ≤ 0.

The coefficient B belongs to C∞(R2). We consider the constant function w : ∂Ω → R, x �→ 1

on the boundary. For x ≤ 0 it follows immediately that (ELw)(x, y) = 0. Thus also P 1w

and P-1w vanish in this region. For x > 0 we can construct the projections by the method of

characteristics:

P 1w(x, y) =
exp(y exp 1/x)
1 + exp exp 1/x

, P-1w(x, y) =
exp((1 − y) exp 1/x)

1 + exp exp 1/x
.

The functions P 1w and P-1w are elements of C∞(Ω). In contrast the traces (P 1w)|∂Ω and

(P-1w)|∂Ω are discontinuous at the points (0, 0) and (0, 1).

In order to more clearly understand the previous example we consider the operator O in more

detail; when fully expanded it reads

Ȧikικ ∂kκvι + Ḃiικ ∂κvι + Ċiι vι,

where

Ȧikικ := 4Bijk Bιjκ,

Ḃiικ := 2∂k(BijkBιjκ) + 2Bijk(∂kBιjκ) + 2Bijκ(∂kBιjk), (1.36)

Ċiι := 2Bijk(∂kκBιjκ) + (∂kBijk)(∂κBιjκ) + δiι.

If O is a scalar operator then its Fichera function is

∂Ω → R, x �→ (Ḃiικ − ∂kȦikικ) νκ =: (Ḃκ − ∂kȦkκ) νκ.
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Because of the particular choice of the coefficients in (1.36), the Fichera function of O vanishes.

For a general class of second-order degenerate elliptic-parabolic equations Fichera (Fichera

1956) decomposed the boundary of Ω into three regions: Σ3 is the set of all points of ∂Ω for

which Ȧkκ νk νκ is positive; Σ2 is the set of all points where Ȧkκ νk νκ = 0 and (Ḃκ−∂kȦkκ) >
0; finally Σ1 is the complement ∂Ω \ (Σ3 ∪ Σ2). The ‘Generalised Dirichlet Problem’ for

second-order degenerate elliptic-parabolic equations is to determine a solution of Ou = f

which vanishes on Σ2 + Σ3. This problem has been analysed by a number of authors. In

particular, we refer to the work by Olĕınik and her student Radkevič. For details see (Olĕınik

and Radkevič 1973) and (Magenes 1996). Important contributions are also due to Kohn

and Nirenberg. We highlight (Kohn and Nirenberg 1965), (Kohn and Nirenberg 1967) and

(Kohn 1978).

The next theorem, which we cite from (Kohn and Nirenberg 1967, p. 801) in abbreviated

form, shows that, by possibly rescaling L, one can ensure basic smoothness properties of

the projections P 1 and P-1. In view of the special structure of our problem we simplify the

statement of the theorem by making the assumption that Σ2 = ∅. For the general case we

refer to the original publication.

Theorem 20 Let Ω be a bounded domain with C∞-boundary. Suppose that the coefficients

of the linear differential operator

Ou = Ȧkκ ∂kκv + Ḃκ ∂κv + Ċ v

are real and of class C∞ in Ω. The leading part of the operator is degenerate elliptic-parabolic,

i.e. Ȧkκ(x) ξk ξκ ≥ 0 for all ξ ∈ R
m and x ∈ Ω. The Fichera function (Ḃκ−∂kȦkκ) νκ vanishes

on ∂Ω. If Σ3 is closed and if −Ċ is sufficiently large in comparison to ‖Ȧkκ‖W 3,∞(Ω) then for

every r ≥ 1 there exists a constant C(r) such that

‖u‖W r,2(Ω) ≤ C(r) ‖f‖W r,2(Ω) (1.37)

for all f ∈W r,2(Ω) and all solutions u of Ou = f , u|Σ3 = 0.

The requirement that −Ċ needs to be of adequate size is not a severe restriction. For α ∈
(0,∞) we introduce the operator Lα := αL. Clearly, the norms ‖·‖L and ‖·‖Lα are equivalent

and consequently the same holds for ‖·‖T and ‖·‖Tα , where Tα is the trace operator associated

to Lα. However, inspection of (1.36) shows that by choosing α sufficiently small we can

increase the ratio between Ȧ and Ċ as necessary because the component δiι in the definition

of Ċiι is not affected by the rescaling.
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In contrast, the condition that Σ3 is closed limits the applicability of Theorem 20. It implies

that the boundary ∂Ω consists of a finite number of components each of which either belongs

completely to Σ3 or to its complement. We have seen in Example 14 that if Σ3 is not closed

then the solution of Ou = f is in general not smooth on Ω.

We now apply Theorem 20 to obtain a regularity estimate. Suppose that (1.37) holds. Let

u ∈ W r+2,2(Ω) and u̇ = ELTLu ∈ W 2
L (Ω) where r ≥ 2. We set v := u̇− u. Since B(ν, x) �= 0

if, and only if, x ∈ Σ3, we know that v|Σ3 = 0. Taking (1.37) into account, we deduce

from Ov = −Ou ∈ W r,2(Ω) that u̇ ∈ W r,2(Ω). Moreover L u̇ ∈ W r−1,2(Ω). According to

the definition of P 1 and P-1 and recalling Theorem 19, the restrictions P 1|B2,2,r+3/2(∂Ω) and

P-1|B2,2,r+3/2(∂Ω) map into B2,2,r−3/2(∂Ω).

Certainly, it would be desirable to obtain similar regularity estimates for systems of equations.

However, we are not aware of any results corresponding to Theorem 20 for degenerate elliptic-

parabolic systems. For a more general investigation of degenerate elliptic-parabolic systems

we refer, for instance, to (Bertiger and Cosner 1979) and the subsequent publications by the

authors.

The Vector Space W 2
L,B(Ω)

In the next chapter we refer to the closure

W 2
L,B(Ω) := {v|Ω : v ∈ C∞

0 (Rn)m}‖·‖L,B (1.38)

of C∞
0 (Rn)|Ω in the norm

‖ · ‖L,B : C∞
0 (Rn)m → R, v �→ (‖v‖2

L + ‖v‖2
B)

1/2 .

This space is equal to W 2
L (Ω) if W 2

T (∂Ω) is a subset of L2
B(∂Ω). For W 2

L,B(Ω) we can introduce

the trace operator TB. We define

TB : W 2
L,B(Ω) → L2

B(∂Ω), v �→ v|∂Ω

by continuous extension from the space of smooth functions.

Example 11 from the previous section shows that TB is in general not surjective. However,

TB is an injective operator on the restriction to ImEL ∩ W 2
L,B (Ω). Namely, choose v ∈

Im EL ∩W 2
L,B(Ω) \ {0}. Then, there is a w ∈ B2,2,1/2(∂Ω)m so that 〈B(ν) v, w〉∂Ω �= 0. Since

w − 2 P−w is contained in L2
B(∂Ω) and

〈B(ν) v, w〉∂Ω = 〈|B|(ν) v, w − 2 P−w〉∂Ω,

it follows that TB v �= 0. We have the following alternative characterisation of W 2
L,B(Ω).
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Theorem 21 A function u ∈ W 2
L (Ω) belongs to W 2

L,B(Ω) if, and only if, there is a function

v ∈ L2
B(∂Ω) such that 〈B(ν)u,w〉∂Ω = 〈B(ν) v, w〉∂Ω for all w ∈ B2,2,1/2(∂Ω)m.

Proof. Suppose u ∈ W 2
L (Ω) and v ∈ L2

B(∂Ω). We have that 〈B(ν)u,w〉∂Ω = 〈B(ν) v, w〉∂Ω

for all w ∈ B2,2,1/2(∂Ω)m. Then 〈B(ν)u,w〉∂Ω ≤ ‖v‖B ‖w‖B for w ∈ B2,2,1/2(∂Ω)m. Thus

w �→ 〈B(ν)u, ·〉∂Ω has a continuous extension to L2
B(∂Ω). Let (ui)i∈N be a sequence of

C∞
0 (Rn)m-functions converging to u. Then we have

lim
i→∞

〈B(ν) (v − ui), w〉∂Ω = lim
i→∞

〈B(ν) (u− ui), w〉∂Ω = 0

for all w ∈ L2
B(∂Ω). Thus the sequence (ui|∂Ω)i∈N converges weakly in L2

B(∂Ω) to v. By

applying Mazur’s theorem we can pass to a sequence (u̇i)i∈N of C∞
0 (Rn)m-functions which

converge to u in W 2
L (Ω) and strongly to v in L2

B(∂Ω). Thus (u̇i)i∈N is a Cauchy sequence in

the W 2
L,B(Ω)-norm and u ∈W 2

L,B(Ω). The implication in the other direction follows by setting

v = TBu for u ∈W 2
L,B(Ω). ////

Unlike for L2(Ω)m, matrix functions in L∞(∂Ω)m×m do not define endomorphisms on L2
B(∂Ω).

Consider the following example.

Example 15 Suppose that ∂Ω = {(x, y) ∈ R
2 : y = 0} and that

B(ν, x) =

(
1 0

0 sin2 x

)
, x ∈ ∂Ω.

The matrix function

J(x) =

(
0 1

1 0

)
, x ∈ ∂Ω

does not define an endomorphism on L2
B(∂Ω). For instance the image of (0, 1/x)H ∈ L2

B(∂Ω)

is the function (1/x, 0))H which does not belong to L2
B(∂Ω).

For this reason we introduce the set

L∞
B (∂Ω)m×m := {J ∈ L∞(∂Ω)m×m : ∃C > 0∀x ∈ ∂Ω : JH |B|(ν)J |x ≤ C2 |B|(ν)|x}.

Here we denoted with ‘≤’ the partial ordering of positive semi-definite matrices, i.e. at each

x ∈ ∂Ω the matrix C |B|(ν)− JH |B|(ν)J |x is positive semi-definite. We now have as desired

‖J v‖B ≤ C‖v‖B

for v ∈ L2
B(∂Ω) and C as in the definition of L∞

B (∂Ω)m×m. We remark that P+ and P− are

members of L∞
B (∂Ω)m×m with C = 1.
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1.9 Boundary Value Problems

In the context of first-order graph spaces we understand under the term boundary value

problem the following task:

BVP 1 Let J : W 2
L (Ω) → V be a boundary operator with respect to the graph space of L.

Given f ∈ L2(Ω)m and h ∈ V , find u ∈W 2
L (Ω) such that Lu = f and Ju = h.

Clearly, for general L, J, f and h neither existence nor uniqueness of u is guaranteed. We

call BVP 1 the classical formulation of the boundary value problem.

In order to analyse Friedrichs systems, it is necessary to consider the weak formulation of

the boundary value problem. In contrast to the classical formulation, here the boundary

conditions are imposed via bilinear forms.

Before we can state the weak formulation, we have to agree on an appropriate space of test

functions. For that purpose we introduce the set of smooth functions which vanish on a closed

subset S of ∂Ω with Hausdorff measure zero. The test space consists of the closure of this set

in the W 1,2(Ω)-norm:

W 1,2
0 (Rn\S)m = {v ∈W 1,2(Rn)m : supp(v) � Rn \ S}.

Consequently D(Ω)m ⊂ W 1,2
0 (Rn\S)m. The restriction of functions in W 1,2

0 (Rn\S)m to ∂Ω

constitute the set

B
2,2,1/2
0 (∂Ω\S)m := {v ∈ B2,2,1/2(∂Ω)m : supp(v) � ∂Ω \ S}.

The spaces B2,2,1/2
0 (∂Ω\S)m and W 1,2

0 (Rn\S)m are equipped with the B2,2,1/2(∂Ω)m- and

W 1,2(Rn)m-norms, respectively.

We restrict our attention to boundary operators J which map W 2
L (Ω)-functions into the

dual of B2,2,1/2
0 (∂Ω\S)m, which we denote by B

2,2,−1/2
0 (∂Ω\S)m. By construction v1, v2 ∈

B
2,2,−1/2
0 (∂Ω\S)m coincide if, and only if, 〈v1, w〉∂Ω = 〈v2, w〉∂Ω for all w ∈ B

2,2,1/2
0 (∂Ω\S)m.

The introduction of the pair of spaces (B2,2,1/2
0 (∂Ω\S)m, B2,2,−1/2

0 (∂Ω\S)m) allows us to con-

sider boundary operators which are smooth with the exception of the set S, where we allow

the operator to be singular.

BVP 2 Let J : W 2
L (Ω) → B

2,2,−1/2
0 (∂Ω\S)m be a boundary operator with respect to the

graph space of L. Given f ∈ L2(Ω)m, h ∈ B
2,2,−1/2
0 (∂Ω\S)m, find u ∈ W 2

L (Ω) such that

∀w ∈W 1,2
0 (Rn\S)m:

〈Lu,w〉Ω + 〈Ju,w〉∂Ω = 〈f, w〉Ω + 〈h,w〉∂Ω.
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Let V = B
2,2,−1/2
0 (∂Ω\S)m. Then every solution of BVP 1 solves BVP 2. Now consider a

solution u of BVP 2. Testing u with functions in D(Ω)m implies that Lu = f . Consequently

〈Ju,w〉∂Ω equals 〈h,w〉∂Ω for all w ∈ B
2,2,1/2
0 (∂Ω\S)m, which implies equality of Ju and h in

B
2,2,−1/2
0 (∂Ω\S)m. Therefore every solution of BVP 2 solves BVP 1.

Example 16 Recall the definition of Ω and L from Example 11. We select J so that it

imposes the inflow boundary conditions on this domain:

(Jv)|∂Ωi
= v|∂Ωi

and (Jv)|∂Ω\∂Ωi
= 0

where ∂Ωi := {(x, y) ∈ ∂Ω : x ≤ 0 and y ∈ (0, 1)}. Let S = {(0, 0), (−1, 1), (1, 1)}. In

Example 11 we noted that, independently of α, the function v(x, y) = 1/
√
y is a member of

the graph space. We are interested in the continuity of the linear form

J : B2,2,1/2
0 (∂Ω\S)m → R, w �→ 〈J v, w〉∂Ω =

∫
∂Ωi

1√
x
w d(x, y).

Because of density it is sufficient to consider elements w ∈ B
2,2,1/2
0 (∂Ω\S)m whose support

is bounded away from S. Without loss of generality we can assume that supp(w) ⊂ ∂Ωi.

However then Jw = 〈B(ν) v, w〉∂Ω. Thus ‖J‖
B(B

2,2,1/2
0 (∂Ω\S)m,R)

is bounded by the operator

norm of T.

Consider a family of functions (wt)t∈(ε,1−ε) which are translations of each other and whose

support is contained in the set

{(−y, y) ∈ ∂Ωi : y ∈ (t− ε, t+ ε)}.

A decrease in t results in an increase of the term Jwt. It is evident that J is not continuous with

respect to the L2(∂Ω)m-norm since the L2(∂Ω)m-norm of wt is invariant under translation

and since the support of w can be concentrated arbitrarily close to the origin by passing to

families (wt)t∈(ε,1−ε) with sufficiently small ε. In contrast, the B
2,2,1/2
0 (∂Ω\S)m-norm of wt

increases as t ↘ ε as an inspection of (1.10) reveals. This difference makes the continuity J

with respect to the B
2,2,1/2
0 (∂Ω\S)m-norm possible.

Finally, we observe that if we replace the domain of J by W 2
L (Ω) we do not obtain a continuous

linear map anymore. This is easily seen be choosing w(x, y) = 1/
√
y.

Example 16 brings us to the delicate and important issue as to whether we can assume that

the bilinear form 〈J·, ·〉∂Ω has a continuous extension to W 2
L (Ω)×W 2

L′(Ω). We are interested in

the extension of 〈J·, ·〉∂Ω because the analysis of Friedrichs systems is based on energy integral

methods which rely on the positivity of

v �→ 〈Lv, v〉Ω + 〈Jv, v〉∂Ω.
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Certainly for the boundary value problem considered in Example 16 such an extension does

not exist.

If the image of J is contained in W 2
T (∂Ω) and J : W 2

L (Ω) → W 2
T (∂Ω) is continuous then

J naturally induces a continuous bilinear form on the graph space via density of smooth

functions. Let v ∈ C∞
0 (Rn)m and w ∈ C∞

0 (Rn)m; then

〈Jv, w〉∂Ω = 〈LEL J v, w〉Ω − 〈EL J v,L′w〉Ω ≤ ‖EL J v‖L‖w‖L′

= ‖J v‖T‖w‖L′ ≤ ‖J‖B(W 2
L (Ω),W 2

T (∂Ω)) ‖v‖L‖w‖L′ .
(1.39)

For the first equality we used that Jv lies in the domain of EL and integration by parts. The

meaning of 〈Jv, w〉∂Ω in (1.39) is given by the embedding of W 2
T (∂Ω) into B2,2,−1/2(∂Ω)m in

the sense of Theorem 7. Because of the bound (1.39) we can extend (v, w) �→ 〈Jv, w〉∂Ω to

a bilinear form which acts in both arguments on functions which are contained in a graph

space. This extension is comparable with the extension of 〈B(ν)·, ·〉∂Ω in Section 1.5; confer

in particular with Remark 3.

Conversely, we can question whether a boundary operator J : W 2
L (Ω) → V for which 〈J·, ·〉∂Ω

has a continuous extension must have the codomain W 2
T (∂Ω). For our needs it is sufficient to

consider the Hermitian case L = Lh. We make the assumption that the scalar product

V × C∞
0 (Rn)m, (v, w) �→ 〈v, w〉∂Ω = 〈v, (w|∂Ω)〉∂Ω (1.40)

is meaningful and that

∀u ∈W 2
L (Ω) ∀ v ∈ C∞

0 (Rn)m : |〈Ju,w〉∂Ω| < C ‖u‖L‖w‖T′ (1.41)

holds for some constant C > 0. Then for fixed u the linear mapping w �→ 〈Ju,w〉∂Ω has a

unique continuous extension to W 2
T (∂Ω). Thus by the Riesz representation theorem there is

a T (u) ∈W 2
T (∂Ω) such that

∀w ∈W 2
T (∂Ω) : 〈Ju,w〉∂Ω = 〈ELT (u),ELw〉L = 〈B(ν)LELT (u), w〉∂Ω.

Since B(ν)LELT (u) is a member of the trace space, we deduce that there is a boundary

operator J̇ : W 2
L (Ω) → W 2

T (∂Ω) such that 〈Ju, v〉∂Ω = 〈J̇u, v〉∂Ω for all u ∈ W 2
L (Ω) and

v ∈ C∞
0 (Rn)m. In this sense a continuous extension of 〈J·, ·〉∂Ω exists if, and only if, the

codomain of J is W 2
T (∂Ω). Having said this it is easily seen that we can also allow codomains

which can be continuously embedded into W 2
T (∂Ω).

Theorem 22 Let L = Lh. Consider a boundary operator J : W 2
L (Ω) → V such that (1.40) is

meaningful and (1.41) is satisfied. Then 〈J·, ·〉∂Ω has a continuous extension toW 2
L (Ω)×W 2

L′(Ω)

if, and only if, V is continuously embedded into W 2
T (∂Ω).
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Remark 4 Theorem 22 and Example 16 now make a fundamental difficulty in the analysis

of Friedrichs systems quite apparent. On the one hand we desire to allow boundary operators

with a large codomain in order to implement boundary conditions which exhibit singularities.

On the other hand we also want to limit the size of the codomain to W 2
T (∂Ω) so that the

applicability of energy integral methods is not restricted. We shall return to this issue in the

next chapter.

To familiarise ourselves with the concept of weak boundary value problems we consider an ex-

ample. We use the opportunity to introduce the ◦-adjoint boundary operator of J : W 2
L (Ω) →

B
2,2,−1/2
0 (∂Ω\S)m with respect to the pivot 〈·, ·〉∂Ω. We denote the dual space of W 2

L (Ω) by

W 2
L (Ω)′. For all v ∈W 2

L (Ω) and w ∈ B
2,2,1/2
0 (∂Ω\S)m we have the bound

〈J v, w〉∂Ω ≤ ‖J‖
B(W 2

L (Ω),B
2,2,−1/2
0 (∂Ω\S)m)

‖v‖L‖w‖
B

2,2,1/2
0 (∂Ω\S)m .

Therefore the operator

J◦ : B2,2,1/2
0 (∂Ω\S)m →W 2

L (Ω)′, w �→ (v �→ 〈Jv, w〉∂Ω)

is continuous. Moreover for all v, w ∈W 1,2
0 (Rn\S)m the identity

〈v, J◦w〉∂Ω = 〈J v, w〉∂Ω (1.42)

holds.

Example 17 Let Ω = (0, 1)2 and let L be

L : L2(Ω)2 → D ′(Ω)2, (v1(x, y), v2(x, y)) �→ (∂yv1, x ∂yv2)H.

Accordingly,

B(ν) =

(
ν2 0

0 x ν2

)
.

We denote the four edges of the domain by I1, I2, I3 and I4 as indicated in the figure.

1

Ω

1

x1

0

I4

I1

I3
x2

I2



1.9. BOUNDARY VALUE PROBLEMS 56

Clearly, T vanishes on I2 and I4. On I1 and I3 the matrix B(ν) is invertible and therefore

the function values of v are well-defined on I1 and I3:

v(x, y) = B(ν)−1(Tv)(x, y), (x, y) ∈ I1 ∪ I3. (1.43)

On each characteristic the graph space is isomorphic to W 1,2(0, 1)2 and the trace defined via

(1.43) agrees, up to a null set, with the W 1,2(0, 1)2-trace taken point-by-point on I1 and I3.

Thus we can define the boundary operator

J : W 2
L (Ω) →W 2

T (∂Ω), (v1, v2) �→ ((x, 0) �→ (0,
√
x v1)H)

We want to show that J has a continuous extension to W 2
L (Ω) ×W 2

L′(Ω).

In Example 11 we used a function ψ : Ω → (0, 1) to write W 2
L (Ω) as the intersection of

the graph spaces associated to the operators v �→ ∂k(Bijk ψ vj) and v �→ ∂k(Bijk (1 − ψ) vj).

By choosing ψ(x, y) = (1 − x) for the current example we demonstrate along the same lines

that the restriction of (v1, v2) ∈ W 2
L (Ω) to I1 ∪ I3 is contained in L2

B(I1 ∪ I3). Since the

coefficient in the first component of L is constant, the set of restrictions v1|I1∪I3 of functions

(v1, v2) ∈ W 2
L (Ω) is actually equal to L2(I1 ∪ I3). This can also be seen by combining the

eigenspace decomposition of Example 13 with (1.35).

Let S = {(0, 0), (0, 1), (1, 0), (1, 1)}. Requiring that J◦ satisfies equation (1.42) for all v, w ∈
W 1,2

0 (Rn\S)m implies that

J◦(v1, v2) = (
√
x v2, 0)H.

Then
√
x v2 is an element of L2(I1 ∪ I3) if v2 is contained in the set

L2(I1 ∪ I3, x) =
{
x v|I1∪I3 :

∫
I1∪I3

v2 xdx <∞
}
.

Using the continuity of TB and that Im J ⊂ W 2
T′ (∂Ω) we establish that 〈J◦·, ·〉∂Ω has a

continuous extension to W 2
L (Ω) ×W 2

L′(Ω). Because of (1.42) also the bilinear form 〈J·, ·〉∂Ω

can be continuously extended. Thus J maps into W 2
T (∂Ω). Taking into account that

L2(I1 ∪ I3, x) → L2(I1 ∪ I3, x), v1 �→ √
x v1

is a surjective mapping, we deduce that the set L2
B(I1 ∪ I3) is in fact equal to the trace space.

We now come to the statement of the weak adjoint formulation of a boundary value problem.

The ′-adjoint boundary operator to J : W 2
L (Ω) → B

2,2,−1/2
0 (∂Ω\S)m is

J′ : W 1,2
0 (Rn\S)m →W 2

L (Ω)′, v �→ J◦v + T◦v. (1.44)
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For the definition of T◦ we substitute the codomain B2,2,−1/2(∂Ω)m of T by the larger space

B
2,2,−1/2
0 (∂Ω\S)m. Then (1.42) is applicable. The motivation for the construction of J′ is

that for all v ∈W 2
L (Ω), w ∈W 1,2

0 (Rn\S)m

〈Lv, w〉Ω + 〈Jv, w〉∂Ω = 〈v,L′w〉Ω + 〈v, J′w〉∂Ω. (1.45)

The weak adjoint formulation of the boundary value problem then has the following form:

BVP 3 Let J : W 2
L (Ω) → B

2,2,−1/2
0 (∂Ω\S)m be a boundary operator with respect to the

graph space of L. Given f ∈ L2(Ω)m, h ∈ B
2,2,−1/2
0 (∂Ω\S)m, find u ∈ W 2

L (Ω) such that

∀w ∈W 1,2
0 (Rn\S)m:

〈u,L′w〉Ω + 〈u, J′w〉∂Ω = 〈f, w〉Ω + 〈h,w〉∂Ω.

Obviously BVP 2 and BVP 3 are equivalent. Finally, we consider the strong formulation of

the boundary value problem.

Observe that we can extend the domain of J′ to the whole graph space W 2
L′(Ω) if, and only

if, 〈J·, ·〉∂Ω has a continuous extension to W 2
L (Ω) ×W 2

L′(Ω) . Similarly by identifying J and

J̇ in (1.20), we can state that J′ is contained in B(W 2
T′(∂Ω),W 2

T (∂Ω)′) if, and only if, there

is a continuous extension of 〈J·, ·〉∂Ω. In general, J′ is only contained in the larger space

B(B2,2,1/2
0 (∂Ω\S)m,W 2

T (∂Ω)′).

BVP 4 Let J : W 2
L (Ω) → B

2,2,−1/2
0 (∂Ω\S)m be a boundary operator with respect to the

graph space of L. Given f ∈ L2(Ω)m, h ∈ B
2,2,−1/2
0 (∂Ω\S)m, find a function u ∈W 2

L (Ω) and

a sequence (ui)i∈N such that ui ∈W 1,2(Ω)m and Jui = h for i ∈ N and

lim
i→∞

‖u− ui‖L = 0.

Strong solutions, i.e. solutions of BVP 4, are weak solutions, i.e. solutions of BVP 2. Suppose

that u ∈ W 2
L (Ω) is a strong solution which is approximated by a sequence (ui)i∈N whose

elements satisfy the boundary conditions exactly. Then for all w ∈W 1,2
0 (Rn\S)m we have

〈f, w〉Ω + 〈h,w〉∂Ω = 〈 lim
i→∞

Lui, w〉Ω + 〈 lim
i→∞

Jui, w〉∂Ω = 〈Lu,w〉Ω + 〈Ju,w〉∂Ω.

In contrast, not every weak solution is a strong solution. Evidently, if a weak solution u

satisfies boundary conditions which are not contained in J(W 1,2(Ω)m) then u cannot be

strong. However the difference between weak and strong solutions is more subtle than this.

For instance, in Example 25 consider a weak solution of a homogeneous boundary value

problem which is not strong.
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In the framework of Friedrichs systems to understand when weak solutions are also strong

is closely related to the question of well-posedness. The reason is that for a large class of

problems it is possible to prove that weak solutions of Friedrichs systems exist and that strong

solutions are unique.

Remark 5 We introduced the adjoint operator of L formally in (1.1). We shall now clarify

how the formal adjoint is connected to the adjoint operator in the sense of unbounded oper-

ators. We denote the adjoint operator in the sense of unbounded operators by L
 in order

to distinguish it from the formal adjoint. We assume that l = m. The domain D(L
) is the

space of all w ∈ L2(Ω)m for which

∃C ∈ R ∀ v ∈W 2
L (Ω) : C ‖v‖L2(Ω)m ≥ 〈Lv, w〉∂Ω. (1.46)

If w ∈ D(L
), then by the Hahn-Banach theorem the functional v �→ 〈Lv, w〉∂Ω can be

extended to a continuous functional on L2(Ω)m. The extension is unique since W 2
L (Ω) is

dense in L2(Ω)m. By the Riesz representation theorem we can assign to every w ∈ D(L
) a

unique element L
w ∈ L2(Ω)m such that

∀ v ∈W 2
L (Ω) : 〈Lv, w〉∂Ω = 〈v,L
w〉∂Ω.

Adapting Theorem 13.8 in (Rudin 1991) to our notation, we obtain that

Γ(L
) = Γ′(L)⊥

= {(w1, w2) ∈ L2(Ω)m × L2(Ω)m : 〈−Lv, w1〉Ω + 〈v, w2〉Ω = 0}, (1.47)

where ⊥ marks the orthogonal complement in L2(Ω)m × L2(Ω)m. Choosing v ∈ D(Ω)m in

(1.47) forces w2 = L′w1. Then, for v ∈W 2
L (Ω), the integration by parts formula (1.14) implies

that w1 ∈ ker TL′ . Since pairs (w,L′w) with w ∈ kerTL′ are members of the complement of

Γ′(L), the adjoint in the sense of unbounded operators is the restriction of the formal adjoint,

defined by (1.1), to ker TL′ :

L
 = L′|ker TL′ . (1.48)

Applying Theorem 13.13 from (Rudin 1991), we learn that the restriction of O to

D(O) = D(L
L) = {x ∈W 2
L (Ω) : L ∈ kerTL′}

is a one-to-one mapping onto L2(Ω)m, where D(O) and D(L
L) are defined by substituting in

(1.46) the operator L with O and L
L, respectively. Moreover it follows from Theorem 13.13

in (Rudin 1991) that O|D(O) is a self-adjoint operator. We therefore remark that OL′ is not

to be mistaken for the adjoint of O, despite the fact that OL′ describes the set of minimisers

of the adjoint of L.
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1.10 The Skew-Hermitian Case

Graph spaces of operators with skew-Hermitian coefficients in the first-order component of

the operator share many properties with their Hermitian counterpart discussed in Section 1.8.

We exemplify this close relationship by exhibiting a decomposition of ImEL into eigenspaces

which resembles the decomposition we gave in Section 1.8. We shall not consider the analysis

of the skew-Hermitian case further than that since investigations in this direction are not the

objective of this dissertation.

We assume that L = Ls and that Ds = 0. Then, according to Theorem 15,

L|Im EL
= L′|Im EL

= −L−1|Im EL
. (1.49)

Clearly, L|Im EL
is normal and the graph norms with respect to L and L′ coincide in ImEL.

We derive, for v ∈ Im EL, the two identities:

v + i v̆ = −LLv + iLv = L(−v̆ + i v) = i (v + i v̆)̆,

v − i v̆ = −LLv − iLv = −L(v̆ + i v) =− i (v + i v̆)̆.
(1.50)

Theorem 23 The space Im EL is the orthogonal sum of the eigenspaces Eig(L|Im EL
, i) and

Eig(L|Im EL
,−i). In addition the operators

Pi : ImEL →Eig(L|Im EL
, i), v �→ 1/2 (v + i v̆),

P-i : ImEL →Eig(L|Im EL
,−i), v �→ 1/2 (v − i v̆),

are projections onto Eig(L|Im EL
, i) and Eig(L|Im EL

,−i), respectively.

Proof. Almost identical to the proof of Theorem 19. ////

1.11 Remarks on Duality

We end the chapter with general remarks on the dual space of W q
L (Ω), q ∈ (1,∞). We allow

m �= l and do not impose symmetry conditions on the coefficients of the differential operator.

As before, we assume that Ω satisfies a strong local Lipschitz condition. In Corollary 3

we already stated that W q
L (Ω) is reflexive and uniformly convex. Since the graph space is

isometric to a closed subset of Lq(Ω)m × Lq(Ω)l it also inherits separability from this space.

We turn our attention to the question of how the dual W q
L (Ω)′ of W q

L (Ω) can be represented

explicitly.
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Theorem 24 For every Λ ∈ W q
L (Ω)′ there exist elements (w1, w2) ∈ Lq′(Ω)m × Lq′(Ω)l such

that, for all v ∈W q
L (Ω),

Λ(v) = 〈w1, v〉Ω + 〈w2,Lv〉Ω. (1.51)

Let V be the set of (w1, w2) ∈ Lq′(Ω)m × Lq′(Ω)l which fulfill (1.51). Then, there exists a

unique element w̄ ∈ V such that

‖Λ‖W q
L (Ω)′ = ‖w̄‖Lq′(Ω)m×Lq′(Ω)l = inf{‖w‖Lq′(Ω)m×Lq′(Ω)l : w ∈ V }. (1.52)

Proof. The dual of Lq(Ω)m × Lq(Ω)l is Lq′(Ω)m × Lq′(Ω)l. We identify W q
L (Ω) with Γ(L)

through I, cf. (1.1). Then the elements of the dual of W q
L (Ω) are functionals defined on

the subspace Γ(L) of Lq(Ω)m × Lq(Ω)l. By the Hahn-Banach theorem in uniformly con-

vex Banach spaces the norm-preserving extension of a linear functional is uniquely defined,

cf. (Werner 2000, Exercises I.4.13, I.4.18 and III.6.7). Let Λ ∈ W q
L (Ω)′ and let (w̄1, w̄2) ∈

Lq′(Ω)m × Lq′(Ω)l represent the norm-preserving extension of Λ. Clearly, (w̄1, w̄2) satisfies

(1.51) and (1.52). All elements in V are extensions of Λ from Γ(L) to Lq(Ω)m × Lq(Ω)l, thus

their norms are larger than or equal to ‖Λ‖W q
L (Ω)′ . ////

Theorem 25 The set V is equal to the complete affine space w̄ + Γ′(L′|ker TL′ ).

Proof. Let w ∈ V . Since for all v ∈ D(Ω) we have

〈w1 − w̄1, v〉Ω + 〈w2 − w̄2,Lv〉Ω = 0,

we know that w2 − w̄2 ∈W q′
L′(Ω) with L′(w2 − w̄2) = w̄1 −w1. Hence for v ∈W q

L (Ω) it follows

that

0 = 〈w1 − w̄1, v〉Ω + 〈w2 − w̄2,Lv〉Ω = 〈w2 − w̄2, v〉B(ν)H

and therefore w ∈ w̄+ Γ′(L′|ker TL′ ). To prove the implication in the other direction, suppose

that w ∈ w̄ + Γ′(L′|ker TL′ ). Then,

〈w1 − w̄1, v〉Ω + 〈w2 − w̄2,Lv〉Ω = 〈w1 − w̄1, v〉Ω + 〈L′(w2 − w̄2), v〉Ω = 0

and thus w ∈ V . The set is closed due to the continuity of the trace operator. ////

The proof of Theorem 24 is similar to the corresponding proof for W 1,q(Ω)-spaces, cf. (Adams

and Fournier 2003, p. 62). Recall that we already encountered Γ′(L′|ker TL′ ) in equation

(1.48) in the Hilbert space setting. The exponents in the next theorem are applied to each

component. We characterise w̄ in more detail.
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Theorem 26 Let q′ be a positive even integer. Then w̃ ∈ w̄ + Γ′(L′|ker TL′ ) fulfills

L(w̃q′−1
1 ) = w̃q

′−1
2 (1.53)

in the sense of distributions if, and only if, w̃ = w̄.

Proof: We define, for (−L′w,w) ∈ Γ′(L′|ker TL′ ) and (w̃1, w̃2) ∈ w̄+ Γ′(L′|ker TL′ ), the functions

φw,w̃ : R → R, t �→ ‖w̃1 − tL′w‖q′Lq′(Ω) + ‖w̃2 + t w‖q′Lq′(Ω).

The Lq′(Ω)-norm is Fréchet differentiable. Indeed, if q′ is an even number, then the derivative

(D‖ · ‖q′Lq′(Ω))(w) is q′wq′−1, cf. (Werner 2000, p. 114). Therefore φ′w,w̃(t) equals, by the chain

rule, ∫
Ω
q′(w̃1 − tL′w)q

′−1 · (L′w) + q′(w̃2 + tw)q
′−1 · w dx.

For t = 0 the derivative simplifies to

φ′w,w̃(0) =
∫

Ω
−q′w̃q′−1

1 · (L′w) + q′w̃q
′−1

2 · w dx. (1.54)

Since w̄ is the minimiser of the Lq′(Ω)m × Lq′(Ω)l-norm in w̄ + Γ′(L′|ker TL′ ), necessarily

φ′w,w̄(0) = 0 for all w ∈ ker TL′ . Hence, choosing w ∈ D(Ω), it follows from (1.54) that

the distribution

q′ (−L(w̄q
′−1

1 ) + w̄q
′−1

2 )

equals zero and therefore that w̄ fulfills (1.53). Now suppose that w̃ ∈ w̄ + Γ′(L′|ker TL′ )

satisfies equation (1.53). This implies by (1.54) that φ′w,w̃(0) = 0 for w ∈ D(Ω). Also, by

(1.54), there is a constant C, depending on w̃, such that for all w ∈ ker TL′ the inequality

φ′w,w̃(0) ≤ C‖w‖L′,q′ holds. Hence, by Theorem 9, φ′w,w̃(0) = 0 holds for all w which are

elements of the closure ker TL′ . Since the Lq′(Ω)-norm is convex, φw,w̃ attains a minimum

at the origin and therefore w̃ is the minimiser of the Lq′(Ω)m × Lq′(Ω)l-norm in the space

w̄ + Γ′(L′|ker TL′ ). ////

Corollary 7 The function w̄q
′−1

1 is an element of W q′
L (Ω).

For general q ∈ (1,∞) one needs to include the sign function into the Fréchet derivative of

v �→ ‖v‖qLq(Ω), namely

(D‖ · ‖qLq(Ω))(w) = q sign(w)|w|q−1.

Observe that w̄q
′−1 ∈ Lq(Ω)m × Lq(Ω)l since (q′ − 1)q = q′. Obviously, each element in

Lq′(Ω)m × Lq′(Ω)l which fulfills (1.53) is a norm-preserving extension of a functional over

W q
L (Ω). If q = 2, Theorem 26 recovers the Riesz Representation Theorem for Hilbert spaces.
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Example 18 Let q′ be a positive even integer. Suppose that L is the mapping W 2
L (0, 1) →

L2(0, 1), v �→ ∂xv. According to Theorem 26, the functions

f : (0, 1) → R
2, x �→ (ex, (q′ − 1)1/(q

′−1)ex),

g : (0, 1) → R
2, x �→ (1, 0)

represent norm-preserving extensions of linear functionals over W q
L (Ω). The sum f + g does

not satisfy (1.53) unless q′ = 2. Hence the set of minimising elements is, in general, not a

vector space and the operator

W q
L (Ω)′ → Lq

′(Ω)m × Lq
′(Ω)l,Λ → w̄ (1.55)

is nonlinear.

Nevertheless, inserting (α w̄1, α w̄2), α ∈ R, into equation (1.53) proves that the set of min-

imising elements w̄ is closed under scalar multiplication. Therefore it is a cone. Example 18

discourages us from searching for a generalisation of the Riesz Representation Theorem for

q �= 2, considering the distinguished role of w̄ as norm-defining element in equation (1.52).

Instead, we take Theorem 24 as our starting point for investigations in a different direction.

First we illustrate how, by utilising the L2-scalar product instead of the graph space scalar

product as pivot, the dual space can be embedded into the set of distributions.

Select w ∈ w̄+ Γ′(L′|ker TL′ ). The representation of the functional Λ by formula (1.51) shows

that the restriction of Λ to D(Ω)m is equal to the distribution

T : D(Ω)m → R, v �→ 〈w1 + L′w2, v〉Ω. (1.56)

If two functionals Λ1,Λ2 ∈W q
L (Ω)′ have the same restriction to D(Ω)m, continuity of Λ1 and

Λ2 implies that they coincide at least on W q
L,0(Ω). Since, by the Hahn-Banach theorem, every

continuous functional on W q
L,0(Ω) can be extended to a continuous functional over W q

L (Ω),

we know that every element in W q
L,0(Ω)′ can be identified with a distribution which has a

representation like (1.56). Given, instead, a distribution Λ of type (1.56), integration by

parts makes apparent that Λ ∈W q
L,0(Ω)′. We summarise our findings in the next theorem.

Theorem 27 Let W q, ′
L,0(Ω) be the image of the mapping

Ψ : Lq(Ω)m × Lq(Ω)l → D(Ω)m, (w1, w2) �→ 〈w1 + L′w2, ·〉Ω
and equip W q, ′

L,0(Ω) by the norm

‖〈w1 + L′w2, ·〉Ω‖W q, ′
L,0(Ω) := min{‖(w̃1, w̃2)‖Lq′(Ω)m×Lq′(Ω)l : w̃ ∈ (w1, w2) + Γ′(L′)}.

Then W q, ′
L,0(Ω) is isometric to the dual of W q

L,0(Ω).
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Proof: It remains to show that the minimum in the definition of ‖ · ‖W q, ′
L,0(Ω)-norm is attained

and that the norm is isometric to the operator norm of the dual. The reasoning that the set

of elements in Lq(Ω)m × Lq(Ω)l, which are mapped by Ψ to the same functional as (w1, w2),

coincides with (w1, w2) + Γ′(L′) is similar to the proof of Corollary 25. Now the theorem

follows from the existence of a norm-preserving extension of functionals in W q
L,0(Ω)′ to the

graph space. ////



Chapter 2

Friedrichs Systems

Friedrichs systems are boundary value problems which fulfill three requirements: these are a

symmetry and a positivity condition on the differential operator, and an adjointness condition

on the boundary conditions.

We discuss the boundary conditions in two stages. First we introduce semi-admissible condi-

tions, which ensure only existence of solutions in a weakened sense; then we examine under

which circumstances the boundary conditions become admissible, which guarantees that the

just mentioned solutions solve the boundary value problem as described by BVP 1. In prac-

tice boundary conditions are usually imposed by means of matrix functions J : ∂Ω → R
m×m.

We therefore derive criteria for the abstract definitions of admissibility and semi-admissibility

which are easily applicable to matrix functions J . We also address the delicate question of

well-posedness of Friedrichs systems. Using Moyer’s example we highlight difficulties involved

in the analysis of general admissible boundary conditions. These findings prompt us to focus

on Friedrichs systems which satisfy an additional new constraint. These systems satisfy a

stability estimate which will also play an important role in the next chapter on discontinuous

Galerkin finite element methods for Friedrichs systems. After we have discussed these more

theoretical issues we turn to a number of examples of Friedrichs systems. We illustrate how

first-order hyperbolic systems and second-order hyperbolic, elliptic and parabolic equations

can be transferred to the framework of Friedrichs. We then turn to the Frankl problem which

is a representative for the important class of mixed-type equations. We end the chapter with

a literature review.

For Friedrichs systems we consider the case of q = 2. Only then we are able to exploit

symmetry fully. We make the underlying assumption that all functions in the graph space

are real-valued.

64
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2.1 Definition of Friedrichs Systems

Symmetric Coefficients: Let l = m. We call the operator

L : L2(Ω)m → D ′(Ω)m, v �→ ∂k(Bijk vj) + Cij vj

Friedrichs symmetric if the coefficients B and C are real and if B is symmetric in the first

two indices i and j, i.e. if Bijk = Bjik for all i, j ∈ {1, . . . ,m} and k ∈ {1, . . . , n}. In contrast

with the operators we considered in Section 1.8 we do not require that Cij = −1/2 ∂kBijk but

allow any C ∈ L∞(Ω,R)m×m. We sometimes rewrite L as

L : v �→ 1/2Bijk(∂kvj) + 1/2 ∂k(Bijkvj) +Dijvj ,

where Dij := Cij + 1/2 ∂kBijk. The symmetric component of the assignment

W 2
L (Ω) ×W 2

L (Ω) → R, (v, w) �→ 〈Lv, w〉Ω

is the bilinear form

1/2 〈Lv, w〉Ω + 1/2 〈v,Lw〉Ω = 〈Dhv, w〉Ω + 1/2 〈v, w〉B(ν), (2.1)

where Dh = 1/2D + 1/2D
H is defined as on page 38. Notice that the symmetric part of

〈Lv, w〉Ω does not contain any derivatives. If L is Friedrichs symmetric, then the adjoint L′ is

Friedrichs symmetric, too. Obviously, the fact that L is Friedrichs symmetric does not mean

that L is a symmetric operator. In fact, if D = 0 then the symmetric first-order coefficients

imply that L is a skew-symmetric operator on the restriction to W 2
L,0(Ω):

∀ v, w ∈W 2
L,0(Ω) : 〈Lv, w〉Ω = −〈v,Lw〉Ω. (2.2)

Positivity: We call the operator L positive if Dh is uniformly positive definite on Ω, i.e. if

there exists a constant γ > 0 such that for all x ∈ Ω, v ∈ R
n : vHDh v|x ≥ γ vH v|x. Since

〈Lv, v〉Ω = 〈Dhv, v〉Ω + 1/2 〈v, v〉B(ν), (2.3)

it is apparent that for v ∈ W 2
L,0(Ω) the product 〈Lv, v〉Ω + 〈J v, v〉∂Ω = 〈Lv, v〉Ω is positive

if v �= 0. Equation (1.25) shows that if a Friedrichs symmetric operator is positive then its

adjoint is positive, too. Positive Friedrichs symmetric operators are called accretive operators

in short.

Semi-Admissible Boundary Conditions: Let S be a closed subset of ∂Ω with Hausdorff measure

zero. Semi-admissible boundary conditions are chosen so that 〈Lv, v〉Ω + 〈J v, v〉∂Ω is positive

definite on the function spaceW 1,2
0 (Rn\S)m. Generally, we say that a boundary value operator

R : W 2
L (Ω) → B

2,2,−1/2
0 (∂Ω\S)m, v �→ R v
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is positive semi-definite if for all v ∈ W 1,2
0 (Rn\S)m the term 〈R v, v〉∂Ω is non-negative. We

call a boundary operator J semi-admissible whenever

J + 1/2 T =: R (2.4)

is positive semi-definite. The definition of semi-admissability is motivated by the bound

〈Lv, v〉Ω + 〈J v, v〉∂Ω = 〈Dhv, v〉Ω + 〈R v, v〉∂Ω ≥ γ 〈v, v〉Ω, v ∈W 1,2
0 (Rn\S)m, (2.5)

which is derived from (2.3), recalling γ from the last paragraph. If J is semi-admissible with

respect to T = TL then the ′-adjoint boundary operator J′ : W 1,2
0 (Rn\S)m → W 2

L (Ω)′ is

semi-admissible with respect to the adjoint trace operator TL′ : For all v ∈ W 2
L (Ω), w ∈

W 1,2
0 (Rn\S)m

〈v, J′w〉∂Ω − 1/2 〈B(ν) v, w〉∂Ω = 〈J v, w〉∂Ω + 1/2 〈B(ν) v, w〉∂Ω = 〈R v, w〉∂Ω.

This implies that, for all v ∈W 1,2
0 (Rn\S)m,

〈v,L′v〉Ω + 〈v, J′ v〉∂Ω ≥ γ 〈v, v〉Ω. (2.6)

We label the spaces that contain the functions which satisfy the boundary condition Jv = 0

by the subscript J:

W 2
L,J(Ω) := {v ∈W 2

L (Ω) : Jv = 0}, C∞
0,J(R

n)m := {v ∈ C∞
0 (Rn)m : Jv = 0}, . . .

In particular, we have

W 1,2
0,J′(R

n\S)m = {v ∈W 1,2
0 (Rn\S)m : ∀u ∈W 2

L (Ω) : 〈(J + T)u, v〉∂Ω = 0}.

From (2.5), (2.6) and the Cauchy-Schwarz inequality we deduce the stability of the boundary

value problem on these spaces: for v ∈W 1,2
0,J(Rn\S)m, w ∈W 1,2

0,J′(R
n\S)m:

‖Lv‖L2(Ω)m ≥ γ ‖v‖L2(Ω)m , ‖L′w‖L2(Ω)m ≥ γ ‖w‖L2(Ω)m . (2.7)

Before we turn our attention to boundary value problems as specified in Section 1.9, we

shall first examine a class of more general solutions. Employing in BVP 3 only elements of

W 1,2
0,J′(R

n\S)m as test functions, we can use stability on W 1,2
0,J′(R

n\S)m to derive the following

result:

Theorem 28 Let L : W 2
L (Ω) → L2(Ω)m be an accretive operator and J : W 2

L (Ω) →
B

2,2,−1/2
0 (∂Ω\S)m be a semi-admissible boundary operator. Suppose that g ∈ W 2

L (Ω),

f ∈ L2(Ω)m. Then there exists a function u ∈W 2
L (Ω) such that for all v ∈W 1,2

0,J′(R
n\S)m

〈u,L′v〉Ω = 〈f, v〉Ω + 〈J g, v〉∂Ω. (2.8)
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Proof. We define ḟ := f + Lg. Consider the problem

find u̇ ∈W 2
L (Ω) s.t. ∀ v ∈W 1,2

0,J′(R
n\S)m : 〈u̇,L′v〉Ω = 〈ḟ , v〉Ω. (2.9)

Inequality (2.7) implies that L′ is injective on W 1,2
0,J′(R

n\S)m. Hence we have a unique

correspondence between functions v ∈ W 1,2
0,J′(R

n\S)m and functions w in the image W :=

L′(W 1,2
0,J′(R

n\S)m). Accordingly, we can assign to every w the scalar product 〈ḟ , v〉Ω:

Λ : W → R, w �→ 〈ḟ , (L′)−1w〉Ω = 〈ḟ , v〉Ω.

This mapping is linear and bounded; for the latter consider

|〈ḟ , v〉Ω| ≤ ‖ḟ‖L2(Ω)m ‖v‖L2(Ω)m ≤ 1
γ
‖ḟ‖L2(Ω)m ‖w‖L2(Ω)m .

By the Hahn-Banach theorem there exists a continuous extension of Λ to L2(Ω)m. By the

Riesz representation theorem we can select a function u̇ ∈ L2(Ω)m such that 〈u̇,L′v〉Ω =

〈u̇, w〉Ω = 〈ḟ , v〉Ω for all v ∈ W 1,2
0,J′(R

n\S)m. From D(Ω)m ⊂ W 1,2
0,J′(R

n\S)m it follows that

Lu̇ = ḟ in the sense of distributions and therefore that u̇ ∈W 2
L (Ω) and that u̇ solves equation

(2.9). Since

∀ v ∈W 1,2
0,J′(R

n\S)m : 〈u̇− g,L′v〉Ω = 〈ḟ , v〉Ω − 〈Lg, v〉Ω + 〈g, v〉J = 〈f, v〉Ω + 〈g, v〉J

the function u = u̇− g satisfies equation (2.8). ////

The proof of Theorem 28 is an adaptation of the corresponding proof in (Friedrichs 1958). A

closely related argument has been utilised by Morawetz (Morawetz 1958) to demonstrate the

existence of a weak solution of the Tricomi equation. The result has been published in the same

issue of ‘Communications on Pure and Applied Mathematics’ in which also (Friedrichs 1958)

appeared.

Clearly the solutions of BVP 3 solve (2.8). But do the solutions of (2.8) satisfy BVP 3? As

far as the differential operator is concerned, the answer is affirmative. By assuming that v

in equation (2.8) is a member of D(Ω)m we deduce that Lu = f . However, regarding the

validity of the boundary conditions, more thought is needed. We deduce from Lu = f and

(2.8), that

〈Ju, v〉∂Ω = 〈J g, v〉∂Ω with v ∈ B
2,2,1/2
0,J′ (Rn\S)m. (2.10)

This in itself does not imply that Ju = Jg. Consider the following example in which the

solution of (2.8) does not satisfy the boundary conditions.
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Example 19 Let Ω = (−1, 1) and Lv = x v′ + v. The solution of the ordinary differential

equation Lu = 0 can be written as

u(x) =

⎧⎨
⎩c− exp

(∫ x
x0

− 1
τ dτ
)

= c− x0

x for x, x0 < 0,
c+ x0

x for x, x0 > 0,
(2.11)

allowing a discontinuity at 0. Clearly L is Friedrichs symmetric and positive with γ equal to

1/2 . Since B(ν) = 1 on the boundary, we can choose the semi-admissible boundary operator

J = 0. Although it might be surprising at first, (2.8) has only one solution, namely u = 0.

All other solutions in (2.11) are inadmissible, because they do not lie in W 2
L (Ω) due to a pole

at the origin.

Suppose we had chosen Jv = v instead. Still the only solution of (2.8) is u = 0, independent

of g. Evidently, for J g �= 0 this u is not a solution to BVP 3.

Theorem 28 induces an equivalence relation in W 2
L (Ω). We say that two functions g, ġ share

the same equivalence class [[g]] if for all f ∈ L2(Ω)m both functions result in the same set of

solutions {uf} of (2.8), keeping in mind that we have not proven uniqueness of solutions of

(2.8). Equivalently ġ ∈ [[g]] if, and only if, 〈J(g − ġ), v〉∂Ω = 0 for all v ∈ B
2,2,1/2
0,J′ (Rn\S)m.

Therefore the definition of the equivalence relation is independent of the choice of f .

We use the annihilator of B2,2,1/2
0,J′ (Rn\S)m with respect to 〈J ·, ·〉∂Ω to rephrase the above

statement:

(B2,2,1/2
0,J′ (Rn\S)m)⊥J := {w ∈ Im J : ∀ v ∈ B

2,2,1/2
0,J′ (Rn\S)m : 〈w, v〉∂Ω = 0}

⊂ B
2,2,−1/2
0 (∂Ω\S)m.

Then

[[g]] = g + J−1(B2,2,1/2
0,J′ (Rn\S)m)⊥J.

Clearly [[0]] = J−1(B2,2,1/2
0,J′ (Rn\S)m)⊥J.

Admissible Boundary Conditions: If

(B2,2,1/2
0,J′ (Rn\S)m)⊥J = {0} (2.12)

we call J and J′ strictly adjoint. Notice that J and J′ are strictly adjoint if, and only if,

whenever u ∈W 2
L (Ω) we have that

(∀ v ∈ B
2,2,1/2
0,J′ (Rn\S)m : 〈Ju, v〉J = 0) ⇒ Ju = 0. (2.13)
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If the boundary conditions are strictly adjoint and semi-admissible, we say that they are

admissible.

We subsume how strict adjointness and semi-admissibility are interconnected: The boundary

operator J has the codomain B
2,2,−1/2
0 (∂Ω\S)m. In Theorem 28 we test the equality of Ju

and Jg with functions in B
2,2,1/2
0,J′ (Rn\S)m. However, since B2,2,1/2

0,J′ (Rn\S)m is in the general

case not dense in B2,2,−1/2
0 (∂Ω\S)m this method can only distinguish functions on a subspace

V of B2,2,−1/2
0 (∂Ω\S)m. Strict adjointness demands that J maps into V to ensure that the

boundary conditions are in fact attained. We formulated this condition by saying that the

complement (B2,2,1/2
0,J′ (Rn\S)m)⊥J of V in Im J is trivial.

Friedrichs Systems: A boundary value problem consisting of an accretive first-order linear

differential operator on Ω ⊂ R
n and an admissible boundary condition on ∂Ω is called a

Friedrichs system.

Theorem 29 A boundary value problem of type BVP 1 which consists of an accretive opera-

tor L, an admissible boundary operator J : W 2
L (Ω) → B

2,2,−1/2
0 (∂Ω\S)m, boundary conditions

h = Jg ∈ Im J and a right-hand side f ∈ L2(Ω)m has a solution u in W 2
L (Ω).

Proof. The existence of u follows from Theorem 28 and (2.13). ////

We attend to the question of uniqueness in a later section about well-posedness. First we

transfer the definition of Friedrichs systems to a less abstract setting.

2.2 Matrix-Valued Boundary Conditions

The boundary operators considered in practice can almost exclusively be represented by

matrix functions which are defined on the boundary. By that we mean that there is a mapping

J : ∂Ω → R
m×m

such that for all v ∈ C∞
0 (Rn)m

(J v)(x) = J(x) v(x). (2.14)

We say that J is a boundary operator, is semi-admissible, is strictly adjoint or is admissible

if J can be extended to a continuous operator

J : W 2
L (Ω) → B

2,2,−1/2
0 (∂Ω\S)m, v �→ J v|∂Ω (2.15)
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which has the respective property. To analyse J we introduce

J ′ := B(ν) + JH and J∗ := B(ν) + J. (2.16)

Notice the similarity between (1.44) and (2.16).

Theorem 30 Consider a mapping J ∈ L∞(∂Ω)m×m such that, almost everywhere on ∂Ω,

the matrices

R(x) := J(x) + 1/2B(ν)(x) (2.17)

are positive semi-definite. Suppose that J has a continuous extension in the sense of (2.15).

Then J is a semi-admissible boundary operator.

Proof. For all functions v ∈ B
2,2,1/2
0 (∂Ω\S)m the term

〈Rv, v〉∂Ω (2.18)

is non-negative. ////

If one had to pin down the meaning of strict adjointness for individual matrices J(x) and

B(ν, x) for a fixed x ∈ ∂Ω, one would probably think of

{0} = {v ∈ Im J(x) : ∀w ∈ kerJ ′(x) : v · w = 0} (2.19)

in the view of (2.12). Analysing (2.19) is a first step towards understanding the more complex

concept of strict adjointness of boundary operators. In the next theorem we present conditions

which are equivalent to (2.19) and which are in practice often easier to validate. We remark

that the results beginning with Theorem 31 and ending with Corollary 8 are, up to minor

modifications, due to (Friedrichs 1958).

Theorem 31 Consider the matrices J(x) and B(ν, x) for an x ∈ ∂Ω. Then (2.19) holds if,

and only if,

ImJ∗(x) ∩ Im J(x) = 0 (2.20)

or, equivalently,

ker J ′(x) + kerJH(x) = R
m. (2.21)
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Proof: We consider (2.20) first. We use that the kernel of J ′(x) is equal to the orthogonal

complement of the image of the adjoint operator. We choose the orthogonal complement with

respect to the canonical scalar product in R
m:

kerJ ′(x) = (Im J ′(x)H)⊥Rm = (Im J∗(x))⊥Rm .

Let v ∈ R
m. Then J(x) v · w = 0 for all w ∈ (Im J∗)⊥Rm ⊂ R

m if, and only if, J(x) v ∈
Im J∗(x). We now turn to (2.21). It holds if, and only if, (2.20) holds because

Im J∗ ∩ Im J = 0⇔ (kerJ ′)⊥Rm ∩ (ker JH)⊥Rm = 0

⇔ (kerJ ′ + ker JH)⊥Rm = 0 (2.22)

⇔ kerJ ′ + kerJH = R
m.

For completeness we show that

(ker J ′)⊥Rm ∩ (ker JH)⊥Rm = (kerJ ′ + kerJH)⊥Rm .

Let v ∈ (ker J ′)⊥Rm ∩ (ker JH)⊥Rm and split w = w1 + w2 with w1 ∈ kerJ ′ and w2 ∈ ker JH.

Then 〈v, w〉∂Ω = 〈v, w1〉∂Ω+〈v, w2〉∂Ω = 0. Conversely, suppose that v ∈ (ker J ′+kerJH)⊥Rm .

Let w1 ∈ kerJ ′ and w2 ∈ ker JH. Then 〈v, w1〉∂Ω = 0 and 〈v, w2〉∂Ω = 0. ////

It proves to be helpful to express condition (2.19) in terms of projections. We do not have

to require that these projections are orthogonal; that is, we consider all pairs of matrices

Pa, Pb ∈ R
m×m for which

Pa + Pb = I, Pa Pb = Pb Pa = 0.

It follows that Pa Pa = Pa and that Pb Pb = Pb.

Theorem 32 Consider a matrix function J ∈ L∞(∂Ω)m×m. At a point x ∈ ∂Ω condition

(2.19) is fulfilled if, and only if, there is a pair of projections PJH , PJ ′ ∈ R
m×m such that

JH(x) = −B(ν, x)PJH , J ′(x) = B(ν, x)PJ ′ (2.23)

or equivalently such that

J(x) = −(PJH)HB(ν, x), J∗(x) = (PJ ′)HB(ν, x). (2.24)

Proof. We first show that (2.19) implies (2.23). The identity kerJH(x)+kerJ ′(x) = R
m holds

if, and only if, there is a pair of projections PJH(x) and PJ ′(x) into kerJ ′(x) and kerJH(x),
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respectively. By definition of JH and J ′ there is a matrix function R ∈ R
m×m such that

JH(x) = RH − 1/2B(ν, x) and J ′(x) = RH + 1/2B(ν, x). We then have the relation

RH = (JH(x) + 1/2B(ν, x))PJ ′ + (J ′(x) − 1/2B(ν, x))PJH

= 1/2B(ν, x)PJ ′ − 1/2B(ν, x)PJH .

Consequently, JH(x) = −B(ν)(x)PJH and J ′(x) = B(ν)PJ ′ . Condition (2.24) is equivalent

to (2.23) by transposition.

Now we assume that (2.24) is satisfied. Let w ∈ Im J∗(x)∩Im J(x). Thus w ∈ ImPJH∩ImPJ ′

which in turn implies that w = 0 and that (2.20) holds. ////

The following theorem is a tool we may use to interchange the role of J with the adjoint J ′.

Theorem 33 If R ∈ R
m×m is a positive semi-definite matrix then kerR = kerRH.

Proof. If v ∈ kerR then 2 vHRHv = vHRh v. Noting that Rh is symmetric, we conclude

Rh v ·Rh v ≤ λmax (v ·Rh v) = 2λmax (v ·Rv) = 0,

where λmax is the largest eigenvalue of Rh. Thus RHv = Rv = 0. ////

Theorem 34 Consider the matrices J(x) and B(ν, x) for an x ∈ ∂Ω. Suppose that (2.17) is

satisfied. Then (2.19) holds if, and only if,

Im J ′(x) ∩ Im JH(x) = 0 (2.25)

or, equivalently,

ker J∗(x) + kerJ(x) = R
m. (2.26)

Proof. Suppose that (2.19) holds. We choose PJ ′ and PJH as in Theorem 32. Let w =

J ′(x) v1 = JH(x) v2. We may assume that v1 = PJ ′ v1 and v2 = PJH v2. Then

RH(v1 − v2) = 1/2 J
′(x)(v1 − v2) + 1/2 J(x)H(v1 − v2) = J ′(x) v1 − JH(x) v2 = 0

where R = J(x) + 1/2B(ν, x). According to Theorem 33 it follows that Rv1 = Rv2. Further-

more,

B(ν, x)(v1 + v2) = B(ν, x)PJ ′ v1 +B(ν, x)PJH v2 = J ′(x) v1 − JH(x) v2 = 0.
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Hence

R(v1 + v2) = (1/2 J + 1/2 J
∗) (v1 + v2) = (−(PJH)H + (PJ ′)H)B(ν, x) (v1 + v2) = 0

so that Rv1 = −Rv2 = 0. We also have RHv1 = −RHv2 = 0. Thus

w = 1/2 J
′v1 + 1/2 J

Hv2 = 1/2 J
′(v1 + v2) + 1/2 J

H(v1 + v2) = RH(v1 + v2) = 0,

which proves (2.25). Condition (2.26) follows by an argument analogous to (2.22).

In (2.20) and (2.25) the roles of J and J ′ are interchanged. Since J is the ′-adjoint of J ′ we

conclude that (2.25) implies (2.20) if (2.17) is fulfilled. ////

Corollary 8 Consider a matrix function J ∈ L∞(∂Ω)m×m. At a point x ∈ ∂Ω condition

(2.19) is fulfilled if, and only if, there is a pair of projections PJ , PJ∗ ∈ R
m×m such that

J(x) = −B(ν, x)PJ , J∗(x) = B(ν, x)PJ∗ (2.27)

or, equivalently, such that

JH(x) = −(PJ)HB(ν, x), J ′(x) = (PJ∗)HB(ν, x). (2.28)

Proof. After an interchange of J and J ′ the corollary takes the form of Theorem 32. ////

Example 20 Consider a boundary matrix B(ν) which has at x ∈ ∂Ω the value

B(ν, x) =

(
1 0

0 −1

)
.

For elements v = (v1, v2) ∈ R
2 the bilinear form vHB(ν, x) v takes the following signs:

vHB(ν) v > 0⇔ v ∈ V+ := {(w1, w2) ∈ R
2 : |w1|> |w2|},

vHB(ν) v= 0⇔ v ∈ V0 := {(w1, w2) ∈ R
2 : |w1|= |w2|},

vHB(ν) v < 0⇔ v ∈ V− := {(w1, w2) ∈ R
2 : |w1|< |w2|}.

For the analysis of Friedrichs systems it is often helpful to visualise these regions by means

of a contour plot of vHB(ν, x) v:
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Clearly, V+ consists of the left and right quadrant, V− of the upper and lower quadrant and

V0 of the remaining two diagonals. Using R = B(ν) (−PJ +PJ∗) and RH = B(ν) (−PJH +PJ ′),

we deduce that

Im (PJ) ∪ Im (PJH) ⊂ V− ∪ V0 and Im (PJ∗) ∪ Im (PJ ′) ⊂ V+ ∪ V0

are necessary conditions to satisfy (2.17).

Over the last pages we have worked out a number of criteria to establish condition (2.19).

We will now combine these conditions with regularity assumptions to ensure that the J can

be continuously extended to a strictly adjoint boundary operator.

Our first investigations concern the smoothness of the projections utilised in Theorem 32.

Given a projection P ∈ L∞(∂Ω)m×m, we need to ensure that Pv is contained in the space

B
2,2,1/2
0 (∂Ω\S)m whenever v ∈ B

2,2,1/2
0 (∂Ω\S)m. Like in Section 1.9 we let S be a closed

subset of ∂Ω which has Hausdorff measure zero. We assume that for every simply connected

component F of ∂Ω \ S there exists a C1-diffeomorphism

Φ : N →M

such that N ∩F = F and ΦF = {(x1, . . . , xn) ∈M : x1 = 0}. Alternatively we could say that

each component F is a C1-manifold with an atlas which only contains one chart. We require

that Φ and Φ−1 are bounded and have bounded derivatives, that is they are of class W 1,∞.

Then ΦW 1,2(N) = W 1,2(M). It follows that ΦB2,2,1/2(F ) = B2,2,1/2(ΦF ) by restriction to

F ; we refer to Section 1.3 and to the respective theorems in (Jonsson and Wallin 1984).

The projection P is componentwise continuous with Hölder exponent 1/2 if for all entries Pij
of P the term

‖Pij‖L∞(∂Ω) + sup
F

sup
(x,y)∈F 2

|Pij(x) − Pij(y)|
‖x− y‖1/2

(2.29)
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is finite. Here the first supremum ranges over all components of ∂Ω \ S. If a component F is

unbounded we consider under the second supremum only pairs (x, y) with ‖x− y‖ < 1. If P

satisfies (2.29) we write P ∈ C1/2(∂Ω \ S)m×m.

Suppose that v ∈ B
2,2,1/2
0 (∂Ω\S)m and therefore that vΦ−1|ΦF ∈ B2,2,1/2(ΦF )m. We

can now apply a corollary from (Triebel 1992, p. 205) which states that if P is contained

C1/2(∂Ω \ S)m×m then the product (P v) Φ−1 is an element of B2,2,1/2(ΦF )m. Moreover for

fixed P the product depends continuously on v. It follows that P defines an endomorphism

on B2,2,1/2
0 (∂Ω\S)m.

We have now the tools to prove a sufficient condition for the admissibility of a matrix function

in terms of projections. Among other things, we obtain an explicit factorisation of J in the

sense of (1.20).

Theorem 35 Consider a matrix function J ∈ L∞(∂Ω)m×m and a pair of projections PJH , PJ ′

in C1/2(∂Ω \ S)m×m. Then J is a strictly adjoint boundary operator if, for x ∈ ∂Ω \ S,

JH(x) = −B(ν, x)PJH(x), J ′(x) = B(ν, x)PJ ′(x) (2.30)

or, equivalently,

J(x) = −(PJH)H(x)B(ν, x), J∗(x) = (PJ ′)H(x)B(ν, x). (2.31)

Proof. Clearly, (2.31) follows from transposition of (2.30) and therefore (2.30) and (2.31) are

equivalent. We need to check that J can be continuously extended in the sense of (2.15). Let

u be an element of W 2
L (Ω) which is the limit of a sequence (ui)i∈N consisting of C∞

0 (Rn)m-

functions. Then for every test function v ∈ B
2,2,1/2
0 (∂Ω\S)m we have the bound

〈Ju, v〉∂Ω = lim
i→∞

〈−(PJH)HB(ν)ui, v〉∂Ω = lim
i→∞

〈B(ν)ui,−(PJH)H v〉∂Ω

≤‖T‖B(W 2
L (Ω),B2,2,−1/2(∂Ω)m) ‖(PJH)H‖

B(B
2,2,1/2
0 (∂Ω\S)m)

‖u‖L‖v‖
B

2,2,1/2
0 (∂Ω\S)m .

Therefore J is a boundary operator. It follows from the respective definitions of J∗, J ′ and

JH that these mappings are also boundary operators.

We now investigate the strict adjointness of J . We split the test function v into two com-

ponents: v = v1 + v2, where v1 = (PJH)v and v2 = (PJ ′)v. We record that v1 ∈ ker J ′.

Therefore

〈Ju, v〉∂Ω = 〈Ju, v1〉∂Ω − lim
i→∞

〈(PJH)HB(ν)ui, (PJ ′)v〉∂Ω = 〈Ju, v1〉∂Ω.

Thus if 〈Ju, v〉∂Ω = 0 for all v ∈ B
2,2,1/2
0,J′ (Rn\S)m then 〈Ju, v〉∂Ω = 0 for all functions

v ∈ B
2,2,1/2
0 (∂Ω\S)m. This implies that J is strictly adjoint. ////
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The results we have obtained so far in this section provide us with a recipe to check if a

matrix function is an admissible boundary operator. The first step is to ensure that (2.17)

holds almost everywhere on ∂Ω. After that one verifies that (2.21) or (2.25) are satisfied

for all x ∈ ∂Ω \ S. Once the kernels or images of J ′ and JH are known one constructs the

associated projections PJ ′ and PJH . Finally one checks whether PJ ′ and PJH are members of

C1/2(∂Ω \ S)m×m.

Applying the argument of Theorem 35 to the projections PJ and PJ∗ proves that if PJ and

PJ∗ are of class C1/2 and if (2.17) is satisfied then J ′ is a strictly adjoint boundary operator

with respect to the adjoint boundary value problem. It also follows that J is a boundary

operator.

In the statement of the next theorem (2.32) is motivated by (2.26).

Theorem 36 Suppose the matrix function J ∈ L∞(∂Ω)m×m is extendable to a boundary

operator. Then J is admissible if for each v ∈ B
2,2,1/2
0 (∂Ω\S)m there is a splitting

v = v1 + v2 (2.32)

where v1 ∈ B
2,2,1/2

0,JH (Rn\S)m and v2 ∈ B
2,2,1/2
0,J ′ (Rn\S)m.

Proof. We split v ∈ B
2,2,1/2
0 (∂Ω\S)m according to (2.32). Let u be the W 2

L (Ω)-limit of the

sequence (ui)i∈N of C∞
0 (Rn)m-functions. Then

〈J u, v〉∂Ω = lim
i→∞

〈J ui, v〉∂Ω = lim
i→∞

〈ui, JH v〉∂Ω = lim
i→∞

〈ui, JH v2〉∂Ω = 〈J u, v2〉∂Ω.

Thus J is strictly adjoint. ////

We learned in Section 1.8 that in general the kernel of a boundary operator has lower regularity

than the boundary operator itself. If JH and J ′ are analytic then, according to Theorem 60 in

the Appendix, the projection onto the kernel is analytic with the exception of a set of measure

zero. We can assume that this set of exceptional points is a subset of S. However, it remains

unclear to us if poles in the vicinity of S can prevent B2,2,1/2
0 (∂Ω\S)m to have a splitting into

B
2,2,1/2

0,JH (Rn\S)m and B2,2,1/2
0,J ′ (Rn\S)m. We illustrate the problem with the following example.

Example 21 Let I = (−1, 1). We might think of I as being a section of the boundary of a

smooth domain. On I we define the matrix function

B(ν, x) :=

(
x2 0

0 −x2

)
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and the pair of projections

PJ(x) :=
1

x2 − 1

(
−1 x

−x x2

)
, PJ∗(x) :=

1
x2 − 1

(
x2 −x
x −1

)
.

The matrix function J = −B(ν)PJ fulfills (2.17) and (2.19); we omit the details of the

calculation. The kernel of J ′ is spanned by the function x �→ (1/x, 1)H. Thus B
2,2,1/2
0,J ′ (Rn\S)m

is equal to {0} and Theorem 36 is not applicable. However, we find that PJH = PJ and

PJ∗ = PJ ′ . Consequently, the matrix function J defines an admissible boundary operator.

After we have discussed criteria to establish admissibility of boundary operators we should

also assure that admissible boundary operators are actually available for a large class of

equations. The next example ensures that admissible boundary operators generally exist, at

least if B(ν) is sufficiently smooth.

Example 22 Let J = −B−(ν). Since −B−(ν)+ 1/2B(ν) = 1/2 |B|(ν) the boundary operator

is semi-admissible. Since J = −P−B(ν) and J ′ = B+(ν) = P+B(ν) = (I − P−)B(ν) the

boundary conditions also satisfy (2.19). Therefore J and J ′ are admissible if P− is contained

in C1/2(∂Ω \ S)m×m.

In particular for scalar problems only P+ and P− define admissible boundary conditions.

Theorem 37 is an adaptation of Lemma 4 in (LeSaint 1995).

Theorem 37 Consider a matrix function J for which (2.17) and (2.19) hold. If at x ∈ ∂Ω

the matrix B(ν, x) is either positive or negative semi-definite then J(x) is equal to

−P−(x)B(ν, x) = 0 or − P−(x)B(ν, x) = −B(ν, x),

respectively.

Proof. We consider the positive semi-definite case first. Let v ∈ ker J ′(x). Then

0 ≤ 1/2B(ν, x) v · v = −(J(x) − 1/2B(ν, x)) v · v ≤ 0.

Thus B(ν, x) v = 0 and J(x) v − 1/2B(ν, x) v = 0. We conclude that v ∈ kerJ(x). Conse-

quently,

kerJ(x) = kerJ(x) + kerJ ′(x) = R
m,

and thus J(x) = 0. We deduce the negative semi-definite case by a duality argument. Because

J(x) = 0 we have PJ |(ker J)⊥ = 0. Therefore PJ∗(x)|(ker J)⊥ = I|(ker J)⊥ and J ′(x) = B(ν, x).
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The result follows because −B(ν, x) is the boundary matrix associated to the graph space of

L′. ////

Finally, we point to the definition of maximal boundary conditions by Lax, which are closely

related to admissible boundary conditions. A boundary matrix J is called maximal at x

with respect to the relation B(ν, x) v · v ≥ 0 if there exists no subspace U of R
m which

contains ker J(x) properly and such that B(ν, x) v · v ≥ 0 for all v ∈ U . From the definition

of maximality one can infer that if (2.17) holds then

dim kerJ = m− rankB−(ν). (2.33)

Under the assumption that (2.17) holds, all maximal boundary conditions satisfy (2.19) and

all boundary conditions which satisfy (2.19) can be transformed into maximal boundary

conditions by adjusting J |kerB(ν) so that J fulfills (2.33). For the rather technical proof we

refer to the original sources (Lax and Phillips 1960) and (Friedrichs 1958, pp. 355-357).

2.3 The Codomain L2
B,loc(∂Ω)

In the last chapter we identified settings in which the trace space is contained in L2
B,loc(∂Ω). In

this situation the regularity requirements on the boundary conditions of Friedrichs systems can

be relaxed. To allow a more succinct presentation we consider in this section only boundary

conditions which are defined by matrix functions.

Suppose that W 2
T (∂Ω) ⊂ L2

B,loc(∂Ω) and that the set S := ∂Ω \M is a null set in the

Hausdorff measure on ∂Ω. Here M is defined as on page 44. We are interested in matrix

functions J : ∂Ω → R
m×m which have a continuous extension

J : W 2
L (Ω) → L2

B,loc(∂Ω), v �→ J v|∂Ω. (2.34)

If PJH ∈ L∞(∂Ω)m×m then the matrix function J = −(PJH)HB(ν) ∈ L∞(∂Ω)m×m is extend-

able in the sense of (2.34).

Theorem 38 Let L : W 2
L (Ω) → L2(Ω)m be accretive and let J ∈ L∞(∂Ω)m×m be a matrix

function which has a continuous extension J in the form of (2.34) and which satisfies (2.17)

and (2.19). Suppose that B
2,2,1/2
0,J′ (Rn\S)m is dense in L2

B,loc,J′(∂Ω). Then for all g ∈ W 2
L (Ω)

and f ∈ L2(Ω)m there exists a function u ∈W 2
L (Ω) such that Lu = f and Ju = Jg.

Proof. Analogously to the proof of Theorem 28 we show that there is a function u ∈ W 2
L (Ω)
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such that for all v ∈W 1,2
0,J′(R

n\S)m with supp(v|∂Ω) � M

〈u,L′v〉Ω = 〈f, v〉Ω + 〈J g, v〉∂Ω.

By density, 〈Ju− Jg, v〉∂Ω = 0 for all v ∈ L2
B,loc,J′(∂Ω) with supp(v|∂Ω) � M . Hence Ju = Jg

by (2.19). ////

The relevance of Theorem 38 is that it covers Friedrichs systems with rough boundary con-

ditions.

Example 23 We denote the Heaviside function with H and use y+ = max(y, 0) and y− =

min(y, 0). We let Ω = {(x, y) ∈ R
2 : x > 0} and

Lv = ∂x

⎛
⎜⎜⎝

1 0 0

0 y 0

0 0 −1

⎞
⎟⎟⎠ v + ∂y

⎛
⎜⎜⎝

0 y+ 0

y+ 0 y−
0 y− 0

⎞
⎟⎟⎠ v + v.

Then, according to Theorems 32 and 38, the boundary operator J := −(PJH)HB(ν) with

PJH(y) =

⎛
⎜⎜⎝

1 0 0

0 H(y) 0

0 0 0

⎞
⎟⎟⎠

is admissible.

Example 24 Consider an operator L̇ on Ω = {(x, y) ∈ R
2 : x > 0} which has the boundary

matrix

B(ν) =

⎛
⎜⎜⎝
−1 0 0

0 e−
1

y2 sin 1
y 0

0 0 1

⎞
⎟⎟⎠ ,

assuming that W 2
T (∂Ω) is a subset of L2

B,loc(∂Ω). We impose the boundary conditions

J(x, y) =

⎛
⎜⎜⎝

1 0 0

(−e−
1

y2 sin 1
y )− (−e−

1
y2 sin 1

y )+ (−e−
1

y2 sin 1
y )+

0 0 0

⎞
⎟⎟⎠ .

To show the existence of solutions of the associated boundary value problem, we merely need

to verify (2.17) and (2.21) or (2.25) and argue that the associated projections are bounded.

The fact that J rapidly changes the components on which it imposes the boundary conditions

does not lead to any difficulties in this setting.
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Certainly one can cover far more complicated examples in the framework of Theorem 38.

For instance, one could include discontinuities like the ones seen in the boundary conditions

of Example 23 with the rapid type changes present in the boundary operator J of Example

24. But provided that W 2
T (∂Ω) ⊂ L2

B,loc(∂Ω), we find that however complex the boundary

conditions we consider are, the hardest step of their analysis in the framework of Friedrichs

is determining the algebraic properties of J and B(ν).

2.4 Well-Posedness

Having established the existence of solutions to Friedrichs systems, we turn our attention to

the other ingredients of the concept of well-posedness of a boundary value problem, namely

to uniqueness and to the continuous dependence of the solution on the data f and g. The

simplest case is when W 2
T (∂Ω) is homeomorphic to L2

B(∂Ω).

Theorem 39 Consider an accretive operator L and a matrix function J = −(PJH)HB(ν),

PJH ∈ L∞
B (∂Ω)m×m, which satisfies (2.17). Suppose thatW 2

T (∂Ω) is homeomorphic to L2
B(∂Ω).

Then, the boundary value problem Lu = f , Ju = Jg is well-posed for f ∈ L2(Ω)m and

g ∈ L2
B(∂Ω).

Proof. A solution u which exists according to Theorem 28. Uniqueness and continuous

dependence on the data follows from

〈Ju, u〉∂Ω = 〈|B|(ν)(P+ − P−)PJ g, u〉∂Ω

≤ 1/(2β)‖(P+ − P−)PJ g‖2
B + C β/2‖u‖2

L

≤ 1/(2β)‖(P+ − P−)PJ‖B(L2
B(∂Ω),L2

B(∂Ω)) ‖g‖2
B + C β/2(‖u‖2

L2(Ω)m + ‖f‖2
L2(Ω)m)

and (2.5), where β > 0, C > 0. ////

If W 2
T (∂Ω) is not homeomorphic to L2

B(∂Ω) we can still prove the uniqueness of strong

solutions.

Theorem 40 Consider an accretive operator L : W 2
L (Ω) → L2(Ω)m and an admissible

boundary operator J : W 2
L (Ω) → B

2,2,−1/2
0 (∂Ω\S)m. Then there is at most one strong

solution u of the Friedrichs system Lu = f , Ju = Jg where f ∈ L2(Ω)m and g ∈W 2
L (Ω).

Proof. Suppose that u and u̇ in W 2
L (Ω) are strong solutions of the boundary value problem.

Then u − u̇ is a strong solution of the homogeneous boundary value problem. Let (ui)i∈N
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be a sequence of W 1,2(Ω)m-functions converging to u − u̇. Then all ui are contained in

W 1,2
0,J(Rn\S)m. We deduce now from (2.7) and continuity that u = u̇. ////

However even under relatively strong assumptions we cannot assume that the solutions of

a given boundary value problem are strong. Consider, for instance, the following example

which is an adaptation to Friedrichs systems of a problem discussed in (Moyer 1968). It

is constructed from a differential operator with constant coefficients and boundary matrices

B(ν) of full rank.

Example 25 We abbreviate the Cauchy-Riemann operator by

LCR v =

(
−∂x ∂y

∂y ∂x

)(
v1

v2

)
.

We choose L = LCR + I and Ω = (0, 1)2. The boundary matrix B(ν) is then

±
(
−1 0

0 1

)
and ±

(
0 1

1 0

)

on the boundary segments x = 1, x = 0, y = 1 and y = 0, respectively. Correspondingly, we

define

J(x, y) =

(
1 1

0 0

)
, J(x, y) =

(
0 0

1 1

)
, J(x, y) =

(
0 −1

0 0

)
, J(x, y) =

(
0 1

0 0

)

on x = 1, x = 0, y = 1 and y = 0. Comparison with (2.17), (2.20) and (2.31) shows that J

is extendable to an admissible boundary operator J : W 2
L (Ω) → B

2,2,−1/2
0 (∂Ω\S)m where S

contains the four corners of the domain. Using the polar coordinates (φ, r), we set

v(φ, r) := r−1/2(cosφ/2,− sinφ/2).

Since the components of v are the real and imaginary parts of the holomorphic function z−1/2,

it follows that LCRv = 0 and that Lv = v. We note that v belongs to W 2
L (Ω) and that v

satisfies the homogeneous boundary conditions on the bottom and on the left face of Ω. We

select a radially symmetric function ψ ∈ C∞(Rn) with supp(v) � B1(0) such that ψ is equal

to 1 in a neighbourhood of the origin. Then u = ψ v satisfies the homogeneous boundary

conditions in B
2,2,−1/2
0 (∂Ω\S)m. Moreover, u ∈W 2

L (Ω) since

Lu = (ψ′(r) + ψ(r)) v.

Yet, due to the pole at the origin, u is not contained in W 2
L,B(Ω) and thus the above proof of

the uniqueness of solutions does not apply.
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Moyer highlights the closely related fact that the integration by parts formula (1.14) is not

valid for u in the classical sense. Indeed for bounded smooth functions w which satisfy

the homogeneous boundary conditions, the Cauchy-Riemann operator LCR is formally self-

adjoint. Thus for them we have ∫
Ω

LCRw · w dV = 0.

In contrast, for u we find that∫
Ω

LCRu · u dV = −
∫ 1

0

∫ π/2

0
r−1ψ(r)ψ′(r) (r dφ) dr = π/4.

By continuity, this implies that there cannot be a sequence of C1(R2)2-functions which fulfill

the boundary conditions exactly and converge to u. In other words, while u is a weak solution

of the boundary value problem it is not strong in the sense of Section 1.9.

The failure of the integration by parts formula in this example sheds new light on Remark 3.

There we introduced the bilinear form 〈·, ·〉B(ν) to formally extend integration by parts to the

entire graph space. We now see a setting in which the boundary integral∫
∂Ω
viBijk νk wj dS

is meaningful and differs from 〈·, ·〉B(ν).

With Moyer’s example we acquainted ourselves with a solution which on the one hand satisfies

homogeneous boundary conditions and on the other hand possesses a pole which prevents it

from being contained in W 2
L,B(Ω). For completeness, we mention the subsequent publication

(Sarason 1984) in which the example of Moyer has been expanded and embedded into a class

of boundary value problems for which the solutions are or are not contained in W 2
L,B (Ω)

depending on the choice of certain parameters.

Moyer’s construction is different from Example 16 we have seen in the last chapter. Also

there the solutions of the boundary value problem could exhibit a singularities. However these

singularities are always accompanied by singularities in the boundary conditions. Owing to

this interrelation, in Example 16 singularities in the solution can be avoided by appropriately

selecting the space from which h = Jg is chosen. Because of (2.7), controlling singularities

is an important step towards establishing the uniqueness of solutions to the boundary value

problem.

Suppose that J imposes inflow boundary conditions, i.e. J = −B−(ν). Then we have the

relation

B(ν) = |B|(ν) (P+ − P−) = 2R (P+ − P−) = (R+RH) (P+ − P−)
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where R is the matrix J + 1/2B(ν) we defined in (2.17). In the next theorem we consider a

generalisation of this setting, namely Friedrichs systems for which there is a factorisation

B(ν) = Rh T (2.35)

where T is a matrix function in L∞
B (∂Ω)m×m and Rh = R + RH. Taking the transpose of

(2.35) shows that kerRh is a subset of kerB(ν). From

Rh =
(−(PJH)H + (PJ ′)H

)
B(ν) +

(
B(ν) (−PJ + PJ∗)

)H (2.36)

=
(−PJH + PJ ′ − PJ + PJ∗

)H
B(ν) (2.37)

and Theorem 33 it follows that kerR = kerRh = kerB(ν). We abbreviate Ṫ := −PJH +

PJ ′ − PJ + PJ∗ . Since B and Rh are hermitian, we have Rh = B Ṫ . Hence Rh = Rh T Ṫ

and B(ν) = B(ν) Ṫ T . Therefore by possibly modifying T on the restriction to kerR we can

assume that T is invertible and that T−1 belongs to L∞
B (∂Ω)m×m as well.

Now let us consider two boundary operators J, J̇ for which there are matrix functions T, Ṫ

such that (2.35) is satisfied. Denoting Ṙ = J̇ + 1/2B(ν) we have Rh = ṪH (Ṙ+ ṘH)T−1 and∫
∂intκ

Rh v · v dS =
∫
∂intκ

Ṙh T−1v · Ṫ v dS (2.38)

≤
‖T−1‖2

L∞
B (∂Ω)m×m + ‖Ṫ‖2

L∞
B (∂Ω)m×m

2

∫
∂intκ

Ṙh v · v dS.

We consider the space W of all measurable functions v on ∂Ω for which the norm

‖v‖R :=
√
〈v, v〉R, 〈v, w〉R :=

∫
∂Ω
Rh v · w dS,

is finite. If J = −B−(ν) then L2
B(∂Ω) is equal to this space. The bound (2.38) shows that for

all J which satisfy (2.35) the spaces W and L2
B(∂Ω) coincide and that the norms ‖ · ‖R and

‖ · ‖B are equivalent on L2
B(∂Ω).

Theorem 41 Let Ω be a domain which satisfies a strong local Lipschitz condition and let L be

an accretive operator on this domain. Given the pair of projections PJ , PJ∗ ∈ L∞
B (∂Ω)m×m,

we define the matrix function J = −B(ν)PJ . We assume that there is a second pair of

projections PJH , PJ ′ ∈ L∞
B (∂Ω)m×m such that J ′ = B(ν)PJ ′ . We also adopt the hypothesis

that the matrices

R(x) := J(x) + 1/2B(ν, x), x ∈ ∂Ω,

are positive semi-definite. Suppose that there is a matrix function T ∈ L∞
B (∂Ω)m×m such

that B(ν) = Rh T on ∂Ω. Then for each f ∈ L2(Ω)m and g ∈ L2
B(∂Ω) there exists a unique
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function u ∈ W 2
L,B (Ω) which solves Lu = f and Ju = Jg. Moreover, we have the stability

estimate

‖u‖Ω ≤ γ−1 ‖f‖Ω + ‖T PJ g‖R ≤ γ−1 ‖f‖Ω + C ‖g‖B, C > 0.

Proof. We note that

J = −B(ν)PJ = Rh (−T PJ) and J ′ = B(ν)PJ ′ = Rh (T PJ ′).

Hence, for all v ∈ C∞
0 (Rn)m,

〈Dhv, v〉Ω + 〈v, v〉R = 〈L′v, v〉Ω + 〈J ′ v, v〉∂Ω

≤ 1/(2γ) ‖L′v‖2
Ω + γ/2 ‖v‖2

Ω + 1/2 〈T PJ ′ v, T PJ ′ v〉R + 1/2 〈v, v〉R.

We conclude that

〈Dhv, v〉Ω + 〈v, v〉R ≤ γ−1 ‖L′v‖2
Ω + ‖T PJ ′ v‖2

R. (2.39)

Consequently, the mapping

Φ : C∞
0 (Rn)m → L2(Ω)m × L2

B(∂Ω), v �→ (L′v, T PJ ′ v)

is injective. Clearly, there is a positive constant C = C(f, g) such that

〈f, v〉Ω + 〈Jg, v〉∂Ω = 〈f, v〉Ω + 〈T PJ ′ g, v〉R ≤ C (〈Dhv, v〉Ω + 〈v, v〉R)1/2. (2.40)

We equip W := Im Φ with the norm

(L′v, T PJ ′ v) �→ (‖L′v‖2
Ω + ‖T PJ ′ v‖2

R)1/2.

Combining (2.39) and (2.40) shows that the assignment

Ψ : W → R, w = (L′v, T PJ ′ v) �→ 〈f, v〉Ω + 〈Jg, v〉∂Ω

is continuous. By the Hahn-Banach theorem and the Riesz representation theorem there is a

pair (u1, u2) in L2(Ω)m × L2
B(∂Ω) such that, for all (L′v, T PJ ′ v) ∈W ,

〈u1,L
′v〉Ω + 〈u2, T PJ ′ v〉R = 〈f, v〉Ω + 〈Jg, v〉∂Ω.

Testing with v ∈ D(Ω)m shows that Lu1 = f . Thus u1 ∈W 2
L (Ω). Moreover,

〈u2, T PJ ′ v〉R − 〈B(ν)u1, v〉∂Ω = 〈u2, J
′ v〉∂Ω − 〈B(ν)u1, v〉∂Ω = 〈Jg, v〉∂Ω. (2.41)
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Thus B(ν)u1 = J∗u2 − Jg in B2,2,−1/2(∂Ω)m. However, since J∗u2 − Jg is an element of

L2
B(∂Ω), also B(ν)u1 ∈ L2

B(∂Ω). Therefore u1 is contained in W 2
L,B(Ω) by Theorem 21. Hence

the linear functional

L2
B(∂Ω) → R, v �→ 〈−(PJH)HB(ν)u1, v〉∂Ω = 〈J u1, v〉∂Ω

is meaningful and continuous. In consequence, we can rearrange (2.41) to J(u1 − g) =

J∗(u1 − u2). Recalling (2.20), we deduce that Ju1 = Jg.

Now suppose there is a second function u̇ ∈W 2
L (Ω) for which Ju is contained in L2

B(∂Ω) and

which satisfies Lu̇ = f and Ju̇ = Jg. Then L(u1 − u̇) = 0 and J(u1 − u̇) = 0. It follows from

(2.7) that u̇ = u1.

With Ju1 also Ru1 = Ju1 + J∗u1 is meaningful. Thus we find

〈Dhu1, u1〉Ω + 〈u1, u1〉R ≤ γ−1 ‖Lu1‖2
Ω + ‖T PJ u1‖2

R = γ−1 ‖f‖2
Ω + ‖T PJ g‖2

R (2.42)

similarly to (2.39). ////

Observe that the hypotheses of Theorem 41 do not require that the boundary matrix B(ν)

and boundary conditions are continuous as matrix functions. Nevertheless, the fact that J

has a continuous extension to a boundary operator follows automatically.

Example 26 Recall the setting of Example 25. Let us concentrate on the boundary segment

x = 0. Here we have

B(ν) =

(
1 0

0 −1

)
, J =

(
0 0

−1 1

)
, R =

(
1/2 0

−1 1/2

)
, Rh =

(
1 −1

−1 1

)
.

The eigenvalues of Rh are 0 and 2. Consequently kerRh �= kerB(ν) and the last theorem is

not applicable. In Example 20 we learned that the images of the projections

PJ =

(
0 0

−1 1

)
, PJ∗ =

(
1 0

1 0

)
, PJH =

(
0 1

0 1

)
, PJ ′ =

(
1 −1

0 0

)
.

have to be contained in V− ∪ V0 and V+ ∪ V0, respectively. In this example if the image of

one of the projections is contained in V0 then condition (2.35) cannot be satisfied. Let P be

one of the projections and suppose that ImP ⊂ V0 and v ∈ ImP . From (2.36) it follows that

Rh v · v = ±B(ν) v · v = 0. However, then ImP is a subset of the kernel of R. Therefore the

rank of R is at most m − dim ImP �= rankB(ν). Clearly, the projections PJ∗ and PJH are

contained in V0.
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We bring the section to a close with an example of a Friedrichs system which is not covered

by Theorem 41 but for which the uniqueness of solutions follows easily from the method of

characteristics. Yet, for the system the solutions do not depend continuously on the boundary

data with respect to the L2
B(∂Ω)- and L2(Ω)m-norms.

Example 27 We choose the same domain Ω as in Example 16. We consider the differential

operator Lv = (−∂xv1 + v1, ∂xv2 + v2)H. Then the assignment

J : ∂Ω → R
2×2, (x, y) �→ sign(x)

(
1/2

1/2

−1/2 −1/2

)

defines an admissible boundary operator. We assume that f = 0. The solutions of the

boundary value problem are of the form

(c1(y) ex, c2(y) e−x).

The graph norm of these solutions is

(∫ 1

0
(c21(y) + c22(y)) sinh(y) dy

)1/2
. (2.43)

For the boundary data g = (g1, g2)H the coefficients c1 and c2 are given by(
c1(y)

c2(y)

)
=

1
e−2y − e2y

(
e−y ey

ey e−y

)(
g1(−y) + g2(−y)
g1(y) + g2(y)

)
.

Suppose that

g1(−y) + g2(−y) = 0 and that g1(y) + g2(y) = 1. (2.44)

We plot the function

y �→ y (c21(y) + c22(y)) sinh(y)

for this boundary data, i.e. we plot the product of the integrand of (2.43) with y.

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4
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The plot illustrates that with the boundary data (2.44) the integrand is asymptotic to the

function y �→ 1/y. Hence for this data there is no solution of the Friedrichs system. We also

consider the family of boundary functions

gi(x, y) =

{
(0, 1)H : x > 1/i,

(0, 0)H : x ≤ 1/i,
i ∈ N.

While for these functions gi solutions ui of the Friedrichs system exist, the sequence of ratios

between ‖gi‖B and the graph norm of the respective solution ui diverges as i→ ∞. Also the

boundary value problem is ill-posed with respect to the L2(∂Ω)2-norm because this norm is

equivalent to ‖ · ‖B in this example.

2.5 Examples of Friedrichs Systems

In this section we give an overview of a wide range of boundary value problems which can be

analysed in the framework of Friedrichs systems. In this sense the section can also serve us

as a reference. Of particular interest is Example 32 concerning the Frankl equation.

Example 28 (First-Order Hyperbolic Systems) Of the different kinds of equations

which we examine in this section, symmetric first-order hyperbolic systems can be trans-

formed into Friedrichs systems most directly. Consider the Friedrichs symmetric operator

L : v �→ ∂k(Bijkvj) + Cij vj .

We call L uniformly hyperbolic on the domain Ω if there is a vector α ∈ R
n such that

Bijk(x)αk is positive definite for all x ∈ Ω. Given β ∈ R, the differential operator satisfies

the identity

L(eβα·xu) = ∂k(Bijk uj) +Bijk uj ∂keβα·x + Cij u eβα·x = eβα·x(L + β B(α))u. (2.45)

We used B(α)ij := Bijk αk. The parameter β can be chosen sufficiently large to ensure

that L̇ := L + β αkBijk is accretive. Thus, under the transformation u = e−βα·x v, the

boundary value problem Lv = f , Jv = Jg is equivalent to the Friedrichs system L̇u = e−βα·xf ,

Ju = Je−βα·xg, provided J is admissible with respect to L̇. Notice that transformation (2.45)

does not modify the principal part of the differential operator and thereforeW 2
L (Ω) andW 2

L̇
(Ω)

share the same set of associated admissible boundary operators.

Suppose that the differential operator under consideration is not uniformly hyperbolic but

that there exists a vector field α : Ω → R
n such that Bijk(x)αk(x) is positive definite for all



2.5. EXAMPLES OF FRIEDRICHS SYSTEMS 88

x ∈ Ω. In the language of fluid dynamics, if α does not have circular streamlines, vortices

or similar features then there might be a coordinate transformation which turns L into a

uniformly hyperbolic operator.

Φ

a direction of hyperbolicity

Ω Ω̇

We need to make the statement mathematically more precise. Suppose there a diffeomorphism

Φ of class W 1,∞ from Ω to a domain Ω̇ such that the vector field ∂Φ/∂(x1, . . . , xn)α consists

of vectors which are parallel to each other; here ∂Φ/∂(x1, . . . , xn) is the Jacobian of Φ. Then

the change of coordinates Φ turns L into a uniformly hyperbolic operator L̇ which has, up

to the change of coordinates, the same solutions as the original system. We use here that

if Bijk(x)αk(x) is positive definite then also β(x)Bijk(x)αk(x) is positive definite for all

β(x) > 0. Thus, by rescaling, we can always alter ∂Φ/∂(x1, . . . , xn)α into a constant vector

field which points into a direction of uniform hyperbolicity of L̇.

Example 29 (Second-Order Hyperbolic Equations) An attractive feature of Friedrichs

systems is their close connection to second-order hyperbolic equations. Again, a uniform

direction of hyperbolicity plays an important role in the reduction of the boundary value

problem to a Friedrichs system. Consider the second-order differential operator

L : v �→ ∂k (Ajk ∂jv) + ∂j(Bjv) + C v (2.46)

for which we assume that A ∈ W 2,∞(Ω)n×n, B ∈ W 1,∞(Ω)n and C ∈ L∞(Ω). We also

require that A is symmetric. The operator L is uniformly hyperbolic if there is an α ∈ R
n

such that for all x ∈ Ω the scalar αk Ajk(x)αj is negative and A(x) is positive definite in

the orthogonal complement of α in R
n. Often the direction of uniform hyperbolicity has the

physical interpretation of time. Analogously to the previous example, some operators are

only uniformly hyperbolic after a coordinate transformation.

By an orthogonal change of coordinates we may assume that α = (1, 0, . . . , 0)H, that A1,1 is

negative and that A1k = 0 for k ∈ {2, . . . , n}. Then we rename u0 := v and u1 := ∂iv for
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i = 1, . . . , n. Hence we have the relationship
n∑
i=2

Ajk (∂1ui − ∂iu1) = 0, j ∈ {2, . . . , n}.

We pass to a symmetric hyperbolic operator of first order v �→ ∂k(Ḃk v) + Ċ v with the

coefficients

Ḃ1=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

0 −A11 0 · · · 0

0 0 A22 · · · A2n

...
...

...
...

0 0 An2 · · · Ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ḃk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0

0 0 −A2k · · · −Ank
0 −A2k 0 · · · 0
...

...
...

...

0 −Ank 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, k ∈ {2, . . . , n},

and

Ċ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 · · · 0

−C − ∂iBi −B1 −B2 · · · −Bn
0 ∂jA2j −∂1A22 · · · −∂1A2n

...
...

...
...

0 ∂jAnj −∂1An2 · · · −∂1Ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.47)

where the summation index i ranges from 1 to n and the index j from 2 to n. The right-hand

side is defined as

ḟ = (0,−f, 0, . . . , 0)H.

Observe that Ḃ1 is positive definite. Thus the system is of the type considered in the last

example and it can be therefore transformed into a Friedrichs system by means of (2.45).

We now turn to the boundary conditions. Let us assume that Ω = [0, T ]×Ω0, where T > 0 and

Ω0 ⊂ R
n−1, that the direction of uniform hyperbolicity is (1, 0, . . . , 0)H and that A11 = −1.

Suppose that we wish to impose initial conditions on {0} × Ω0. By this we mean that we

prescribe the value of v = g0 and ∂1v = g1 on this surface. Because Ḃ(ν, x) = −Ḃ1(x)

is negative definite we have to choose J(x) = −Ḃ(ν, x) in order to satisfy admissibility at

x ∈ {0} × Ω0. We implement the initial conditions by setting

J(u0, u1, . . . , un)H = J(g0, g1, ∂2g0, . . . , ∂ng0)H.

On [0, T ] × {0} one can choose from a greater variety of boundary conditions. We shall

investigate them by means of an example. Let Ω0 = (0, 1) corresponding to n = 2 and let

Lv = −utt + uxx = 0. Then, for x = 0 we find that

Ḃ(ν) =

⎛
⎜⎜⎝

0 0 0

0 0 −1

0 −1 0

⎞
⎟⎟⎠ . (2.48)
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We remark that due to the structure of B(ν) we cannot directly impose the Dirichlet condition

u0 = g0. Let us parameterise the set of admissible matrices by a, b, c, d ∈ R:

J =

⎛
⎜⎜⎝

0 0 0

0 a b+ 1/2

0 c+ 1/2 d

⎞
⎟⎟⎠ .

We consider three types of matrices which satisfy (2.17) and (2.19):

a b c d

Type 1 ≥ 0 −1/2
1/2 0

Type 2 0 1/2 −1/2 ≥ 0

Type 3 > 0 |b| < 1/2 −b (1/4 − b2)/a

Type 1 conditions fix the value of u1 = ∂1v on the left side of the boundary. Thus with Type

1 conditions, in combination with the initial condition v(0, 0) = g0(0, 0), we can determine

the values of v on the segment x = 0 and impose in this manner Dirichlet conditions. For

instance, with JType I(x1, 0) = 0 together with v(0, 0) = 0 we can model a reflecting boundary.

Type 2 boundary operators correspond to Neumann conditions since they fix the value of ∂xv.

Finally one uses matrices of Type 3 to implement Robin conditions.

Example 30 (Elliptic Equations) We study the elliptic equation

Lv = ∂k (Ajk ∂jv) + ∂j(Bjv) + C v = f (2.49)

for which we assume that A ∈ W 2,∞(Ω)n×n, B ∈ W 1,∞(Ω)n and C ∈ L∞(Ω) as well as that

A is symmetric and positive definite on Ω. Suppose there exists a function (p1, . . . , pn) ∈
C1(Rn)n such that ∂k(Ajk pj) is positive on Ω. As for second-order hyperbolic problems, we

let u0 = v and uj = ∂jv. Thus the new variables satisfy the relationship

A (u1, . . . , un)H = A (∂1u0, . . . , ∂nu0)H.

We wish to transform (2.49) into a first-order system of the form
n∑
j=0

n∑
k=1

∂k(Ḃijk uj) +
n∑
j=0

Ċij uj = ḟi, i ∈ {0, . . . , n}.

We choose

Ḃk =

⎛
⎜⎜⎜⎜⎜⎝
−δ Ajk pj −Ak1 . . . −Akn
−A1k 0 . . . 0

...
...

...

−Ank 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠ , k ∈ {1, . . . , n},
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and

Ċ =

⎛
⎜⎜⎜⎜⎜⎝
−(C +

∑
j Bj) + ∂k(δ Ajk pj) −B1 + δ Aj1 pj . . . −Bn + δ Ajn pj

∂kA1k A11 . . . A1n

...
...

...

∂kAnk An1 . . . Ann

⎞
⎟⎟⎟⎟⎟⎠ ,

where δ is a positive real number, where the summation indices range from 1 to n and where

Ḃk are submatrices of B which consist of the entries Bijk with a fixed index k. The right-hand

side is defined as

ḟ = (−f, 0, . . . , 0)H.

The matrix Dh, introduced on page 65, equals⎛
⎜⎜⎜⎜⎜⎝
−(C +

∑
jBj) + 1/2 ∂k(δAjkpj) −1/2B1 + 1/2 δAj1pj . . . −1/2Bn + 1/2 δAjnpj

−1/2B1 + 1/2 δ Aj1 pj A11 . . . A1n

...
...

...

−1/2Bn + 1/2 δ Ajn pj An1 . . . Ann

⎞
⎟⎟⎟⎟⎟⎠ .

A symmetric matrix is positive definite if, and only if, all its principal minors are positive.

Because of the positive definiteness of A it is sufficient to show that the determinant of Dh is

positive. Let us first consider the case B = 0 and C = 0. Then, positive definiteness can be

guaranteed by choosing δ sufficiently small. If B and C do not vanish, we use the identity

L(eβα·x u) = eβα·x (Lu+ β αj ∂k(Ajk u) + (β2 αj Ajk αk + β Bj αj)u) (2.50)

for β ∈ R and α ∈ R
n. By selecting β large and δ small enough we ensure the positive

definiteness of Dh. For some operators such as u �→ −∆u + u one obtains already for δ = 0

and β = 0 the positive definiteness of Dh. For them neither the functions (p1, . . . , pn) nor the

change of variables (2.50) are needed.

Having transformed the differential operator we turn our attention to the boundary conditions.

Clearly,

Ḃ(ν) =

⎛
⎜⎜⎜⎜⎜⎝
−δ Ajk νk pj −Ak1νk . . . −Aknνk
−A1kνk 0 . . . 0

...
...

...

−Ankνk 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠ .

We assign to each x where a Dirichlet boundary condition is to be implemented two positive

numbers q+, q− such that

−δ Ajk νk pj = q+ − q− .
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Then we choose

J =

⎛
⎜⎜⎜⎜⎜⎝

q− 0 . . . 0

A1kνk 0 . . . 0
...

...
...

Ankνk 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠ , R =

⎛
⎜⎜⎜⎜⎜⎝

1/2 q++1/2 q− −1/2Ak1νk . . . −1/2Aknνk
1/2A1kνk 0 . . . 0

...
...

...
1/2Ankνk 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠ .

Clearly, R = J + 1/2 Ḃ(ν) is positive semi-definite and thus J is semi-admissible. The image

of J∗ is the span of (1, 0, . . . , 0)H. Since the columns of A are linearly independent, we know

that for no ν the image J contains (1, 0, . . . , 0)H. Therefore J is pointwise admissible in the

sense of (2.17) and (2.19).

In order to impose oblique Neumann boundary conditions at x ∈ ∂Ω one needs to select

(p1, . . . , pn) so that −δ Ajk νk pj is positive at x, e.g. by choosing pj = −νj . Then, the

boundary operator

J =

⎛
⎜⎜⎜⎜⎜⎝

0 Ak1νk . . . Aknνk

0 0 . . . 0
...

...
...

0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠ .

is admissible. Since, for instance, solutions of the Laplace equation subject to a Neumann

boundary condition are not unique, we can, in general, not assume that the positivity of

−δ Ajk νk pj can be fulfilled everywhere on ∂Ω. For the details of the implementation of

Robin boundary conditions we refer to (Friedrichs 1958, p. 359).

Example 31 (Parabolic Equations) We turn to parabolic operators of the form

L : v �→ ∂k (Ajk ∂jv) + ∂j(Bjv) + C v (2.51)

where A ∈ W 2,∞(Ω)n×n, B ∈ W 1,∞(Ω)n, C ∈ L∞(Ω). In addition, we assume that A is

symmetric, that Ajk = 0 if j = 1 and that the submatrix (Ajk)2≤j,k≤n is positive definite.

We also demand that B1 is negative on Ω. Again x1 usually has the meaning of time.

We reduce L to the first-order operator with the coefficients

Ḃ1=

⎛
⎜⎜⎜⎜⎜⎝
−B1 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ , Ḃk =

⎛
⎜⎜⎜⎜⎜⎝

0 −A2k · · · −Ank
− A2k 0 · · · 0

...
...

...

− Ank 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠
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and

Ċ =

⎛
⎜⎜⎜⎜⎜⎝
−(C +

∑
j Bj) −B2 . . . −Bn

∂kA2k A22 . . . A2n

...
...

...

∂kAnk An2 . . . Ann

⎞
⎟⎟⎟⎟⎟⎠ ,

where j ranges from 1 to n and k from 2 to n. The matrix Dh is equal to⎛
⎜⎜⎜⎜⎜⎝
−(C +

∑
j Bj) −1/2B2 . . . −1/2Bn

−1/2B2 A11 . . . A1n

...
...

...

−1/2Bn An1 . . . Ann

⎞
⎟⎟⎟⎟⎟⎠ .

Following (2.45), we can pass to an accretive operator by setting

(u̇1, u̇2, . . . , u̇n) := (e−β x1u1, u2, . . . , un),

where β is a sufficiently large real number. The right-hand side is defined as

ḟ = (−e−β x1f, 0, . . . , 0)H.

We consider again the domain [0, T ] × Ω0 from Example 29. On {0} × Ω0, the matrix Ḃ(ν)

equals −Ḃ1 so that the boundary condition v = g0 has to be imposed in order to satisfy ad-

missibility. Just as for second-order hyperbolic equations, we investigate boundary conditions

on [0, T ] × {0} by virtue of an example. Let Ω0 = (0, 1) and Lv = −ut + uxx = 0. At x = 0

we have the boundary matrix

Ḃ(ν) =

(
0 −1

−1 0

)
.

Thus Ḃ(ν) is a submatrix of (2.48) and so we can reuse the parametrisation with a, b, c and

d. Again Type 1 corresponds to a Dirichlet, Type 2 to a Neumann and Type 3 to a Robin

boundary condition.

Example 32 (Frankl equation I: Friedrichs’ Method) Friedrichs’ main motivation be-

hind the study of accretive operators and admissible boundary conditions was not so much

the desire to handle elliptic, parabolic and hyperbolic equations in a unified framework but

rather the need to treat differential equations which are in some parts of the domain elliptic

and in other parts hyperbolic. A prototype of these equations is the Frankl equation(
A(x2)

∂2

∂x2
1

+
∂2

∂x2
2

)
v = 0 (2.52)
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for which one assumes that

∂A

∂x2
> 0 for x2 > c for some c < 0,

x2A(x2) ≥ 0 for all x2 ∈ R.

If A(y) = y then one calls (2.52) the Tricomi equation. Differential operators of this kind

play an important role in compressible gas dynamics. Typically, the areas where the operator

is hyperbolic correspond to regions of supersonic flow while areas of elliptic type correspond

to regions of subsonic flow. We outline this relationship in more detail in the next example.

However, let us first investigate how the Frankl equation is related to Friedrichs systems.

The authors of (Morawetz 1958) and (Lax and Phillips 1960) studied the Frankl equation on

domains Ω of the type depicted in the figure below.

P1 P2

x2

γ5

x1

γ3

γ1 Ω

P0

γ2 γ4

The subdomain {(x1, x2) ∈ Ω : x2 > 0} is star-shaped with respect to the origin in the

(x1, y)-coordinate system, where

y =
∫ x2

0

√
A(ξ) dξ.

The curves γ2 and γ3 are subcharacteristic, that is we assume that

A
(∂x2

∂x1

)2
+ 1 > 0

along γ2 and γ3. Finally, γ4 and γ5 characteristic curves, i.e.

A
(∂x2

∂x1

)2
+ 1 = 0

along γ4 and γ5. Following (Morawetz 1958), we introduce the new unknowns u1 = ∂1v,

u2 = ∂2v to transform equation (2.52) into a system of equations. Thus (2.52) becomes(
A 0

0 −1

)
∂u1

∂x1
+

(
0 1

1 0

)
∂u2

∂x2
= 0.
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The equation can be made positive by multiplying from the left with the weight(
a −Ab
b a

)
.

Then the equation is transformed into(
Aa Ab

A b −a

)
∂u1

∂x1
+

(
−Ab a

a 0

)
∂u2

∂x2
= 0.

The matrix Dh equals

1/2

(
−A∂1a+ ∂2(Ab) −A∂1a− ∂2a

−A∂1a− ∂2a ∂1a

)
.

Morawetz proposes the weights

a = x1, b = c |x1| for x2 ≤ 0,

a = x1, b =
(
c
√
A |x1| +

∫ x2

0

√
A(ξ) dξ)

)/√
A for x2 ≥ 0,

where c is a real constant which is to be determined with regard to the boundary conditions.

Lax and Phillips verified that on γ1 ∪ γ2 ∪ γ3 homogeneous Dirichlet boundary conditions are

semi-admissible and maximal, cf. p. 78. Requiring appropriate regularity conditions on A

ensures that admissible conditions can be imposed.

Morawetz treats the singularity at the origin P0 by introducing weighted L2-spaces in or-

der to demonstrate the existence of a weak solution of the Frankl equation. Therefore her

methodology does not quite fall into the framework of Friedrichs. However it coincides with

it in its essential points. Based on the findings in (Morawetz 1958), Lax and Phillips proved

that the weak solution is unique and that it can be approximated by smooth functions which

satisfy the homogeneous boundary conditions exactly. They have accounted for the corners

P1 and P2 using the semi-definiteness of the matrix B(ν) on γ4 and γ5. Using smooth scalar

multiplier functions they were able to control the effect of the singularity at P0.

Example 33 (Frankl equation II: The Physical Motivation) As already pointed out

in the previous example, the Frankl equation plays an important role in compressible gas

dynamics. We highlight the important steps in the derivation of the physical model; however,

we leave certain details to the references (Morawetz 1981) and (Dautray and Lions 1988-93,

Chap. X).

We consider a two-dimensional steady flow which is described by the density ρ, the pres-

sure p and the velocity (u, v). We use the physical coordinates (x, y) and denote partial

differentiation by subscripts. Conservation of mass is expressed by the relation

(ρu)x + (ρv)y = 0. (2.53)
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Postulating that shock waves are either weak or of constant intensity, we deduce that the

flow is isentropic and thus irrotational, that is vx = uy. It follows that p is a function of

the density ρ alone: p = p(ρ). One generally assumes that ∂p/∂ρ > 0. Because the flow is

irrotational we can reduce the momentum equation to Bernoulli’s law:

u2 + v2

2
+
∫

dp
ρ

= constant.

Consequently, ρ is a function of V where V = u2 + v2. For irrotational flow there exists a

velocity potential ϕ such that (u, v) = ∇ϕ. By virtue of (2.53), there is also a stream function

ψ which satisfies ρ (u,−v) = ∇ψ.

We now change the coordinate system and regard u and v instead of x and y as independent

variables. The space spanned by u and v is called the velocity plane or the hodograph plane.

We use the velocity potential ϕ and the stream function ψ to set up the system

dx=
1
ρV 2

(−v dψ+ ρ u dϕ),

dy=
1
ρV 2

( u dψ+ ρ v dϕ),
(2.54)

where ρ = ρ(V ). By setting u + iv = V eiθ we introduce the polar coordinates (V, θ) on the

hodograph plane. In these coordinates (2.54) takes the form of the Chaplyguine-Molenbroek

equations:

ϕθ =
V

ρ
ψV , ψθ =

1
V (1/ρV )V

ϕV . (2.55)

This system is linear since the coefficients only depend on the coordinate V . We define

A(σ) := V
d
dσ

( 1
ρV

)
, σ := −

∫ V

c

ρ

V
dV,

where c = (dp/dρ)1/2(ρ) is the speed of sound. By eliminating ϕ and substituting V by σ in

(2.55) we finally arrive at the Frankl equation:

A(σ)
∂2ψ

∂θ2
+
∂2ψ

∂σ2
= 0.

In conclusion then, we are able to reduce the original nonlinear system to a linear differen-

tial equation. However we perform this simplification by means of a nonlinear coordinate

transformation.

To gain a better understanding of the representation of the physical solution on the hodograph

plane we discuss the transformation to the (θ, σ)-coordinates considering the important ex-

ample of an exterior flow surrounding an airfoil. Our presentation is based on the description

of this setting in (Dautray and Lions 1988-93).
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Ωe
γ

sonic line M = 1

M > 1

{ψ = const}

A(V∞, 0)

y

C

B

D

x

θBθA

βα

∂Ωe

Figure 1. Steady compressible flow around an airfoil.

∂Ω

∂Ω = {ψ = 0}

B A
σ

P∞

θA

β

α

γ

C

M < 1

M > 1

AB

{ψ = const}

θB D

Figure 2. Representation of the flow on the hodograph plane.
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Figures 1 and 2 on page 97 depict the physically important setting of a flow around an airfoil

which is subsonic and uniform at infinity and has a bounded supersonic pocket attached to

the wing profile. We denote the exterior domain by Ωe, the corresponding domain on the

hodograph plane is Ω. By construction, the velocity field (u, v) is tangential to the streamlines

ψ(x, y) = constant. Dautray and Lions impose a no-slip boundary condition from which they

deduce that ψ is constant on the airfoil boundary. Therefore on the hodograph plane the

contour line ψ = 0 constitutes the image of ∂Ωe; Ω is its interior. The domain Ω is unbounded

in the direction of the σ-axis. Furthermore the boundary has two vertical asymptotes which

correspond to the angles θA and θB at the leading and trailing edge of the airfoil. The flow in

the physical plane is uniform at infinity. This point corresponds in (θ, σ)-coordinates to the

position P∞ : θ = 0, σ = σ∞ > 0.

Since the boundary ψ(θ, σ) = 0 is a priori unknown the problem of finding the flow field

remains nonlinear. Yet, in order to solve the problem numerically, one does not need to

handle a nonlinear differential equation anymore but instead one iterates the computational

boundary. Based on the analysis we outlined in Example 32, one typically solves the Frankl

problem on Ω in two stages. One first considers the boundary value problem on the domain

Ω with the shaded triangle ∆(α, β, γ) removed. Here γ is arbitrarily chosen on the open

segment DC and γβ, γα are characteristic arcs. Dirichlet boundary conditions are imposed

consistently with the findings of the previous example. Then one solves a purely hyperbolic

equation on ∆(α, β, γ) with Dirichlet data on γβ, γα. We refer for further details to (Dautray

and Lions 1988-93, vol. 4, p. 14), (Morawetz 1981, pp. 117) and to the references therein.

Example 34 We bring the section to a close with a less common example to illustrate that

besides the above well-known types of boundary value problems there are many other classes

of equations which can be converted to the framework by Friedrichs. The problem considered

is based on Example 8 in (LeSaint 1995). We analyse on the domain Ω := [0, Z] × Ω0 ⊂ R
3

the equation

A
∂2

∂x2
1

v +B1
∂

∂x1
v +B2

∂

∂x2
v +B3

∂

∂x3
v = f, (2.56)

where divB = 0 and A is a negative constant. We impose the homogeneous Dirichlet bound-

ary condition v(0, x2, x3) = v(Z, x2, x3) = 0 for (x2, x3) ∈ ∂Ω0. We also fix v on the set

∂−Ω = {(x1, x2, x3) ∈ [0, Z] × ∂Ω0 : B2ν2 + B3ν3 < 0}. Solutions of this problem exhibit, in

general, boundary layers.

We derive from (2.56) the first-order differential system

∂1

(
B1 A

A 0

)
u+ ∂2

(
B2 0

0 0

)
u+ ∂3

(
B3 0

0 0

)
u+

(
0 0

0 −A

)
u =

(
f

0

)
. (2.57)
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Because divB = 0, the system is not accretive. A multiplication of (2.57) with(
a b

0 a

)
, a, b ∈ C1(Ω),

leads to a new system of equations for which

Dh =

(
−1/2B.∇a−A/2 ∂1b −A/2 (b+ ∂1a)

−A/2 (b+ ∂1a) −Aa

)
.

Hence we can guarantee the positive definiteness of Dh by choosing a = 1 and b = −(1+x1)−1.

To impose the boundary conditions, we define the operator

J = ±1/2

(
−(1 + x1)−1A+B1 0

2A 0

)
, J = −B−(ν)

on x1 = 0, x1 = Z and (x2, x3) ∈ ∂Ω0, respectively. J satisfies (2.17) and (2.19) and is

admissible if A and B1 are sufficiently smooth.

2.6 Literature Review

To put our results into a larger context we outline selected results from the literature on

Friedrichs systems. We focus in particular on endeavours concerning Friedrichs systems on

non-smooth domains.

The analysis of Friedrichs systems was initiated by the publication (Friedrichs 1958). As we

pointed out already, Friedrichs’ primary motivation was to provide a unified treatment for

equations of mixed type. In the main part of the publication, Friedrichs considers boundary

value problems on smooth domains with the condition that the boundary matrix B(ν, x) does

not change its inertial type, by that we mean that the number of positive and negative eigen-

values of B(ν, x) is a constant function near the boundary. Here the vector field ν is locally

extended into the domain. Moreover, Friedrichs restricts his investigations to homogeneous

boundary conditions. In this setting he shows the existence and uniqueness of solutions. For

his proofs he adapts ideas from (Friedrichs 1954) and (Lax 1955) to his setting. In the last

section of the paper, Friedrichs investigates a number of specific boundary value problems

on polygonal domains. He begins with differential operators for which on each face of Ω the

matrix B(ν) is either positive or negative semi-definite. He concludes with case studies of the

Tricomi and the Cauchy-Riemann equations.

In the list of contributors to the theory of Friedrichs systems the names of three of Friedrichs’

former Ph.D. students appear repeatedly, namely Cathleen Morawetz, Peter Lax and Leonard
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Sarason. In Example 32 we already referred to Morawetz’ studies (Morawetz 1958) on related

energy integral methods for the Frankl equation. Although similar in character, the results in

(Morawetz 1958) differ from Friedrichs’ work in certain aspects, for example in the domains

considered and in the function spaces employed. While Morawetz is able to prove the existence

of a weak solution, the paper leaves the question of uniqueness open.

The publication (Lax and Phillips 1960) is concerned with a class of dissipative symmetric

operators with maximal boundary conditions. As remarked on page 78, if sufficiently regular,

maximal boundary conditions can be imposed in terms of admissible boundary operators.

Neglecting a possible rescaling, the definitions of dissipative symmetric and accretive operators

are equivalent. Retaining the condition of constant inertial type on each face of a polygonal

domain Ω, Lax and Phillips demonstrate existence of a unique solution if at each edge on

one of the faces the function B(ν, x) is either positive or negative definite. The authors also

single out a class of so-called unessential points by introducing certain multiplier functions.

Although they to do not provide a general theory for unessential points, they gather sufficient

results to show that the solution of the Tricomi problem constructed by Morawetz is strong

and unique.

A different approach to Friedrichs systems is presented in (Sarason 1962). Here the ques-

tion of existence and uniqueness is addressed on subdomains of R
2 by locally separating the

differential operator into components of hyperbolic, parabolic and elliptic type. By posing

additional uniformity constraints on the boundary conditions the author shows that weak so-

lutions with square integrable traces are strong and in consequence unique. Sarason extends

his results to a class of cylindrical domains of higher dimension. He also demonstrates the

existence of strong solutions on Lipschitz domains which can be approximated in a uniform

sense by sets with non-characteristic smooth boundary.

The authors of (Phillips and Sarason 1966) consider a category of Friedrichs systems for

which B(ν) changes its rank at a countable number of points. Since type-changes in B(ν)

typically take place on subsets of ∂Ω of dimension n − 2, their results are most valuable

for boundary value problems on two-dimensional domains. They call a point x singular if

in a neighbourhood of x an inequality fails which, on a global level, characterises accretive

operators. They show that if the set of singular points is discrete then a locally maximal

accretive extension of L exists. In a setting based on these local operators the authors are

able to show existence and uniqueness of solutions.

Using the method of elliptic regularisation Sarason proved in (Sarason 1967) that provided

certain a priori bounds are satisfied the solutions of Friedrichs systems are contained in

W 1,2(Ω)m. The author carries over his result to boundary value problems on manifolds.
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The publication (Peyser 1975) is concerned with Friedrichs systems on the domain Ω :=

{(x1, x2, . . . , xn) ∈ R
n : x1 > 0, x2 > 0}. The author demonstrates that if a bilinear form,

dependent on the coefficients of the differential operator L, is uniformly positive definite on

∂Ω then the sets of weak and strong solutions coincide. In consequence such a Friedrichs

system has a unique solution. Peyser terms the constraints on L torsion conditions.

With the exception of the settings covered by the publications named above, the requirement

by Friedrichs that B(ν) is of constant inertial type near the domain boundary remained a

necessary part for the proof of uniqueness for Friedrichs systems. In (Rauch 1985) the author

weakens the requirement to the condition that B(ν) does not change its rank on boundary ∂Ω.

Jeffrey Rauch, incidently a student of Peter Lax, starts his analysis at a similar point as we in

the sense that he begins with the observation that the image of the trace operator maps into

H−1/2(∂Ω). However he only considers boundary value problems on smooth domains. The

main result of the publication is that, under suitable regularity constraints on the boundary

value problem, the solution is contained in a weighted Sobolev space Hs
tan(Ω), in which in

comparison to the unweighted space Hs(Ω) only a weakened regularity condition is imposed

in the normal direction near the boundary of the domain.

Applying the method of elliptic regularisation, in (Smoczyński 1987) it is proved that, pro-

vided certain dominance criteria hold, weak solutions of Friedrichs systems are contained in

W 1,2(Ω)m and therefore are strong. In contrast to the analysis of (Sarason 1967), which takes

a similar approach, the results of Smoczyński also cover rank-changes of B(ν) which do not

affect the dominance criteria. While the proofs are only given for C∞-domains, Smoczyński

indicates that his findings can be transferred to less regular domains which satisfy a curvature

condition.

Another technique to analyse type changes of B(ν) is investigated in (Rauch 1994). Suppose

that there is a (n − 2)-dimensional C1-submanifold Γ of ∂Ω on which rankB(ν) changes.

Rauch’s main assumption to prove that weak solutions are strong is that locally there are two

C1-vector subbundles Nbig and Nsmall such that Nbig ⊃ kerB(ν), Nbig ⊃ kerNsmall and that

kerB(ν) equals Nbig on one side of Γ and Nsmall on the other side of Γ.

In (Secchi 1998) the author complements the results in (Rauch 1994) with regularity estimates

for solutions of Friedrichs systems which have type changes of the kind analysed by Rauch.

However Secchi requires in addition that B(ν) is definite on the one side of Γ and semi-

definite on the other side. This condition has been relaxed in (Secchi 2000) where only

one-sided definiteness is demanded.

This brief survey of available publications on the theory of Friedrichs systems is by no means
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complete. For instance we have completely neglected the analysis of Friedrichs systems by

means of pseudo-differential operators, cf. (Friedrichs and Lax 1965) and (Sarason 1969/70),

or semi-groups in the case of evolution equations, cf. (Bardos 1970). For the sake of brevity we

also have not given further details about (Tartakoff 1971/72), (Osher 1973), (Friedrichs 1974),

(Bardos and Rauch 1982), (Secchi 1996), which give insight into other aspects of Friedrichs

systems, and we did not survey in detail lecture notes or textbooks on the subject such as

(Friedrichs 1961) or (LeSaint 1995).



Chapter 3

The Discontinuous Galerkin

Finite Element Method

In the two previous chapters we have built up the framework of Friedrichs systems, inves-

tigated a number of their properties and illustrated their relationship to other well-known

types of boundary value problems. Now we turn to the question of how to find solutions of

Friedrichs systems.

While it is in some cases possible and preferable to compute the analytic solution of the

system, the alternative approach of finding a numerical approximation instead is often more

appropriate. This might be because of the complexity of the problem, or because the numerical

computation provides all the information one requires in a suitable form, or indeed because

Friedrichs systems appear in intermediate stages of more elaborate numerical computations

such as in the numerical solution of a nonlinear systems of PDEs.

A wide range of techniques exist for solving Friedrichs systems numerically. Indeed, already

in Friedrichs’ original paper we find a section which is devoted to the analysis of a finite

difference schemes on rectangular domains, cf. (Friedrichs 1958, p. 346-347). In this disser-

tation, however, we shall concentrate on Galerkin methods. These are techniques where the

approximate solution is obtained by restricting the weak formulation of the boundary value

problem to finite-dimensional test and trial spaces. The weak formulation, though based on

the description in Section 1.9, usually incorporates a decomposition of the computational

domain into subdomains called finite elements. It is assumed that the test and trial space

coincide, otherwise one speaks of Petrov-Galerkin methods.

Two important families of Galerkin methods are the discontinuous and the continuous Galer-

kin finite element methods. Our primary interest are the discontinuous Galerkin finite el-

103
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ement methods, or DGFEMs in short. We also call these schemes discontinuous Galerkin

methods. Occasionally we make comparisons with continuous Galerkin finite element meth-

ods (CGFEMs). For an introduction to CGFEMs for Friedrichs systems we refer to (LeSaint

1973/74), (Johnson 1987), (LeSaint 1995) and to the references therein. We shall not consider

the numerical solution of Friedrichs systems by other methods. The reader interested in the

construction of a finite volume scheme should consult (Vila and Villedieu 1997); for finite

difference schemes (Lees 1961) serves as a starting point.

3.1 The Broken Graph Space

We restrict our attention to boundary value problems of the following type.

BVP 5 Let Ω satisfy a strong local Lipschitz condition and let L be accretive. Given the

pair of projections PJ , PJ∗ ∈ L∞
B (∂Ω)m×m we set J = −B(ν)PJ . We assume there is a pair

of projections PJH , PJ ′ ∈ L∞
B (∂Ω)m×m so that J ′ = B(ν)PJ ′ . In addition we require that the

matrices

R(x) := J(x) + 1/2B(ν, x), x ∈ ∂Ω,

are positive semi-definite and that there is a matrix function T ∈ L∞
B (∂Ω)m×m such that

B(ν) = 1/2 (R+RH)T (3.1)

on ∂Ω. Then, according to Theorem 41, the boundary value problem

Lu = f, Ju = g (3.2)

has a unique solution u in W 2
L,B(Ω) for f ∈ L2(Ω)m and g ∈ L2

B(∂Ω).

As before we sometimes write Ju instead of Ju to emphasise that J has a continuous extension

to a boundary operator J.

Let T = {κ1, κ2, . . . , κN} be a finite decomposition of Ω into open elements κi which also

satisfy a strong local Lipschitz condition:

Ω =
N⋃
i=1

κi, and i �= j ⇒ κi ∩ κj = ∅.

Consider an element κ ∈ T. We abbreviate the interior boundary ∂κ \ ∂Ω by ∂intκ. As for Ω

we denote the outward normal of κ by ν. In order to formulate the discontinuous Galerkin
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method, we need to equip ∂intκ with a boundary condition. Analogously to the original

boundary value problem on Ω, we choose the pair of projections PJ , PJ∗ ∈ L∞
B (∂Ω)m×m and

set J = −B(ν)PJ . We require that there is a pair of projections PJH , PJ ′ ∈ L∞
B (∂Ω)m×m so

that J ′ = B(ν)PJ ′ . In addition we have to ensure that the matrices

R(x) := J(x) + 1/2B(ν, x), x ∈ ∂intκ,

are positive semi-definite and that there is a matrix function Tκ ∈ L∞
B (∂Ω)m×m such that

B(ν) = 1/2 (R + RH)Tκ on ∂intκ. Then we obtain, for every κ ∈ T, a restricted boundary

value problem: Find u such that

Lu|κ = f |κ, Ju|∂κ∩∂Ω = Jg|∂κ∩∂Ω, J u|∂intκ = J ġ|∂intκ, (3.3)

were, for the moment, ġ is an unspecified function in L2
B(∂intκ). The solution of the restricted

boundary value problem (3.3) on κ is contained in W 2
L,B(κ). This motivates us to define the

broken graph space

W 2
L,B(Ω,T) :=

n⊕
κ∈T

W 2
L,B(κ).

At the boundary ∂κi ∩ ∂κj between the element κi and a neighbour κj , a member v of

W 2
L,B (Ω,T) has, in general, two distinct traces: one from the restriction v|κi and one from

v|κj . We denote the internal trace (v|κi)|∂κi of κi by v+ and the external trace (v|κj )|∂κi∩∂κj

of κi by v−. Altogether the external trace v− is composed from the traces of all elements

neighbouring κi. The difference v+ − v− is denoted by [v].

We equip W 2
L,B(Ω,T) with the broken graph norm

‖v‖2
L,T :=

∑
κ∈T

‖ v|κ ‖2
L,κ .

In this norm W 2
L,B(Ω,T) is not a complete space. In the next section we will consider another

norm on W 2
L,B(Ω,T).

3.2 Definition of the DGFEM

To define the discontinuous Galerkin finite element method we introduce the bilinear form

BDG :W 2
L,B(Ω,T) ×W 2

L,B(Ω,T) → R, (v, w) �→ 〈Lv, w〉Ω + 〈Jv, w〉∂Ω +
∑
κ∈T

〈J[v], w+〉∂intκ

and the linear form

	DG :W 2
L,B(Ω,T) → R, w �→ 〈f, w〉Ω + 〈Jg, w〉∂Ω.
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The trial and test spaces are equal to a finite-dimensional subspace V of W 2
L,B (Ω,T). A

discontinuous Galerkin approximation of the solution u of BVP 5 is a function uDG ∈ V such

that

∀w ∈ V : BDG(uDG, w) = 	DG(w). (3.4)

We need to introduce a compatibility constraint for the boundary conditions of neighbouring

elements to ensure that (3.4) has a unique solution. Let κj be an element neighbouring κi
and let Ji and Jj be the boundary conditions of κi and κj . We then demand that

Ji = J ′
j and J ′

i = Jj (3.5)

on the restriction to ∂κi ∩ ∂κj . If (3.5) holds then

∑
κ∈T

〈J[v], v+〉∂intκ + 1/2 〈B(ν) v+, v+〉∂intκ

= 1/2

∑
κ∈T

〈J[v], v+〉∂intκ + 1/2 〈B(ν) v+, v+〉∂intκ − 〈J′[v], v−〉∂intκ − 1/2 〈B(ν) v−, v−〉∂intκ

= 1/2

∑
κ∈T

〈J[v], [v]〉∂intκ + 1/2 〈B(ν) [v], [v]〉∂intκ = 1/2

∑
κ∈T

〈R[v], [v]〉∂intκ.

Thus, the bilinear form BDG is positive definite:

∀ v ∈W 2
L,B(Ω,T) : BDG(v, v) = 〈Dh v, v〉Ω + 〈R v, v〉∂Ω + 1/2

∑
κ∈T

〈R [v], [v]〉∂intκ.

Therefore we can equip W 2
L,B(Ω,T) with the energy norm

‖v‖DG := ‖v‖DG,T :=
√
BDG(v, v), v ∈W 2

L,B(Ω,T).

We note that W 2
L,B(Ω,T) is not complete in the energy norm. Occasionally we use the energy

scalar product which is the bilinear form

〈v, w〉DG := 〈Dh v, w〉Ω + 〈R v, w〉∂Ω + 1/2

∑
κ∈T

〈R [v], [w]〉∂intκ.

Theorem 42 For each finite-dimensional approximation space V in W 2
L,B(Ω,T) there exists

a unique solution uDG of the discontinuous Galerkin finite element method. The solution

satisfies the stability estimate

‖uDG‖DG ≤ γ−1 ‖f‖L2(Ω)m + ‖T PJ g‖R ≤ γ−1 ‖f‖L2(Ω)m + C ‖ g‖B, (3.6)

where C is a suitable constant.



3.2. DEFINITION OF THE DGFEM 107

Proof. Because V is finite-dimensional, the existence and uniqueness of uDG follows from the

positive definiteness of BDG. Using

BDG(uDG, uDG) = 	DG(uDG) ≤ 1/(2γ)‖f‖2
Ω + γ/2‖uDG‖2

Ω + 1/2 ‖T PJ g‖2
R + 1/2 ‖uDG‖2

R,

we deduce (3.6). ////

If J = −B−(ν) on ∂Ω then (3.6) simplifies to

‖uDG‖DG ≤ γ−1 ‖f‖L2(Ω)m +
√
〈−B−(ν) g, g〉∂Ω.

Remark 6 Let us consider a Friedrichs system which does not satisfy all of the conditions

required in the statement of Theorem 41, like, for instance, Moyer’s example. In this setting

the definitions of BDG and 	DG are still meaningful. Moreover, if the compatibility condition

(3.5) is satisfied then BDG is positive definite and therefore induces a norm on W 2
L,B (Ω,T).

However, as is seen from Moyer’s example, the term 〈v, v〉R might vanish. Therefore for such

systems the above proof of the stability estimate (3.6) is not applicable.

The formulation of the discontinuous Galerkin method with interior boundary conditions

satisfying (3.5) is stated in (Johnson, Nävert and Pitkäranta 1984) and (LeSaint 1995). Two

questions arise instantaneously: Is it always possible to equip the interior elemental boundaries

with boundary conditions satisfying (3.5)? And if there is more than one set of interior

boundary conditions which fulfills this requirement as well as the conditions we stated on the

basis of Theorem 41, which one should be selected?

Suppose that we set J = −B−(ν) on ∂intκ for κ ∈ T. If κj is a neighbour of κi and νi and νj
are the respective outward normals, then

J = −B−(νi) = B+(νj) = J ′

on ∂κi ∩ ∂κj . Therefore, choosing inflow boundary conditions on the interior boundaries is

consistent with (3.5). Putting

PJ = PJH = P−, PJ ′ = PJ∗ = P+ and Tκ = P+ − P− (3.7)

on ∂intκ, the remaining conditions on the interior boundary conditions are satisfied. This

settles the first question.

Suppose J̇ is another permissible set of interior boundary conditions. It then follows from

(2.38) that the energy norms defined with J and J̇ are equivalent. From this point of view it

appears appropriate to always choose inflow boundary conditions on the interior boundaries.



3.3. LITERATURE REVIEW 108

We will therefore focus our attention on this choice. However, where no additional effort is

involved we adopt the general setting.

At the end of this section we state, for future reference, the adjoint form of BDG:

BDG(v, w) = 〈v,L′w〉Ω + 〈v, J′w〉∂Ω +
∑
κ∈T

〈v+, J′w+ − J∗w−〉∂intκ. (3.8)

If the interior boundary conditions of BDG are defined via (3.7) then

BDG(v, w) = 〈v,L′w〉Ω + 〈v, J′w〉∂Ω +
∑
κ∈T

〈v+, B+(ν) [w]〉∂intκ. (3.9)

Notice that the interior boundary integrals in (3.9) vanish if w is continuous.

3.3 Literature Review

Since 1973 the discontinuous Galerkin finite element method has been regarded by the nu-

merical analysis and scientific computing communities with increasing interest. In particular,

in the last five years the efforts to gain a better understanding of the method and to widen its

range of application have intensified. We substantiate this observation with the figure below

in which the numbers of entries per year in MathSciNet are recorded which refer explicitly to

the designation “discontinuous Galerkin”. In total the database lists 350 entries of this type

referring to publications before 2004.
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Due to the number of contributions on the discontinuous Galerkin finite element methods

we can only give short descriptions of selected publications. For more comprehensive reviews

on the subject we refer to (Cockburn 1999), (Cockburn, Karniadakis and Shu 2000) and

(Cockburn 2003).

The discontinuous Galerkin finite element method was introduced in 1973 by Reed and Hill

in (Reed and Hill 1973a) and (Reed and Hill 1973b). The authors consider the one-velocity

neutron transport equation

µ∂xψ + η ∂yψ + σ ψ(x, y, µ, η) = S(x, y, µ, η).

According to (LeSaint and Raviart 1974), the function ψ represents the flux of neutrons in

the direction (µ, η) at the location (x, y) of the physical domain, σ is the nuclear cross section

and S represents scattering, fission and inhomogeneous source terms. While for the one-

velocity neutron transport equation the vector (µ, η) is fixed, for the full neutron transport

equation (µ, η) is an element of the unit circle S
1. After defining a discontinuous Galerkin

finite element method, Reed and Hill compare the DGFEM with a CGFEM by means of

numerical experiments. In their examples they highlight the good stability properties the

DGFEM and demonstrate that oscillations in the numerical solution, caused by the presence

of discontinuities in the exact solutions, are damped rapidly.

We remark that already a few years earlier Nitsche proposed for the numerical solution of

the Poisson equation a Galerkin method for which the exterior boundary conditions were

implemented weakly, cf. (Nitsche 1971). However, in contrast to Reed and Hill, he assumed

that the finite-dimensional approximation space is contained in W 1,2(Ω).

Motivated by the findings in (Reed and Hill 1973a), LeSaint and Raviart analysed the discon-

tinuous Galerkin finite element method in (LeSaint and Raviart 1974). The authors consider

the discontinuous Galerkin scheme for the one-velocity neutron transport equation. They

demonstrate that the scheme has a unique solution and that there is always an ordering

of the elements such that the solution can be calculated element by element. Assuming

shape-regularity, the authors prove, for meshes with triangular and quadrilateral elements,

the suboptimal error bound

‖u− uDG‖L2(Ω)m ≤ C hp ‖u‖W p+1,2(Ω)m , C > 0,

for solutions u in W p+1,2(Ω)m. Here h is the diameter of the finite elements. Based on

superconvergence properties on quadrilateral elements, LeSaint and Raviart improve the error

bound by one order for solutions in u in W p+2,2(Ω)m ∩W p+1,∞(Ω)m. In a separate section

they also show that the discontinuous Galerkin method is equivalent to a Runge-Kutta scheme

when applied to ordinary differential equations.
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The authors of (Johnson et al. 1984) apply the discontinuous Galerkin method to a scalar

hyperbolic equation, which in contrast to the neutron equation, does not have a constant

principal part:

Lv = Bk∂kv + Cv = f.

Moreover, they equip the method with an additional term which originates from the streamline

diffusion finite element method; that is their scheme consists of the bilinear form

BDG(v, w) +
∑
κ∈T

〈L v, δBk∂kw〉Ω

and of the linear form

	DG(w) +
∑
κ∈T

〈f, δBk∂kw〉Ω.

Besides δ = 0 the authors consider the case δ = h. They present a number of results and refer

for their proofs to (Johnson and Pitkäranta 1983). We shall return to this publications in a

moment. Johnson and his coworkers also consider a formulation of the discontinuous Galerkin

method for Friedrichs systems. They introduce the condition that there is a constant C > 0

such for all v, w ∈ L2(∂κ)m

〈J v, w〉∂Ω ≤ 〈R v, v〉∂Ω + C ‖w‖2
L2(∂Ω)m . (3.10)

The authors state that under condition (3.10) the error bound

‖u− uDG‖L2(Ω)m ≤ C hp+1/2 ‖u‖W p+1,2(Ω)m , C > 0, (3.11)

holds for u ∈W p+1,2(Ω)m.

For the proof the reader is referred to (Johnson and Huang Mingyou n.d.), a publication which

still had to appear according to the references in (Johnson et al. 1984). However since this

paper is not listed in MathSciNet and since the authors do not refer to it in later publications

such as (Johnson 1987) it is unclear to us whether (Johnson and Huang Mingyou n.d.) has

been published or not. Nevertheless (3.11) can be verified by extending the analysis of the

scalar problem in (Johnson et al. 1984) and in (Johnson and Pitkäranta 1983).

While it is sensible to introduce (3.10) for an error analysis of the discontinuous Galerkin

method under the assumption that the exact solution of the Friedrichs system is smooth,

condition (3.10) appears less suitable if one is interested in investigating problems of low

regularity. In view of the next example our assumption that there is a function T such that
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B(ν) = Rh T seems more appropriate. We remark that our assumption is sufficient for (3.10)

because

〈J v, w〉∂Ω =−〈v, T PJH w〉R ≤ 〈R v, v〉∂Ω + ‖T PJH‖B(L2
B(∂Ω),L2

B(∂Ω)) ‖w‖2
R

≤ 〈R v, v〉∂Ω + ‖T PJH‖B(L2
B(∂Ω),L2

B(∂Ω)) ‖Rh‖L∞(∂Ω)m×m ‖w‖2
L2(∂Ω)m .

Example 35 Representative of a boundary segment of a domain Ω we consider the interval

(−1/2 ,
1/2 ) on which we define the matrix functions

B(ν) :=

(
x 0

0 −x

)
, P1 :=

(
0 0

x− 1 1

)
, P2 :=

(
1 0

1 − x 0

)
.

We introduce on (−1/2 ,
1/2 ) the matrix function

J(x) :=

{
−B(ν, x)P1 if x ≥ 0,

−B(ν, x)P2 if x < 0.

Then J satisfies (2.17) because

R(x) := J(x) + 1/2B(ν, x) = sign(x)

(
x/2 0

x(x− 1) x/2

)
(3.12)

is positive definite at x �= 0. Consequently, there is a factorisation B(ν) = (R + RH)T . A

calculation shows that T is equal to

sign(x)
x2 − 2x

(
−1 1 − x

x− 1 1

)
.

Observe that T is not contained in L∞
B (∂Ω)m×m due to the pole at the origin. Nevertheless

J satisfies (3.10):

〈J v,w〉I =
∫ 1/2

−1/2
(−(1 − x) v1 + v2)w2 xdx

≤ 2
13

∫ 1/2

−1/2
(−(1 − x) v1 + v2)2 xdx︸ ︷︷ ︸

=:A

13
2

∫ 1/2

−1/2
w2

2 xdx︸ ︷︷ ︸
=:B

.

Term A is bounded by 〈Rv, v〉I because

(−(1 − x) v1 + v2)2 x
R v · v = 2 + 2

((x− 1)2 − 1) v2
1

v2
1 + 2(x− 1) v1 v2 + v2

2

+ 2
(x− 1) v1 v2

v2
1 + 2(x− 1) v1 v2 + v2

2

≤ 2 + 2
((x− 1)2 − 1)

(1 − x)
v2
1

v2
1 + v2

2

+ 2
((x− 1)2 − 1)

(1 − x)
v1 v2
v2
1 + v2

2

≤ 2 + 3 + 3/2.
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Moreover, term B is bounded by 13/2 ‖w‖2
L2(∂Ω)m . Thus the boundary conditions satisfy

condition (3.10). However the matrices P1 and P2 are a pair of projections which converge in

each entry to the projections PJ and PJ∗ on the boundary segment x = 0 in Moyer’s example,

cf. Examples 25 and 26. Similarly, the boundary operator

J(x)
x

converges in each entry to the boundary operator in Moyer’s example on this segment as

x → 0. We remark that pointwise the boundary condition (J(x)/x)u(x) = (J(x)/x) g(x) is

equivalent to J(x)u(x) = J(x) g(x).

The above example raises the question whether there are solutions u of Friedrichs systems

which satisfy (3.10) and which have poles of the type seen in Moyer’s example. In such a

situation a number of problems appear. For instance, it is not clear that such a solution u

has a finite energy norm ‖u‖DG. Moreover, the integration-by-parts formula might not be

valid and therefore should not be employed without further verification. Observe that in the

construction of Example 35 we used that the boundary segment I has a characteristic point.

We now turn to (Johnson and Pitkäranta 1983). The authors consider the scalar transport

equation on a convex domain in R
2. The first part of the publication addresses the proof of

(3.11) for quasi-uniform triangulations. The authors then extend the error bound to Lp(Ω),

2 ≤ p ≤ ∞, for piecewise uniform meshes and constant or linear elements.

Assuming that the angle between the element edges and the direction of transport is uniformly

bounded away from zero, Richter deduces in (Richter 1988) for the transport equation an

optimal a priori error bound for the L2(Ω)m-norm on semi-uniform meshes

‖u− uDG‖L2(Ω)m ≤ C hp+1 ‖u‖W p+1,2(Ω)m , C > 0. (3.13)

For the definition of semi-uniform meshes we refer to (Richter 1988) and (Reed and Hill 1973a).

Three years later Peterson verified numerically that (3.13) does not hold on general triangula-

tions, cf. (Peterson 1991). Peterson uses an example in which certain edges of the triangulation

are aligned with the characteristic direction. He points out that by displacing the mesh the

optimal rate of convergence can be recovered.

Bey and Oden extend the analysis of (Johnson and Pitkäranta 1983) for the transport equa-

tion to approximation spaces with non-uniform polynomial degree, cf. (Bey and Oden 1996).

Assuming that u ∈W k+1,2(Ω) they prove for families of quasi-uniform refinements that there

is a constant C > 0 such that

‖u− uDG‖2
DG ≤ C

∑
κ∈T

h2sκ+1
κ

p2sκ
κ

max{1, hκ/p2
κ}‖u‖2

Wk+1,2(κ), (3.14)
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where hκ is the diameter of κ and pκ the polynomial degree of the element. Here the parameter

sκ is equal to min{pκ, k} and the streamline-diffusion parameter δ introduced in (Johnson et

al. 1984) is set to hκ/p2
κ. Bey and Oden complement their a priori analysis with residual-based

a posteriori error bounds and comprehensive numerical experiments.

Lin and Zhou study in (Lin and Zhou 1993) the convergence of the numerical solution of the

discontinuous Galerkin method to the exact solution u of a scalar hyperbolic problem under

the assumption that u is only contained in W 1/2,2(Ω), Ω ⊂ R
2. To our understanding, the

arguments of Lin and Zhou need to be refined in subtle points. For instance, we believe their

analysis requires, in fact, the stronger condition that u ∈ W 1/2+ε,2(Ω), ε > 0; for details we

refer to (Triebel 1992, p. 220).

Falk and Richter analyse in (Falk and Richter 2000) linear symmetric hyperbolic equations

with a uniform direction of hyperbolicity. As remarked in the last chapter such equations

can be transformed to the framework of Friedrichs. Falk and Richter illustrate how the

computational domain can by triangulated so that the discontinuous Galerkin solution can

be computed elementwise. Their construction relies on the observation that the boundary

matrix B(ν) of a finite element κ is definite if the angle between the direction of uniform

hyperbolicity and of the outward normal ν of κ is sufficiently small.

Houston, Schwab and Süli improved in (Houston et al. 2000b) the a priori error bound by

Bey and Oden in several respects. They demonstrated that the suboptimality in p in Bey and

Oden’s bound can be circumvented by choosing the stabilisation parameter δ equal to hκ/pκ:

‖u− uDG‖2
DG ≤ C

∑
κ∈T

(hκ
pκ

)2sκ+1‖u‖2
W sκ+1,2(κ), (3.15)

Moreover the error bounds in (Houston et al. 2000b) depend on the regularity of the exact

solution u on individual elements and do not require that u is contained globally in W k,2(Ω).

The authors prove the convergence of the discontinuous Galerkin method under p-refinement

and show that the convergence is of exponential rate if the solution is patchwise analytic.

In (Houston, Schwab and Süli 2000a) the error bound (3.15) is extended to the discontin-

uous Galerkin method without streamline diffusion stabilization for scalar operators with

elementwise constant coefficients.

Houston, Jensen and Süli analyse in (Houston, Jensen and Süli 2002a) methods of discontin-

uous Galerkin type for Friedrichs systems with inflow boundary conditions. They construct

a parameterised space of Galerkin methods, the so-called t-DG family. The t-DG family is

based on the classical discontinuous Galerkin method and incorporates a number of least-

squares stabilised schemes. The authors demonstrate that the error bounds in (Houston et
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al. 2000b) can be transferred to this setting. This thesis contains the results of (Houston et

al. 2002a) in generalised form. In particular, we consider the t-DG family with a wider range

boundary conditions. Moreover, (Houston et al. 2002a), like the other publications mentioned

so far, do assume that the analytical solution of the boundary value problem is contained in

a Sobolev space.

Restricting their attention to h-convergence, Brezzi, Marini and Süli give a streamlined and

extended analysis of (Houston et al. 2000b) and (Houston et al. 2002a) in (Brezzi, Marini

and Süli 2004). In particular, the authors clarify that the internal boundary conditions of

the discontinuous Galerkin finite element method can be understood as the composition of

an averaging term and a jump term. Based on this observation they identify a range internal

boundary conditions for which the discontinuous Galerkin method satisfies an a priori error

bound optimal in h. We remark that despite the modifications of the internal boundary

conditions in (Houston et al. 2002a) and (Brezzi et al. 2004), the internal boundary conditions

are conceptually still inflow boundary conditions, i.e. the associations (3.7) hold. Therefore

they generalise (3.9) in a different aspect than (3.8) does.

3.4 Convergence of the DGFEM in Broken Graph Spaces

The aim of this section is to show that as the approximation space V is enlarged the discon-

tinuous Galerkin solution converges to the exact solution of the Friedrichs system. Hereby

we do not assume that the decomposition T of Ω is fixed but allow it to be refined. However,

since for different domain decompositions the respective discontinuous Galerkin solutions are

contained in different broken graph spaces we have to introduce a new function space to study

the convergence process.

Let us consider a family of decompositions T := (Ti)i∈N of Ω such that W 2
L,B (Ω,Ti) ⊂

W 2
L,B(Ω,Tj) if i < j. We equip the vector space

W 2
L,B(Ω,T ) :=

⋃
i∈N

W 2
L,B(Ω,Ti)

with the scalar products

〈v, w〉L,T := 〈v, w〉L,Ti
, 〈v, w〉DG,T := 〈v, w〉DG,Ti

, v, w ∈W 2
L,B(Ω,Ti). (3.16)

The scalar products are well-defined since if v and w belong to W 2
L,B(Ω,Ti) and W 2

L,B(Ω,Tj)

then 〈v, w〉L,Ti
= 〈v, w〉L,Tj

and 〈v, w〉DG,Ti
= 〈v, w〉DG,Tj

. We also introduce the energy norm

‖v‖2
DG,T := 〈v, v〉DG,T and the broken graph norm ‖v‖2

L,T := 〈v, v〉L,T .
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The next theorem is the central result about the convergence of the discontinuous Galerkin

method in graph spaces. In particular, we do not need to require that the interior boundary

conditions are defined by (3.7).

Theorem 43 Let (Vi)i∈N be a family of subspaces of W 2
L,B (Ω,T ) such that C∞

0 (Rn)m is

contained in the closure of the set

W 2
L (Ω) ∩

⋃
i∈N

Vi

in the broken graph norm and in the energy norm. We assume that the family (Vi)i∈N

is hierarchical, that means that Vi ⊂ Vj if i < j. Let ui be the discontinuous Galerkin

approximation in Vi of the exact solution u of BVP 5. Then the sequence (ui)i∈N converges

to u in the energy norm. Moreover, we have the bound

‖u− ui‖DG ≤ C inf{‖u− vi‖L,B : vi ∈W 2
L (Ω) ∩ Vi}, (3.17)

where C is a constant independent of u and i.

Proof. Since u is contained in W 2
L,B(Ω) we can find a v ∈ C∞

0 (Rn)m such that

‖v − u‖L,T + ‖v − u‖DG,T ≤ C1 ‖v − u‖L,B ≤ ε,

where C1 is a suitable constant independent of u and v. According to the hypotheses there

is an i ∈ N and a vi ∈W 2
L (Ω) ∩ Vi such that

‖v − vi‖L,T + ‖v − vi‖DG,T ≤ ε.

By Galerkin orthogonality we have that

BDG(vi − ui, vi − ui) = −BDG(u− vi, vi − ui).

Using that J[u− vi] vanishes on interior boundaries, we deduce

‖vi − ui‖2
DG = −〈L(u− vi), vi − ui〉Ω − 〈J(u− vi), vi − ui〉∂Ω.

Thus there is a constant C2 such that

C2 ‖vi − ui‖DG,T ≤ ‖L(u− vi)‖Ω + ‖T (PJ) (u− vi)‖R,∂Ω. (3.18)

With

∀w ∈ L2
B(∂Ω) : ‖w‖R,∂Ω ≤ C3‖w‖B,∂Ω,
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we conclude that

‖u− ui‖DG,T ≤ (2 + C−1
2 + C−1

2 C3 ‖TPJ‖L∞
B (∂Ω)m×m) ε

and that (ui)i∈N converges to u. The bound (3.17) follows from the triangle inequality and

formula (3.18). ////

Corollary 9 Under the above hypotheses the sequence (ui)i∈N converges to u in L2(Ω)m.

LeSaint proves in (LeSaint 1995) a corresponding result for continuous Galerkin finite element

methods for Friedrichs systems. However to show strong convergence in the L2(Ω)m-norm he

requires that the solution of the Friedrichs system is strong, i.e. a solution of BVP 4. Under

less restrictive conditions he demonstrates that a subsequence of (ui)i∈N converges weakly to

u in L2(Ω)m.

We now restrict our attention to the important case that κ is an affine image of a fixed master

element κ̂, i.e. κ = Fκ(κ̂) for all κ ∈ T ∈ T , where Fκ is an injective affine mapping and

where κ̂ is either the open unit simplex or the open unit hypercube in R
m. We denote by

Ppκ(κ̂) the space of polynomials on κ̂ with total degree pκ. If κ̂ is the hypercube then we

also consider the space Qpκ(κ̂) of tensor-polynomials on κ̂ with degree pκ in each coordinate

direction.

Let p be the mapping which associates to each κ in T an index pκ ∈ N. Then we introduce

the finite element space

Sp(Ω,T) := {v ∈ L2(Ω) : v|κ ◦ Fκ ∈ Rpκ(κ̂)},

where Rpκ(κ̂) is either Ppκ(κ̂) or Qpκ(κ̂).

Under h- and p-refinement, elements of C∞
0 (Rn)m can be arbitrarily well approximated by

functions in Sp(Ω,T) with respect to the energy and broken graph norm. Thus Theorem 43

is applicable and the solutions of the discontinuous Galerkin method converge to the possibly

discontinuous solution of the Friedrichs system under consideration with at least the rate

specified in (3.17).

3.5 Convergence of the DGFEM in Broken Sobolev Spaces

We now turn to the question how the rate of convergence of (ui)i∈N can be classified if the

solution is elementwise contained in Sobolev spaces. We restrict our attention hereby to

bounds in the energy norm of the discontinuous Galerkin method.
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We concentrate in the derivation of a priori error bounds on shape-regular decompositions of

Ω, that is we assume that there is a parameter σ such that for all κ ∈ T and all T in T the

ratio between the radius of the circumcircle R and the inscribed circle r of κ is bounded from

above:
R

r
≤ σ.

For the extension of the analysis to anisotropic meshes we refer to (Georgoulis 2003).

Let k be a mapping which assigns to every κ in T an index kκ ∈ N. Then the broken Sobolev

space of regularity k is the function space

W k,q(Ω,T) := {v ∈ Lq(Ω) : v|κ ∈W kκ,q(κ)},

which is normed by

‖v‖Wk,q(Ω,T) :=
(∑
κ∈T

‖v‖q
Wkκ,q(κ)

)1/q
.

The rate of convergence typically observed in numerical experiments is

‖u− uDG‖DG ≤C
∑
κ∈T

h
sκ−1/2
κ

(pκ + 1)sκ−1/2
|u|W sκ,2(κ)m , (3.19)

cf. for instance (Houston et al. 2000b). The question arises if this bound can be substantiated

theoretically. According to (Jonsson and Wallin 1984) there is a continuous restriction opera-

tor from W
1/2 +ε,2(κ)m to W ε,2(∂κ)m for ε > 0. Thus the W

1/2 +ε,2(κ)m-norm is stronger than

the energy norm. The optimal order of convergence with respect to the W
1/2 +ε,2(κ)m-norm

is

‖u− u̇‖W ε,2(∂κ)m ≤C(ε)
h
sκ−1/2 −ε
κ

(pκ + 1)sκ−1/2 −ε |u|W sκ,2(κ), (3.20)

where u̇ is a suitable element Sp(Ω,T). Clearly, the optimal rate of the elementwise con-

tribution to the energy norm is at least that of (3.20), ε > 0. However, within the class

of Friedrichs systems we consider, there are certain examples for which the optimal rate is

higher. For instance, if L is the identity operator Lv = v then the energy norm coincides

with the L2(Ω)m-norm which has the optimal convergence rate

‖u− uπ‖L2(Ω)m ≤C
∑
κ∈T

hsκ
κ

(pκ + 1)sκ
|u|W sκ,2(κ)m . (3.21)

Since the energy norm is always stronger than or equivalent to the L2(Ω)m-norm the optimal

rate of the energy can never be higher than the one given in (3.21). Yet, we remark that

it is rather untypical to observe the rate (3.21) in numerical examples. For instance, in the
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case Lv = v we observe the higher rate because the first-order part of the operator vanishes.

Thus it is a problem which in practice one would not solve with the discontinuous Galerkin

method. We shall therefore call an error bound optimal if it recovers the exponents in (3.19).

The a priori error bounds in the literature are either based on the L2-projection or on the

so-called H1-projection which we define later in Theorem 51. While the analysis applying

the L2-projection is suboptimal in p by p3/2, the error analysis utilising the H1-projection is

suboptimal in h by h1/2 and in p by one order, cf. (Houston et al. 2002b) and (Georgoulis 2003).

Only under the requirement that the first-order coefficient B of L is elementwise constant a

sharp estimate in h and p can be found, cf. for example (Houston et al. 2002b, Remark 3.13);

we note that an optimal h estimate can be proved without the hypothesis that the first-order

coefficient B of L is elementwise constant.

Here, we shall derive an error bound which is suboptimal in h and p by half an order under

the assumption that the underlying meshes have at most one hanging node per element edge

and are quasi-uniform. Thereby we reduce the total degree of suboptimality in h and p from

11/2 to 1 order. For completeness we show at the end of this section that the error analysis

based on the L2- and H1-projections can be extended from the scalar setting with inflow

boundary conditions to that of BVP 5.

We cite Theorem 4.72 from (Schwab 1998) in a modified form.

Theorem 44 Let Ω ⊂ R
2 be a polygon and let T be a quasi-uniform family of quadrilateral

meshes on Ω, with at most one hanging node per edge. Then, for any u ∈ W 2,2(Ω), there

exists a Pu ∈ Sp(Ω,T) ∩ C1(Ω) such that

‖u− Pu‖2
W 1,2(Ω) ≤ C

∑
κ∈T

max
{(pκ − sκ + 1)!

(pκ + sκ − 1)!
,

(pκ − sκ + 2)!
pκ(pκ + 1)(pκ + sκ − 2)!

}
h2sκ−2
κ |u|2W sκ,2(κ)

for 2 ≤ sκ ≤ pκ + 1 such that the right-hand side is finite. Here C is independent of pκ, sκ,

hκ and T ∈ T . If u ∈W sκ,2(κ) for some sκ ≥ 1 and κ ∈ T, then as p→ ∞

‖u− Pu‖2
W 1,2(Ω) ≤ C(sκ)

∑
κ∈T

(hκ
pκ

)2sκ−2|u|2W sκ,2(κ).

Although at the first sight the projection Pu seems to be more suitable for the analysis

of continuous finite element methods, it allows us to eliminate the jump terms on interior

boundaries of the discontinuous Galerkin method without weakening the error bound.

Theorem 45 Let Ω ⊂ R
2 be a polygon and let T be a quasi-uniform family of quadrilateral

meshes, with at most one hanging node per edge. If the solution u of BVP 5 is contained in
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W 2,2(Ω) then

‖u− uDG‖2
DG ≤ C

∑
κ∈T

max
{(pκ − sκ + 1)!

(pκ + sκ − 1)!
,

(pκ − sκ + 2)!
pκ(pκ + 1)(pκ + sκ − 2)!

}
h2sκ−2
κ |u|2W sκ,2(κ)

for 2 ≤ sκ ≤ pκ + 1 such that the right-hand side is finite. Here C is independent of pκ, sκ,

hκ and T ∈ T . If u ∈W sκ,2(κ) for some sκ ≥ 1 and κ ∈ T, then as p→ ∞

‖u− uDG‖2
DG ≤ C(sκ)

∑
κ∈T

(hκ
pκ

)2sκ−2|u|2W sκ,2(κ).

Proof. We abbreviate η := u− Pu and ξ := Pu− uDG. Then

‖ξ‖2
DG = −BDG(η, ξ) = 〈Lη, ξ〉Ω + 〈Jη, ξ〉∂Ω ≤ C (‖ξ‖Ω + ‖ξ‖R) ‖η‖W 1,2(Ω)

demonstrates the result. ////

A similar error bound can be demonstrated for quasi-uniform triangulations with polynomial

spaces Ppκ(κ̂). However, on the right-hand side of the error bound the semi-norm |u|W sκ,2(κ)

needs to be replaced by the norm ‖u‖W sκ,2(κ), cf. (Schwab 1998, p. 206). We remark that

while our error bound is sharper than the H1-error bound where applicable, it does not cover

dimensions higher than two and meshes which are not quasi-uniform.

We now show, for completeness, that the analysis in (Houston et al. 2000a) for scalar problems

can be extended to boundary value problems of type BVP 5. The next theorem relates

the approximation error of the discontinuous Galerkin method to the distance between the

solution u and a suitably chosen projection uπ of u onto the approximation space. We

abbreviate

η := u− uπ, ξ := uπ − uDG.

Theorem 46 Let uπ be an element of the approximation space V . We assume that the

internal boundary conditions satisfy (3.7). Then

‖ξ‖2
DG ≤ 2 |〈η,L′ξ〉Ω| + ‖T (PJ∗)η‖2

R,∂Ω +
∑
κ∈T

‖η+‖2
B,∂intκ

. (3.22)

Proof. From Galerkin orthogonality we have

B(ξ, ξ) = −B(u− uDG, ξ) +B(ξ, ξ) = −B(η, ξ).
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Thus, according to (3.9),

〈Dh ξ, ξ〉Ω + 〈R ξ, ξ〉∂Ω + 1/4

∑
κ∈T

〈|B|(ν) [ξ], [ξ]〉∂intκ

=−〈η,L′ξ〉Ω − 〈J∗η, ξ〉∂Ω −
∑
κ∈T

〈η+, B+(ν) [ξ]〉∂intκ

≤ |〈η,L′ξ〉Ω| + 1/2 ‖T (PJ∗)η‖2
R,∂Ω + 1/2 ‖ξ‖2

R,∂Ω +
∑
κ∈T

(
1/2 ‖η+‖B,∂intκ + 1/8 ‖[ξ]‖B,∂intκ

)
.

The result follows now by subtracting 1/2 ‖ξ‖2
R,∂Ω +

∑
κ

1/8 ‖[ξ]‖B,∂intκ. ////

We use on the reference element the L2(κ̂)-projection P̂2,pκ of L2(κ̂)m onto Qpκ(κ̂)m. On Ω

we utilise the projection

P2,p : L2(Ω)m → Sp(Ω,T), v|κ �→ (P̂2,pκ(v ◦ Fκ)) ◦ F−1
κ .

Where unambiguous we write P2 and P̂2 instead of P2,p and P̂2,pκ .

Theorem 47 Let κ̂ = (−1, 1)n and u ∈ W k,2(κ̂) for an integer kκ ≥ 1. Let sκ be a non-

negative integer which smaller than or equal to min{pκ + 1, k}, pκ ≥ 0. Then

‖u− P̂2 u‖L2(κ̂) ≤ C(n)
(

(pκ + 1 − sκ)!
(pκ + 1 + sκ)!

)1/2

|u|W sκ,2(κ̂),

where C(n) is a positive real number which only depends on the dimension n.

Proof. We refer to (Houston et al. 2002b) and (Schwab 1998, Theorem 3.11). ////

Corollary 10 If u ∈W k,2(κ)m and 0 ≤ sκ ≤ min{pκ + 1, k}, kκ ≥ 1, pκ ≥ 0 then

‖u− P2 u‖L2(κ)m ≤ C(n, sκ, σ)
hsκ
κ

(pκ + 1)sκ
|u|W sκ,2(κ)m ,

where σ is the parameter introduced in the definition of shape-regularity.

Proof. The corollary is a consequence of the chain rule and Stirling’s formula. ////

In the subsequent analysis we want to select uπ := P2 u. In view of the structure of (3.22)

we need to ensure that we have control over the difference u− P2 u on the boundaries of the

finite elements. The next theorem, which addresses this issue, is cited in modified form from

(Houston et al. 2002b).
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Theorem 48 Suppose that u ∈ W k,2(κ̂) for some integer k ≥ 1, and let sκ be an integer

such that 1 ≤ sκ ≤ min{pκ + 1, kκ}, kκ ≥ 1, pκ ≥ 0; then, we have that

‖u− P̂2 u‖L2(∂κ̂) ≤ C(n) Φ(sκ, pκ) |u|W sκ,2(κ̂)

where Φ(sκ, pκ) is defined by

Φ(sκ, pκ) =
1√

2p+ 1

[(
(pκ + 1 − sκ)!
(pκ − 1 + sκ)!

)1/2

+
(

(pκ + 2 − sκ)!
(pκ + sκ)!

)1/2
]

+
(

(pκ + 1 − sκ)!
(pκ + 1 + sκ)!

)1/4((pκ + 2 − sκ)!
(pκ + sκ)!

)1/4

+
(

(pκ + 1 − sκ)!
(pκ + 1 + sκ)!

)1/2

.

Corollary 11 If u ∈W k,2(κ) and 1 ≤ sκ ≤ min{pκ + 1, k}, kκ ≥ 1, pκ ≥ 0 then

‖u− P̂2 u‖L2(∂κ) ≤ C(n, sκ, σ)
h
sκ−1/2
κ

(pκ + 1)sκ−1/2
|u|W sκ,2(κ).

Proof. The corollary is again a consequence of Stirling’s formula. ////

To bound the term L′ξ in (3.22) we need to introduce an inverse inequality.

Theorem 49 Let κ̂ be the unit hypercube in R
n. Then polynomials v in Qpκ(κ̂) satisfy the

estimate

|v|W 1,2(κ̂) ≤ Cp2
κ‖v‖L2(κ̂), pκ ≥ 1,

where C is a constant independent of pκ.

Proof. The inequality is proved in (Schwab 1998, p. 208). ////

We have now collected all supporting results to prove the a priori bound for the discontinuous

Galerkin method under the assumption that the approximation space consists of piecewise

tensor product polynomials.

Theorem 50 Let T be a family of shape-regular decompositions of a polyhedronΩ such that

each element of the decompositions is an affine image of the hypercube in R
n. Then there is

a constant C > 0 which only depends on the dimension n, the parameter of shape-regularity

σ and the differential operator L such that for all u ∈W k,2(Ω,T) and discontinuous Galerkin

solutions uDG ∈ Sp(Ω,T), T ∈ T , the following bound is satisfied:

‖u− uDG‖DG ≤C
∑
κ∈T

hsκ−1/2
κ

[
Φ(sκ, pκ) + (1 + p2

κ)
(

(pκ + 1 − sκ)!
(pκ + 1 + sκ)!

)1/2
]
|u|W sκ,2(κ).

Here Φ is defined as in Theorem 48 and 1 ≤ sκ ≤ min{pκ + 1, kκ}, kκ ≥ 1, pκ ≥ 1



3.5. CONVERGENCE OF THE DGFEM IN BROKEN SOBOLEV SPACES 122

Proof. It follows directly from Theorem 48 that

‖T (PJ∗) η‖2
R,∂Ω + 2

∑
κ∈T

‖η+‖2
B,∂intκ

≤ C
∑
κ∈T

hsκ−1/2
κ Φ(sκ, pκ) |u|W sκ,2(κ)m . (3.23)

We turn to integral over Ω in (3.22). Recall that we denote the projection onto the space of

elementwise constant functions by P2,0. Then, by adapting the constant C in the course of

the calculation,

〈η,L′ξ〉Ω =
∑
κ∈T

∫
κ
ηi (−Bijk ∂kξj + Cji ξj) dx

=
∑
κ∈T

∫
κ
ηi (−(Bijk − P2,0Bijk) ∂kξj + Cji ξj) dx

≤C
∑
κ∈T

(
‖Bijk − P2,0Bijk‖L∞(κ)m×m×n |ξ|W 1,2(κ)m + ‖ξ‖L2(κ)m

)
‖η‖L2(κ)m

≤C
∑
κ∈T

(
hκ |Bijk − P2,0Bijk|W 1,∞(κ)m×m×n

p2
κ

hκ
‖ξ‖L2(κ)m + ‖ξ‖L2(κ)m

)
‖η‖L2(κ)m

≤C
∑
κ∈T

(1 + p2
κ) ‖ξ‖L2(κ)m‖η‖L2(κ)m

≤ γ/2 ‖ξ‖2
L2(Ω)m + C

∑
κ∈T

(1 + p2
κ)

2 h2sκ
κ

(
(pκ + 1 − sκ)!
(pκ + 1 + sκ)!

)
|u|2W 2κ,2(κ)m . (3.24)

We used that the pull-backs of ∂kξj and ηi to the reference element are L2(κ̂)-orthogonal.

Combining (3.23) and (3.24) proves the theorem. ////

Corollary 12 Under the hypotheses of the above theorem the approximation error of the

discontinuous Galerkin method satisfies the error bound

‖u− uDG‖DG ≤C
∑
κ∈T

h
sκ−1/2
κ

(pκ + 1)sκ−2
|u|W sκ,2(κ)m , (3.25)

where C = C(n, σ,L, s) depends on the dimension n, the parameter of shape-regularity σ,

the differential operator L and the function of regularity indices s.

We already indicated on page 118 that the proof of Theorem 50 can be improved if the

coefficient B of L is elementwise constant.

Corollary 13 Besides the hypotheses of Theorem 50 we assume that the coefficient B of the

differential operator L is constant on each element κ ∈ T ∈ T . Then the approximation error

of the discontinuous Galerkin method satisfies the error bound

‖u− uDG‖DG ≤C
∑
κ∈T

h
sκ−1/2
κ

(pκ + 1)sκ−1/2
|u|W sκ,2(κ),
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where C = C(n, σ,L, s) depends on the dimension n, the parameter of shape-regularity σ,

the differential operator L and the function of regularity indices s.

Proof. Because B is elementwise constant the scalar product 〈η,L′ξ〉Ω vanishes due to L2-

orthogonality. ////

Remark 7 The error analysis above can be applied without significant modifications to

Friedrichs systems which satisfy condition (3.10) by Johnson and his coworkers.

The a priori error bound due to Georgoulis is also valid for boundary value problems of

type BVP 5, cf. (Georgoulis 2003). We recall from (Houston et al. 2002b) the following

approximation result.

Theorem 51 Let the reference element κ̂ be a hypercube in R
n. Suppose that u belongs to

W kκ,2(κ)m for κ ∈ T. Then, there exists a PQu ∈ Sp(Ω,T) such that, for pκ ≥ 1, kκ ≥ 1 and

1 ≤ sκ ≤ min(pκ + 1, kκ), we have

‖u− PQu‖2
L2(Ω)m ≤ C

(hκ
2

)2sκ 1
pκ(pκ + 1)

Ψ(pκ, sκ)|u|2Hsκ (κ)m

and

|u− PQu|2W 1,2(Ω)m ≤ C
(hκ

2

)2sκ−2
Ψ(pκ, sκ)|u|2Hsκ (κ)m

and

‖u− PQu‖2
L2(∂Ω)m ≤ C

(hκ
2

)2sκ−1 Ψ(pκ, sκ)√
pκ(pκ + 1)

|u|2Hsκ (κ)m

where

Ψ(pκ, sκ) =
(pκ − sκ + 1)!
(pκ + sκ − 1)!

+
1

pκ(pκ + 1)
(pκ − sκ + 2)!
(pκ + sκ − 2)!

, 0 ≤ sκ ≤ pκ,

and C is a constant independent of hκ, pκ and u.

For the proof we choose the above quasi-interpolation operator to derive the a priori bound.

Theorem 52 Let T be a family of shape-regular decompositions of a polyhedronΩ such that

each element of the decompositions is an affine image of the hypercube in R
n. Then there are

constants C1 = C1(n, σ,L) > 0 and C2 = C2(n, σ,L, s) > 0 such that for all u ∈ W k,2(Ω,T)

and discontinuous Galerkin solutions uDG ∈ Sp(Ω,T), T ∈ T , the following bound is satisfied:

‖u− uDG‖DG ≤C1

∑
κ∈T

hsκ−1
κ p1/2 Ψ(pκ, sκ)1/2 |u|W sκ,2(κ) ≤ C2

∑
κ∈T

hsκ−1
κ

p
sκ−3/2
κ

|u|W sκ,2(κ)

Here Ψ is defined as in Theorem 51 and 1 ≤ sκ ≤ min{pκ + 1, kκ}, kκ ≥ 1, pκ ≥ 1.
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Proof. We abbreviate

uπ := PQu, η := u− uπ, ξ := uπ − uDG.

Then

〈Lη, ξ〉κ ≤ ‖ξ‖κ
(hκ

2

)sκ−1
Ψ(pκ, sκ)1/2|u|Hsκ (κ)m

and

〈η, ξ〉B,∂κ≤‖B‖L∞(∂κ)m×m×n ‖ξ‖∂κ ‖η‖∂κ ≤ C ‖B‖L∞(∂κ)m×m×n
pκ

h
1/2
κ

‖ξ‖κ ‖η‖∂κ

≤C ‖B‖L∞(∂κ)m×m×n ‖ξ‖κ
(hκ

2

)sκ−1
p1/2
κ Ψ(pκ, sκ)1/2|u|Hsκ (κ)m

using the inequality ‖ξ‖∂κ < C pκ/h
1/2
κ ‖ξ‖κ, cf. (Georgoulis 2003, p. 75). The second in-

equality follows from Stirling’s formula. ////

Remark 8 In the proof of Theorem 45 and of Theorem 50 the suboptimality of the error

analysis originates from the term 〈Lη, ξ〉Ω. Understanding this term better is crucial for the

construction of an error bound which sharply reflects the rates of convergence observed in

numerical experiments.

The projections P 1 and P-1 defined in Section 1.8 exhibit interesting structural properties

of this term. Let uπ be an element of the approximation space Vh and set η := u − uπ and

ξ := uπ−uDG. We decompose η and ξ into the components in Eig(L|Im EL
, 1), Eig(L|Im EL

,−1)

and W 2
L,0(Ω):

η = η1 + η−1 + η0, ξ = ξ1 + ξ−1 + ξ0,

where η1, ξ1 ∈ Eig(L|Im EL
, 1), η−1, ξ−1 ∈ Eig(L|Im EL

,−1) and η0, ξ0 ∈W 2
L,0(Ω). Then

〈Lη, ξ〉Ω =
∫

Ω

⎛
⎜⎜⎝
⎛
⎜⎜⎝
D + I D − I D − I

D + I D − I D + I

D + I D − I L

⎞
⎟⎟⎠
⎛
⎜⎜⎝
η1

η−1

η0

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .
⎛
⎜⎜⎝
ξ1

ξ−1

ξ0

⎞
⎟⎟⎠ dx. (3.26)

In the course of calculating (3.26) we used that∫
Ω Lη0 · ξ1 dx =

∫
Ω η0 · L′ξ1 dx =

∫
Ω η0 · (D + I) ξ1 dx,∫

Ω Lη0 · ξ−1 dx =
∫
Ω η0 · L′ξ−1 dx =

∫
Ω η0 · (D − I) ξ−1 dx.

Thus the only part in which 〈Lη, ξ〉Ω explicitly contains first-order derivatives is the compo-

nent 〈Lη0, ξ0〉Ω. If ξ0 ∈ Vh ∩W 2
L,0(Ω) then it is possible to eliminate this term by selecting uπ

so that η0 satisfies the relationship

∀ v ∈ Vh ∩W 2
L,0(Ω) : 〈Lη0, v〉Ω = 0. (3.27)
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Notice that the bilinear form 〈Lw, v〉Ω underlying (3.27) is positive definite on Vh ∩W 2
L,0(Ω).

In that sense there is mathematical structure available which can be used to incorporate

〈Lη0, ξ0〉Ω into the error analysis.

A more significant difficulty when deriving an error bound by virtue of P 1 and P-1 arises from

the angles between the components of ξ. While ξ1, ξ−1 and ξ0 are orthogonal to each other

in the graph scalar product, we do not have control over the angles between these functions

in the L2(Ω)m-scalar product. So it is in this indirect way that the derivatives in L come into

equation (3.26). At the moment we are not able to overcome this problem.

Finally, we point out that the matrix in (3.26) is skew-symmetric in the off-diagonal entries.

This implies, for instance, that 〈L ξ, ξ〉Ω is equal to D ξ · ξ + ξ1 · ξ1 − ξ−1 · ξ−1 and does not

contain mixed terms.

We remark that it is possible to expand the term 〈η,L′ξ〉Ω analogously, which is part of the

adjoint definition (3.8) of BDG.

3.6 Least-Squares DGFEM

We turn our attention to a closely related but distinct topic concerning the numerical solution

of Friedrichs systems. In a generalised framework of discontinuous Galerkin methods we

investigate the influence of terms of least-squares type on the numerical solution.

We are motivated to study this problem for a number of reasons. For instance, if one considers

the error analysis of the DGFEM, one sees that the underlying difficulty in proving optimal

error bounds is related to an imbalance in the norms which naturally appear in the analysis

of the method, owing to the fact that the symmetric part of BDG does not contain derivatives.

In the context of least-squares methods this imbalance can be avoided as we demonstrate

below.

Furthermore, by ensuring that the symmetric part of the bilinear form of the Galerkin method

includes terms of first-order we can also strengthen the stability bound of the method. In

Theorem 42 we obtained control over uDG in terms of the energy norm of the method. However,

one would like to have an explicit bound on the size of LuDG with respect to a suitable norm

as well. Such an enhanced stability bound can be guaranteed in the setting of least-squares

stabilised methods.

Finally we point out that while within the continuous finite element community least-squares

schemes have established a significant position, the application of least-squares methods in the

framework of discontinuous Galerkin methods did not attract much attention. This motivates



3.6. LEAST-SQUARES DGFEM 126

us to assess the performance of least-squares schemes of discontinuous type.

We remark that the current and the next section are an extension of the investigations in

(Houston et al. 2002a) and consequently majority of the findings in this part of the thesis

result from cooperative work with Professor Endre Süli and Professor Paul Houston.

To introduce least-squares stabilised discontinuous Galerkin finite element methods, we ini-

tially restrict our attention to a prototype of these schemes, namely to the LS-DGFEM. For

v, w ∈W 2
L (Ω) we consider the bilinear form

BLS(v, w) = 〈Jv, Jw〉∂Ω +
∑
κ∈T

hκ
pκ

〈Lv,Lw〉κ + 〈B−(ν)[v], B−(ν)[w]〉∂intκ (3.28)

and the linear form

	LS(v, w) = 〈Jg, Jw〉∂Ω +
∑
κ∈T

hκ
pκ

〈f,Lw〉κ.

The LS-DGFEM approximation of the exact solution u on the approximation space Vh is the

function uLS ∈ Vh which satisfies the condition that

∀w ∈ Vh : BLS(uLS, w) = 	LS(w).

The bilinear form BLS is symmetric and positive definite and therefore a scalar product on

W 2
L (Ω). It in particular induces the LS-norm

‖v‖LS =
√
BLS(v, v)

on the broken graph space. Since 	LS(w) = BLS(u,w), the function uLS is the orthogonal

projection of u to Vh in the LS-DGFEM scalar product. Consequently, the method is stable

and optimal in the LS-norm. This is even the case if u is not contained in a Sobolev space.

Again we can explore the rate of convergence if the solution u of the boundary value problem

is contained in a broken Sobolev space. For the LS-DG method we use the quasi-interpolation

operator defined in Theorem 51.

Theorem 53 Let the reference element κ̂ be a hypercube in R
n. Suppose that u belongs to

W kκ,2(κ)m for κ ∈ T. Then, there exists a PQu ∈ Sp(Ω,T) such that, for pκ ≥ 1, kκ ≥ 1 and

1 ≤ sκ ≤ min(pκ + 1, kκ), we have

‖u− PQu‖2
L2(Ω)m ≤ C

(hκ
2

)2sκ 1
pκ(pκ + 1)

Ψ(pκ, sκ)|u|2Hsκ (κ)m

and

|u− PQu|2W 1,2(Ω)m ≤ C
(hκ

2

)2sκ−2
Ψ(pκ, sκ)|u|2Hsκ (κ)m
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and

‖u− PQu‖2
L2(∂Ω)m ≤ C

(hκ
2

)2sκ−1 Ψ(pκ, sκ)√
pκ(pκ + 1)

|u|2Hsκ (κ)m

where

Ψ(pκ, sκ) =
(pκ − sκ + 1)!
(pκ + sκ − 1)!

+
1

pκ(pκ + 1)
(pκ − sκ + 2)!
(pκ + sκ − 2)!

, 0 ≤ sκ ≤ pκ,

and C is a constant independent of hκ, pκ and u.

We employ the projection PQ in the proof of the next theorem.

Theorem 54 Let T be a family of shape-regular decompositions of a polyhedral domain

Ω such that each element of the decompositions is an affine image of the hypercube in R
n.

Then, there is a constant C > 0 which only depends on the dimension n, the parameter

of shape-regularity σ and the differential operator L such that for all u ∈ W k,2(Ω,T) and

LS-DGFEM solutions uLS in Sp(Ω,T), T ∈ T , the following bound is satisfied:

‖u− uLS‖2
LS ≤ C

∑
κ∈T

(hκ
2

)2sκ−1
Lκ

Ψ(pκ, sκ)√
pκ(pκ + 1)

|u|2Hsκ (κ). (3.29)

Here Ψ is defined as in the previous theorem and 1 ≤ sκ ≤ min{pκ + 1, kκ}, pκ ≥ 1, kκ ≥ 1.

The designation Lκ stands for

Lκ := ‖B‖2
L∞(κ)m×m×n + ‖D‖2

L∞(κ)m×m + ‖J‖2
L∞(∂κ∩∂Ω)m×m + ‖B−(ν)‖2

L∞(∂intκ)m×m .

Proof. From Theorem 51 and Stirling’s formula it follows that (3.29) below holds if uLS is

substituted by PQu. We also have ‖u− uLS‖LS ≤ ‖u− PQu‖LS. ////

Corollary 14 Under the assumptions of Theorem 54 have the bound

‖u− uLS‖2
LS ≤ C

∑
κ∈T

(hκ
pκ

)2sκ−1
Lκ |u|2Hsκ (κ) (3.30)

where C in addition depends on the choice of sκ and pκ ≥ 1, kκ ≥ 1, 1 ≤ sκ ≤ min(pκ+1, kκ).

As before, a higher rate of convergence can occur if the first-order part of L is degenerate.

The rate in (3.29) coincides with the rate we obtained in Corollary 13. We remark that

for fixed parameters hκ and pκ the LS-norm is in general stronger than the energy norm

of the original discontinuous Galerkin finite element method. That both norms have the

same optimal convergence rate results from coefficient hκ/pκ in (3.28). We comment that the
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coefficient makes the LS-norm mesh dependent. By that we mean that it is not possible to

define an extension of the LS-norm to W 2
L,B(Ω,T ) in an analogous way to (3.16).

Dropping the coefficient hκ/pκ in (3.28) leads to a modified method and a modified rate

of convergence in (3.29) which would still be optimal but of lower order. In consequence,

we would not be able to guarantee the optimal order of convergence in the boundary terms

〈Jv, Jw〉∂Ω and 〈B−(ν)[v], B−(ν)[w]〉∂intκ this way.

Before we continue the mathematical analysis of least-squares stabilised discontinuous Galer-

kin methods we assess the practical performance of the LS-DGFEM in a series of numerical

experiments. We remark that the computations for Examples 36, 39, 40 and 41 were con-

ducted by Professor Paul Houston. We use the opportunity to also verify the a priori error

estimates derived in this section.

Example 36 We consider a scalar advection-reaction problem with smooth analytical solu-

tion. To this end, we let Ω = (−1, 1)2, B = (8/10, 6/10), C = 1 and g = 1. The function f is

chosen so that the analytical solution of the associated boundary value problem is

u(x, y) = 1 + sin(π(1 + x)(1 + y)2/8). (3.31)

This is the same test problem as the one that was used in (Bey and Oden 1996) and (Houston

et al. 2000b).

We investigate the asymptotic behaviour of the least-squares discontinuous Galerkin method

on a sequence of successively finer square and quadrilateral meshes for different pκ. In each

case the quadrilateral mesh is constructed from a uniform N ×N square mesh by randomly

perturbing each of the interior nodes by up to 10% of the local mesh-size, cf. (Houston et

al. 2000b).
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In the above figure we compare the LS-norm of the error with the mesh function hκ for

1 ≤ pκ ≤ 5. We observe that ‖u−uLS‖LS converges for fixed pκ at the rate O(hpκ+1/2
κ ) to zero

as the mesh is refined. This is in agreement with (3.29).

1 2 3 4 5 6 7
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10
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10
0

‖u
−
u
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S

pκ

5 × 5 mesh

9 × 9 mesh

17 × 17 mesh

33 × 33 mesh
Square elements
Quad. elements

Finally, we investigate the convergence of the LS-DGFEM with p-enrichment on a fixed

mesh. In the above figure we plot the least-squares norm of the error against pκ on four

different square and quadrilateral meshes. In each case, we observe that on a linear-log scale,

the convergence plots become straight lines as the spectral order pκ is increased, thereby

indicating exponential convergence in pκ. This finding is consistent with (3.29). Later in this

chapter we prove, in a more general setting, that if the exact solution (3.31) is an analytic

function then the rate of convergence is always exponential as pκ increases.

The above figures indicate that the h- and p- convergence of the LS-DGFEM is robust with

respect to mesh distortion.

Example 37 We compare the accuracy of the LS-DGFEM with that of the original DGFEM

for a one-dimensional boundary value problem which has a smooth solution. We let Ω = (0, π)

and select

B =

(
1 0

0 −1

)
, C =

(
0 1

1 0

)
, f =

(
0

0

)
, g(0) = −g(π) =

(
1

0

)
.

The solution to this system of equations is u = (cos(x), sin(x))H. The figure below indicates

that both LS-DGFEM and DGFEM achieve optimal convergence rates in the L2-norm for

this system. However, while we observe that for pκ ≥ 3 the errors of the two schemes are

virtually identical; this is not so for pκ ≤ 2; indeed, in the latter case DGFEM delivers more
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accurate results than LS-DGFEM on each of the uniform subdivisions of the interval (0, π)

considered.
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This can also be seen in the next figure which shows the L2-error against the polynomial

degree.

1 2 3 4 5 6 7

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

‖u
−
u

L
S
‖ L

2
(Ω

)2

pκ

π

2
mesh

π

4
mesh

π

8
mesh

π

16
mesh

π

32
mesh

LS-DGFEM
DGFEM

In order to understand the observed behaviour, let us consider a somewhat simpler scalar

problem on Ω = (−1, 1), with T = {Ω}, B = 1 and C = 0. Here the LS-DGFEM approxima-

tion can be expressed in closed form in terms of Legendre polynomials as

uLS =
pκ−2∑
i=0

2i+ 1
2

〈Li, u〉Ω Li +
pκ∑

i=pκ−1

1
2
〈Li−1, u

′〉Ω Li.

Similarly, for DGFEM we obtain

uDG =
pκ−1∑
i=0

2i+ 1
2

〈Li, u〉Ω Li +
( ∞∑
j=pκ

2j + 1
2

〈Lj , u〉Ω
)
Lpκ .
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To derive these identities we used integration by parts, the formula

Ln = (L′
n+1 − L′

n−1)/(2n+ 1), n ≥ 1,

and the orthogonality of Legendre polynomials Ln in the scalar product of L2(−1, 1). Com-

paring uLS with uDG we see that for pκ ≥ 3 the first pκ − 2 terms in the expansions of uLS

and uDG coincide. Due to the fact that u is an entire analytic function on R, the higher-order

Legendre modes decay very quickly and hence the difference between uLS and uDG is small for

large pκ.

Example 38 In this example we address the superconvergence properties of the LS-DGFEM.

We define superconvergence with respect to h as follows: let (uh)h be a family of numerical

solutions generated by a finite element method (Bh, 	h,Th)h. Here Bh and 	h are respectively

the bilinear and linear form of the Galerkin method and Th is an underlying quasi-uniform

mesh. Finally, h is a positive scalar representative for the size of elements of Th. Suppose

that r ∈ R is the largest positive number such that there is a constant C, depending on u but

not on h, with

‖u− uh‖L∞(Ω) ≤ C(u)hr.

A family of points (ξh)h is called superconvergent of order σ > 0 if

|(u− uh)(ξh)| ≤ C(u)hr+σ

for all h > 0 and the solutions u considered.

In order to test the LS-DGFEM for superconvergence we introduce the model problem

Ω = (−1, 1), u(x) =
1

x2 + x+ 3
, B(x) = x2 + x+ 3, f = 0, g(−1) =

1
3
.

We choose this admittedly simple equation because we wish to track the error decay at

superconvergence points over several refinement stages, using high precision arithmetic with

an 80 digit mantissa. This is necessary as the approximation error at superconvergence points

quickly drops below the usual machine epsilon of 16 digits mantissa.

Overall the rate of h-convergence in the L∞-norm observed for the parameters of pκ and

h is hpκ+1. Indeed this is the optimal rate which can be achieved by any polynomial L∞-

approximation of our test problem. In order to obtain a clear understanding of the behaviour

of the error eκ = u|κ−uLS|κ on the elements κ, we pull back the error to the reference element

and monitor the average over all κ thereof:

e : κ̂→ R, x �→
(∑
κ∈Th

(eκ ◦ Fκ)2
|T|

)1/2
.
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h = 2−k → h = 2−(k+1)

p sc. pt. k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
guess

1 1 2.24325 2.14096 2.07629 2.03976 2.02030 2.01026 2

2 2.24059 2.14539 2.08051 2.04247 2.02183 2.01107 2

2 1 4.12836 4.06922 4.03588 4.01826 4.00921 4.00462 4

2 4.05784 4.03082 4.01588 4.00805 4.00406 4.00203 4

3 4.14355 4.08086 4.04296 4.02215 4.01125 4.00567 4

3 1 6.15645 6.09337 6.05094 6.02662 6.01361 6.00688 6

2 5.01286 4.99940 4.99699 4.99728 4.99817 4.99890 5

3 5.12498 5.05608 5.02643 5.01205 5.00565 5.00265 5

4 6.15309 6.09655 6.05392 6.02850 6.01465 6.00743 6

4 1 8.10292 8.05079 8.02531 8.01263 8.00631 8.00315 8

2 6.01554 5.99772 6.00092 5.99980 6.00006 6.00000 6

3 5.99354 5.99097 5.99871 5.99898 5.99970 5.99984 6

4 6.00543 5.99688 6.00106 6.00011 6.00029 6.00014 6

5 8.12865 8.06714 8.03455 8.01754 8.00884 8.00444 8

5 1 10.0700 10.0514 10.0298 10.0160 10.0082 10.0042 10

2 7.00043 6.99520 6.99961 6.99957 6.99980 6.99990 7

3 7.00728 6.99842 7.00115 7.00033 7.00018 7.00009 7

4 6.99310 6.99187 6.99814 6.99889 6.99946 6.99974 7

5 7.00935 7.00025 7.00224 7.00092 7.00049 7.00025 7

6 10.0888 10.0656 10.0382 10.0205 10.0106 10.0054 10

6 1 12.0710 12.0406 12.0214 12.0110 12.0056 12.0028 12

2 8.02229 8.00539 7.99902 8.00033 7.99982 8.00002 8

3 8.01104 8.00035 7.99646 7.99931 7.99933 7.99977 8

4 8.02713 8.00886 8.00120 8.00123 8.00030 8.00027 8

5 7.99814 7.99540 7.99422 7.99845 7.99893 7.99957 8

6 8.02661 8.01046 8.00261 8.00183 8.00068 8.00045 8

7 12.1012 12.0596 12.0320 12.0166 12.0084 12.0043 12

Table 1: Pointwise superconvergence rates. The first column lists the polyno-

mial degree, the second column enumerates the superconvergence points. The

subsequent columns collect the convergence rates as the elemental diameter is

reduced. The last column shows the hypothetical convergence rate indicated by

the numerical experiment
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This may not reflect the calculation for the individual element but can indicate some general

qualitative features of the approximation. Two typical averaged errors are depicted on the

graphs in figure below.
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1·10-9

(a) (b)

While the left plot shows e computed in a calculation with quadratics, we see on the right a

corresponding result for pκ = 5. Both graphs exhibit minima near the Gauß-Lobatto points of

the respective polynomial degree. We therefore make the hypothesis that the LS-DG method

exhibits superconvergence at these locations.

In Table 1 on p. 132 we confirm this conjecture by listing the convergence rates at the Gauß-

Lobatto points for pκ = 1 to pκ = 6 and h between 1/2 and 1/256. In this table strong

evidence is given, that at the boundary points −1 and 1 a convergence rate of h2pκ is attained

by the finite element method, while at the interior points a decay of order hpκ+2 is achieved.

Example 39 We assess the practical performance of the LS-DGFEM for a scalar linear

advection problem with discontinuous boundary data. We let Ω = (0, 2) × (0, 1), B(x, y) =

(1 + sin(πy/2), 2), C = 0, f = 0 and

g(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1, x = 0, 0 ≤ y ≤ 1 ,

sin6(πx), 0 < x ≤ 1, y = 0 ,

0, 1 ≤ x ≤ 2, y = 0 .

In Figure 3 we compare the performance of the LS-DGFEM with the standard discontinuous

Galerkin method and the streamline-diffusion stabilised discontinuous Galerkin method (SD-

DGFEM), cf. (Houston et al. 2000b). In each case, we show the outflow profile along the

horizontal edge 0 ≤ x ≤ 2, y = 1 on a 65 × 33 uniform square mesh with discontinuous

piecewise bilinear elements (pκ = 1). We observe that the performance of the DGFEM and

the SD-DGFEM are very similar, cf. (Houston et al. 2000b); in each case the smooth hill is

very well approximated, with some under-shoots and over-shoots present in the vicinity of
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the discontinuity in the analytical solution. In contrast, the LS-DGFEM is overly-diffusive

leading to the excessive smearing of both the discontinuity and the smooth hill present in the

analytical solution, cf. Figure 3 (c).

We remark that the numerical dissipation inherent in the LS-DGFEM is due to the inclusion of

the least-squares stabilisation into the interelement jump terms rather than the presence of the

least-squares stabilisation in the element-integral terms. Indeed, in Figure 3 (d) we show the

solution generated by employing an unsymmetric least-squares discontinuous Galerkin finite

element method where the element integral terms are identical to those in the LS-DGFEM

while the interelement jump terms and the boundary terms are identical to those arising in the

standard DGFEM. Here, we observe that even though this unsymmetric least-squares method

is more dissipative than both DGFEM and SD-DGFEM, the excessive smearing inherent in

the LS-DGFEM has now been eradicated.

We conclude the example with a comparison of the performance of the LS-DGFEM with the

standard, streamline-diffusion stabilised and the Galerkin least-squares finite element methods

based on continuous piecewise polynomials. In Figure 4 we show the outflow profiles of each of

the aforementioned schemes; here, we again observe that the LS-CGFEM excessively smears

out the solution, though the level of dissipation is very slightly less than when the LS-DGFEM

is employed.

3.7 A general family of discontinuous Galerkin methods

The stability estimate of the LS-DGFEM gives control over the residual LuLS. In addition we

have for this scheme an optimal a priori error bound. However Example 39 highlighted that

the LS-DGFEM suffers from an excessive amount of numerical dissipation. Consequently, it

would be desirable to find a method which combines the advantages of the LS-DGFEM with

those of the original discontinuous Galerkin method. In order to conduct the construction of

such a method in a systematic framework, we introduce a family of Galerkin methods which

is parameterised by suitably chosen weight functions.

We introduce the parameterisation in two stages. First, we generalise the LS-DG scheme,

then we combine it with the original discontinuous Galerkin method. We associate to each

element κ ∈ T the matrix functions Mκ : κ → [0, 1]m×m and Nκ : ∂κ → [0, 1]m×m. The

generalised least-squares method consists of the bilinear form

BLS(v, w) =
∑
κ∈T

hκ
pκ

〈Mκ Lv,Lw〉κ + 〈Nκ Jv, Jw〉∂Ω∩∂κ + 〈NκB−(ν)[v], B−(ν)[w]〉∂intκ
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Figure 3: discontinuous Galerkin methods.
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Figure 4: continuous Galerkin methods.
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and the linear form

	LS(w) =
∑
κ∈T

hκ
pκ

〈Mκ f,Lw〉κ + 〈Nκ Jg, Jw〉∂Ω.

The fully parameterised family of methods we consider incorporates terms of the original

DGFEM by means of a convex combination. Let t be contained in the interval [0, 1]. Then

the bilinear form Bt is defined by

Bt = tBDG + (1 − t)BLS.

Similarly, the linear form 	t is defined by the identity

	t = t 	DG + (1 − t) 	LS.

A t-DGFEM approximation of BVP 5 is a function ut ∈ Vh such that

∀w ∈ Vh : Bt(ut, w) = 	t(w).

If t = 1 then the t-DGFEM coincides with the original discontinuous Galerkin method. If

Mκ = I, Nκ = I and t = 0 for all κ ∈ T then the t-DGFEM is equal to the original

LS-DGFEM.

However, if Mκ = 0, Nκ = 0 and t = 0 for all κ ∈ T then Bt and 	t are identical to zero.

Therefore we have to further restrict the set of admissible weights in order to guarantee a

working Galerkin method. In view of the subsequent analysis the following conditions appear

natural: we assume that there are constants µ ∈ (0, t) and µ̇ ≥ 0 such that

for x ∈ κ : Mκ(x)≥ µ I,

for x ∈ ∂intκ : B−(ν)Nκ(x)B−(ν)≥ t− µ

2(1 − t)
B−(ν),

for x ∈ ∂Ω ∩ ∂κ : µ̇R ≥ JH(x)Nκ(x)J(x)≥ µ− t

1 − t
R.

(3.32)

There are two observations to be made. Firstly, condition (3.32) implicitly demands that t > 0

and that Mκ is positive definite, i.e. we exclude here the original DGFEM and LS-DGFEM.

Secondly, from (3.32) it does not follow that the weight Nκ is positive semi-definite. Indeed,

we may select Nκ = 0 for κ ∈ T.
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Let v ∈W 2
L,B(Ω,T). Then

Bt(v, v) =
∑
κ∈T

t 〈Dh v, v〉Ω + (1 − t)
hκ
pκ

〈Mκ Lv,Lv〉Ω

+
∑
κ∈T

1/2 〈(−B−(ν))[v], (t I + 2 (1 − t)Nκ(−B−(ν)))[v]〉∂intκ

+
∑
κ∈T

t 〈Rv, v〉∂Ω∩∂κ + (1 − t) 〈Nκ J v, J v〉∂Ω∩∂κ

≥
∑
κ∈T

t γ ‖v‖2
κ + (1 − t)µ

hκ
pκ

‖Lv‖2
κ +

µ

4
‖[v]‖2

B,∂intκ
+ µ‖v‖2

R,∂κ∩∂Ω.

Thus if (3.32) holds then Bt is positive definite and defines the norm

‖v‖t :=
√
Bt(v, v), v ∈W 2

L,B(Ω,T),

which we call the t-norm. Notice that the t-norm is stronger than all other norms on

W 2
L,B(Ω,T) we considered so far. Due to the parameter hκ/pκ we do not extend the t-norm

to W 2
L,B(Ω,T ).

Theorem 55 For each finite-dimensional approximation space Vh there exists a unique t-

DGFEM solution ut. This solution satisfies the stability estimate

‖ut‖t ≤ C (t+ (1 − t) max
κ∈T

hκ/pκ) ‖f‖Ω + C ‖g‖R,

where C is a constant depending on γ, µ and µ̇.

Proof. Existence and uniqueness of ut follow from the coercivity of Bt. Using

Bt(ut, ut) = 	t(ut)≤ t/(2γ) ‖f‖2
Ω + t γ/2 ‖ut‖2

Ω + t/(2µ) ‖T (PJ) g‖2
R + t µ/2 ‖ut‖2

R

+ (1 − t) µ̇2/(2µ) ‖g‖2
R + (1 − t)µ/2 ‖ut‖2

R,

+
∑
κ∈T

(
(1 − t)hκ/(2µ pκ) ‖f‖2

κ + (1 − t)hκ µ/(2 pκ) ‖Lut‖2
κ

)
,

we deduce the stability bound. ////

We now turn to the convergence properties of the t-DGFEM. In the next theorem we make

use of the abbreviations

‖B‖ := ‖B‖L∞(Ω)m×m×n , ‖N‖ := max
κ∈T

‖Nκ‖L∞(∂κ)m×m , ‖M‖ := max
κ∈T

‖Mκ‖L∞(κ)m×m .
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Theorem 56 Let T be a shape-regular family of decompositions into quadrilateral elements

of a bounded polyhedral domain Ω. Suppose that the solution u of BVP 5 is contained in the

broken Sobolev space W k,2(Ω,T)m, T ∈ T . Then

‖u− ut‖2
t ≤ C

∑
κ∈T

(hκ
2

)2sκ−1 Ψ(pκ, sκ)√
pκ(pκ + 1)

|u|2Hsκ (κ)m ,

where the constant C depends on t, ‖M‖, ‖N‖, µ, µ̇, L and where 1 ≤ sκ ≤ min{pκ + 1, kκ}
and pκ ≥ 1, kκ ≥ 1.

Proof. Similarly to the error analysis of the original discontinuous Galerkin method we set

uπ := PQu, η := u− uπ, ξ := uπ − ut.

Then, by Galerkin orthogonality,

Bt(ξ, ξ) = −tBDG(η, ξ) − (1 − t)BLS(η, ξ).

We first focus on the term BDG(η, ξ). Recalling (3.7) and L′ = L + 2Dh, we deduce that

BDG(η, ξ)≤
(∑
κ∈T

pκ
hκ

‖η‖2
κ

)1/2(∑
κ∈T

hκ
pκ

‖L ξ‖2
κ

)1/2
+ 2 ‖C‖L∞(Ω)m×m ‖η‖Ω‖ξ‖Ω

+ ‖η‖2
R,∂Ω ‖T (PJ ′) ξ‖2

R,∂Ω +
(∑
κ∈T

‖η‖2
B,∂intκ

)1/2(∑
κ∈T

‖[ξ]‖2
B,∂intκ

)1/2
.

The least-squares term satisfies the following bound:

BLS(η, ξ)≤‖M‖
(∑
κ∈T

hκ
pκ

‖L η‖2
κ

)1/2(∑
κ∈T

hκ
pκ

‖L ξ‖2
κ

)1/2

+ ‖N‖ ‖B‖
(∑
κ∈T

µ̇ ‖η‖2
R,∂Ω∩∂κ

)1/2(∑
κ∈T

µ̇ ‖ξ‖2
R,∂Ω∩∂κ

)1/2

+ ‖N‖ ‖B‖
(∑
κ∈T

‖[η]‖2
B,∂intκ

)1/2(∑
κ∈T

‖[ξ]‖2
B,∂intκ

)1/2
.

Combining the last two inequalities we find that there is a constant C dependent on t, ‖M‖,
‖N‖, µ, µ̇ and L such that

‖ξ‖2
t ≤ C

∑
κ∈T

pκ
hκ

‖η‖2
κ +

hκ
pκ

‖L η‖2
κ + ‖[η]‖2

B,∂intκ
+ ‖η‖2

B,∂intκ
+ ‖η‖2

R,∂Ω∩∂κ.

Now the result follows from Theorem 51. ////

Corollary 15 Suppose that the hypotheses of the above theorem hold. Then, there is a

constant C which depends on t, ‖M‖, ‖N‖, µ, µ̇, L and s such that

‖u− ut‖2
t ≤ C

∑
κ∈T

( hκ
pκ + 1

)2sκ−1|u|2Hsκ (κ)m

for 1 ≤ sκ ≤ min{pκ + 1, kκ}, pκ ≥ 1, kκ ≥ 1.
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If u is elementwise analytic we can strengthen the theorem significantly. The argument behind

the proof of the next theorem is due to (Houston et al. 2000b).

Theorem 57 Let T be a shape-regular family of decompositions into quadrilateral elements

of a bounded polyhedral domain Ω and let u be a solution of BVP 5. Suppose that there

is a finite decomposition T′ of Ω such that u|κ′ , κ′ ∈ T′, is extendible to an analytic vector

function in a neighbourhood of κ. Assume in addition that all T ∈ T are a refinement of T′,

i.e. for all κ ∈ T exists a κ′ ∈ T′ such that κ ⊂ κ′. Then the finite element error is bounded

by

‖u− ut‖2
t ≤ C(u)

∑
κ∈Th

(hκ
2

)2sκ−1
p2
κe

−2bpκmeas(κ),

where 1 ≤ sκ ≤ pκ, b is a fixed element of (0, 1) and C(u) is a constant depending on u.

Proof. Fix a κ ∈ T′ and define for any y ∈ κ the closed line segment

Sj,y := {x ∈ κ : for j �= i : xi = yi}.

Since u|Sj,y is analytically extendible, it can be transformed into a holomorphic function on

a disk D(x′) with arbitrary origin x′ ∈ Sj,y. We use the Cauchy estimate

‖∂(k)
j ui‖L∞(D(x′)) ≤

k!
Rk

‖ui‖L∞(D(x′)), k ∈ N; i = 1, . . . ,m,

where R is the radius of D(x′), cf. (Rudin 1987, Theorem 10.26). Since Sj,y is compact, we

can find Rmin > 0 and M > 0 such that

‖∂(k)
j ui‖L∞(Sj,y) ≤

k!
Rkmin

M.

Due to the analyticity of u in κ, the values of Rmin and M can be chosen so that they change

continuously with y. Since κ is compact and T′ is finite we can adjust Rmin and M so that

one can employ these constants for all κ, y and j simultaneously:

∃Rmin > 0 ∃M > 0 ∀κ ∈ T′ ∀ s ∈ N : |u|W s,∞(κ)m ≤ s!
Rsmin

M,

where we denote by | · |W s,∞(κ)m the semi-norm over W s,∞(κ)m. Consider s = αpκ + 1 ∈ N

with α ∈ (0, 1). Using a generic constant C, applying Stirling’s formula gives

Ψ(pκ, s) |u|2W s,∞(κ)m ≤ 2
(pκ − s+ 1)!
(pκ + s− 1)!

( s!M
Rsmin

)2

≤C
((1 − α)pκ)(1−α)pκe−(1−α)pκ

((1 + α)pκ)(1+α)pκe−(1+α)pκ

(αpκ + 1)2αpκ+3e−2αpκ−2

R2αpκ+2
min

≤C (F (α, 1/Rmin))pκ p3
κ,
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where

F (α, ρ) :=
(1 − α)1−α

(1 + α)1+α
(αρ)2α.

For ρ > 1,

min
0<α<1

F (α, ρ) =

√
1 + ρ2 − 1√
1 + ρ2 + 1

= F (αmin, ρ) < 1, αmin =
1√

1 + ρ
.

Hence there are ε > 0, δ > 0 such that for all α′ ∈ (αmin−ε, αmin+ε) we have F (α′, 1/Rmin) <

1 − δ. Thus for pκ > 1/ε there is s′ ∈ N such that F (s′/pκ, 1/Rmin) < 1 − δ. On the other

hand for pκ ≤ 1/ε the terms F (s′/pκ, 1/Rmin)
p
κ, s′ := 1, are bounded. Therefore by possibly

enlarging C we obtain with b = | log(1 − δ)|, that

Ψ(pκ, s′) |u|2W s′,∞(κ)m ≤ C e−bp p3
κ.

If κj ∈ T is subset of κ′ ∈ T′

|u|2
W s′,2(κ)m ≤ meas(κj)

meas(κ)
|u|2

W s′∞(κ)m .

Summation over κj proves the theorem. ////

The key result of the proof is the bound on the term Ψ(pκ, sκ) |u|W sκ,2(κ). Consequently,

the proof can be easily transferred to the respective error bounds of original DGFEM and

LS-DGFEM. We omit the details here and refer to (Houston et al. 2000b) and (Houston et

al. 2002a).

In a numerical example we compare the performance of a t-method with the original DGFEM

and LS-DGFEM.

Example 40 We consider the one-dimensional wave equation

utt − c2 uxx = 0. (3.33)

The equation can be rewritten as the symmetric first-order system

∂t

(
1 0

0 1

)(
u1

u2

)
− ∂x

(
0 c

c 0

)(
u1

u2

)
=

(
0

0

)
, (3.34)

where u1 = ut and u2 = c ux. Here we let Ω = (0, 1) × (0, 1/2 ) and c = 1/2 , with

u1(x1, 0) = 0 and u2(x1, 0) = c e−100(x1−1/2 )2 ,

for 0 ≤ x1 ≤ 1. We remark that according to Example 28 the equation can be transformed

into a positive system by applying u �→ e−tu. However, since this transformation is a non-

singular operation on the discrete approximation space Sp(Ω,T) as well, we do not need to

carry it out explicitly for the computation of a numerical solution.
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In the above figure we compare the performance of the original DGFEM (t = 1) and the

LS-DGFEM (t = 0) with that of the t-DGFEM with Mκ = I, Nκ = I and t = 1/2 , using

h-refinement on uniform square meshes for 1 ≤ pκ ≤ 5. For consistency, in each case the error

is measured in terms of the L2(Ω)-norm. Here, we observe that the error of the DGFEM is

always smaller than for the t-DGFEM with t = 1/2 ; though the error for this latter scheme

is always smaller than for the LS-DGFEM.
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However, if we measure the error with respect to the L∞(Ω)-norm, then we see that the t-

DGFEM with t = 1/2 now has clear advantages over both the DGFEM and the LS-DGFEM.

Indeed, in the figure above we see that for pκ > 1, the t-DGFEM with t = 1/2 now outperforms

both DGFEM and LS-DGFEM on some of the meshes employed; this is particularly noticeable

on coarser grids.
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The differences between the three schemes in the last example are quite small, owing to

the smoothness of the exact solution. Motivated by our findings there, we now consider a

boundary value problem with a non-smooth analytical solution.

Example 41 We investigate the performance of the t-DGFEM on the non-smooth linear

advection problem considered in Example 39. To this end, in the below figure we plot the

L∞(Ω)-norm of the error in the t-DGFEM for 0 ≤ t ≤ 1 on a 33 × 17 uniform square

mesh for 1 ≤ pκ ≤ 6 and Mκ = I, Nκ = I. Here, we observe that as t increases from

t = 0, corresponding to the LS-DGFEM, the infinity norm of the error first decreases before

increasing sharply as t approaches one corresponding to the DGFEM. This implies that for

each pκ there is an optimal value of the parameter t = tpκ , for which the infinity norm of the

error in the t-DGFEM is minimised. We remark that the error curves for each pκ are fairly

flat around this hypothetical value tpκ , which is good from the practical point of view, since

there is a fairly large range of t around tpκ which gives roughly the same error as tpκ itself.
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We postulate that the dissipation present in the t-DGFEM with t close to tpκ is large enough

to provide additional stabilisation for higher pκ, cf. (Houston et al. 2000b), yet small enough

to ensure that the error is not adversely affected by the excessive dissipation present in the LS-

DGFEM. Of course, the level of dissipation added into the standard DGFEM by combining

it with the LS-DGFEM can be controlled not only by varying t, but also by allowing Mκ and

Nκ to change from element to element in the mesh T.

The last two examples substantiate that for suitable parameters t, Mκ and Nκ the numerical

solution of the t-DGFEM improves or at least recovers the result which would be achieved be

the original discontinuous Galerkin method. However, more importantly, we obtain additional
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control over the stability of the method. This is reflected in our analysis by the improved

stability estimate for members of the t-DG family which includes a bound of the term Lut,

cf. Theorem 55. In contrast to other stabilisation techniques such as slope limitation the

introduction of least-squares terms does not lead to a violation of Galerkin orthogonality. This

characteristic of the least-squares stabilisation makes the t-DG family particularly suitable in

connection with duality based a posteriori error estimators. We point out that the application

of a posteriori techniques plays a central role in the numerical solution of Friedrichs systems

since the regularity of the exact solutions of these systems can vary significantly throughout

the computational domain. Investigations in this direction including the analysis of least-

squares stabilised methods have been pursued in (Süli and Houston 2003).



Conclusions

In this dissertation we extended the definition of the discontinuous Galerkin method to a

mathematical framework which is suitable for the application to Friedrichs systems with

discontinuous solutions. On the basis of this construction we demonstrated that the discon-

tinuous Galerkin solution converges under h- and p-refinement to the exact solution of the

boundary value problem. This finding relies on an error bound which relates the discontinuous

Galerkin error to the distance between the exact solution and the set of continuous functions

within the approximation space.

It was a particular concern to us to include into the analysis type-changes of boundary value

problem and corners of the underlying domain. In order to incorporate these features we had

to identify a mechanism that rules out solutions to Friedrichs systems which do not satisfy

basic requirements such as the validity of the integration-by-parts formula in the classical

sense of domain and boundary integrals. The technique we built our analysis on introduces

a compatibility condition between the trace operator and the boundary conditions by virtue

of a transformation matrix T on the boundary.

In the current literature the analysis of the discontinuous Galerkin method is limited to the

study within the scale of Sobolev spaces. We already highlighted in the Introduction that

this setting is not suitable for the study of Friedrichs systems with discontinuous solutions.

However, numerical computations show that for such problems the discontinuous Galerkin

method is a very competitive numerical technique. Indeed, this observation was already

emphasised in the original publication by Reed and Hill, cf. (Reed and Hill 1973a). Therefore,

we believe that the analysis of the DGFEM in the framework of graph spaces is a valuable

addition to the existing literature.

In the course of constructing the mathematical underpinning for the application of DGFEMs

to boundary value problems with discontinuous solutions we established a range of results

regarding graph spaces, Friedrichs systems and numerical techniques.

We proved the density of smooth functions in graph spaces over domains which satisfy the
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segment property. This result allowed us to define a trace operator TL for graph spaces on

Lipschitz domains. We emphasised the distinguished role of TL through the factorisation of

boundary operators with TL, a property which determines TL and the trace space W q
T(∂Ω) up

to homeomorphy. We thereby ensured that conceptually the trace defined by TL comprises

all the information about graph space functions near the boundary. Since graph spaces are in

general not translation invariant, our proofs differ, in part significantly, from the analysis for

other function spaces such as W 1,q(Ω) and W 2(div,Ω), for which the corresponding results

are well-established.

We also introduced an extension operator EL from the trace space into the graph space and we

highlighted its various features. For instance, we gave a characterisation of the image of EL in

terms of the second-order differential operator O and elucidated the isometric correspondence

between the image of EL and the image of the adjoint extension operator by virtue of L.

In view of the examination of Friedrichs systems we illuminated the characteristics of trace

spaces associated to differential operators with Hermitian coefficients. We distinguished be-

tween traces which are concentrated in the in- or outflow components of the boundary and

which are of L2
B(∂Ω)-type and traces which are not contained in L2

B(∂Ω) arising from effects

related to corners, tangential coupling and changes in the inertial type of B(ν).

We also investigated the eigensystem of L in the image of EL and gave an explicit description

of the eigenprojections and considered their regularity properties. As indicated in Remark 8,

the understanding of the eigensystem of L might also prove valuable for the derivation of an

optimal error bound in h and p for the discontinuous Galerkin method.

We transferred Friedrichs systems into a setting which accommodates a large class of phenom-

ena originating from corners and type changes in the boundary conditions. In this framework

singularities at the boundary can be incorporated if they are confined to a null set in the

Hausdorff measure of the boundary. We carried over the existence proof by Friedrichs for

boundary value problems with admissible boundary conditions. We gave here the charac-

terisation of admissibility in abstract form but detailed in addition the connection to the

definition by Friedrichs in terms of matrix functions on the boundary. We paid particular at-

tention to the regularity constraints on the matrix functions which arise from our formulation

of Friedrichs systems. This included conditions on the projection PJ , PJ ′ , PJ∗ and PJH and a

separate description of the special case when the range of the boundary operator is contained

in L2
B,loc(∂Ω).

Embedded into this general framework, we selected a class of boundary conditions under

which Friedrichs systems are well-posed und which provided the basis for the above mentioned
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convergence proof of the discontinuous Galerkin method mentioned above. As has been

already highlighted, our arguments ensure the compatibility of the trace operator with the

boundary conditions by virtue of a factorisation of B(ν).

Having established the necessary foundation, in Chapter 3 we investigated into the per-

formance of the discontinuous Galerkin method for Friedrichs systems with discontinuous

solutions. To this end, we introduced the class of broken graph spaces, in which the con-

vergence process of the DG method can be studied. In this setting we documented, prior to

the convergence proof, the stability of the method which leads directly to the existence of an

unique numerical solution. We also compared our compatibility condition based on T to the

conditions by Johnson, Nävert and Pitkäranta, which have been proposed for the analysis of

the discontinuous Galerkin method assuming that the exact solution is contained in a Sobolev

space.

In a somewhat separate study we addressed the convergence properties of the DGFEM in

broken Sobolev spaces. We improved, for certain problems, the error bound by Georgoulis by

half an order in p. We also derived an a priori error bound for least-squares stabilised discon-

tinuous Galerkin methods which is optimal in h and p. Furthermore, we presented numerical

evidence that least-squares stabilisation leads not only to an improved stability bound of

the method but also influences the approximation properties of the method advantageously.

We then substantiated numerically superconvergence properties of the LS-DGFEM. For com-

pleteness we extended the analysis by Houston, Schwab and Süli on the one hand and by

Georgoulis on the other hand from the class of scalar problems to Friedrichs systems satisfy-

ing our compatibility condition.

Outlook

We wish to highlight two questions for future research which arise from this dissertation. The

first concerns the intrinsic definition of the trace space. There remain a number of techniques

we have not utilised to derive an intrinsic definition. We already pointed in the Introduction

at the theory of pseudo-differential operators which may be capable of shedding new light on

already established results. In a classical problem in electrical impedance tomography one

has to find for a section of the boundary the Neumann condition which leads to the same

solution of a boundary value problem as a given Dirichlet condition. Solving this problem

intrinsically, that is without solving the differential equation, seems to bear similarities to

turning equation (1.22) into an intrinsic formulation.

The second question we stress concerns optimality of the discontinuous Galerkin method in h
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and p in the framework of Sobolev spaces. It would be interesting to clarify whether the ideas

in Remark 8 can be extended to prove an hp-optimal error bound in absence of streamline

diffusion or least-squares stabilisation. Understanding orthogonality properties of the term

〈Lη, ξ〉Ω appears to play a crucial role in developing an error analysis which reflects the rates

of convergence observed in numerical examples.



Appendix

Riesz-Thorin Theorem

We cite the Riesz-Thorin theorem from (Werner 2000, p. 74) in abbreviated form.

Theorem 58 Assume that p0, p1, q0, q1 ∈ (1,∞) and that p0 �= p1 and q0 �= q1. Let K ∈
{C,R} and set c := 1 if K = C and c := 2 if K = R. Let 0 < θ < 1, and define p and q by

1
p

=
1 − θ

p0
+

θ

p1
,

1
q

=
1 − θ

q0
+
θ

q1
.

Suppose µ and ν are σ-finite measures. If T is a linear mapping with

T :Lp0(µ,K) → Lq0(ν,K) continuous with norm M0,

T :Lp1(µ,K) → Lq1(ν,K) continuous with norm M1,

then

‖Tf‖Lq ≤ cM1−θ
0 M θ

1 ‖f‖Lp ∀ f ∈ Lp0(µ,K) ∩ Lp1(µ,K).

Hence the operator is extendable to a continuous linear mapping

T : Lp(µ,K) → Lq(ν,K)

with norm cM1−θ
0 M θ

1 .

Perturbation of Linear Operators

We give a short account on the necessary perturbation theory of linear operators. We follow

the exposition by (Kato 1995) and refer the reader to this book for details. Consider the

interval I ⊂ R and let T : I → C
m×m be a continuous function which assigns to every point

in I a complex-valued matrix. Then, according to (Kato 1995, pp. 106-110), there are m
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continuous functions µi : I → C, i ∈ {1, . . . ,m}, such that if at x ∈ I the multiplicity of the

eigenvalue λ of the matrix T (x) is k then there are exactly k functions µi which attain the

value λ at this point.

Consider another choice of functions µ̇i which represents the eigenvalues of T . Then, in a

sufficiently small neighbourhood Nx of x, the graphs of the functions µi which pass through

λ are equal to the graphs of the functions µ̇i which pass through λ. Therefore in Nx we can

define the λ-group as union of the graphs of µi which pass through λ independently of the

choice of the representing functions, cf. (Kato 1995, pp. 66,107).

Under the total projection of the λ-group at x ∈ Nx we understand the projection to the sum

of all eigenspaces which are associated to an eigenvalue in the λ-group. We restate Theorem

5.4 from (Kato 1995, p. 111) in abbreviated form.

Theorem 59 Let T (x) be differentiable at x = 0. Then the total projection of the λ-group

is differentiable at x = 0. If T is diagonalisable, then the functions µi are differentiable at

x = 0.

According to the remark on page 115 in Kato’s book, for diagonalisable operators continuous

differentiability of T (x) indeed implies continuous differentiability of the total projections and

of the eigenvalues.

However we also need to consider the mapping which associates to every x the eigenprojection

associated to the eigenvalue µi(x). In Example 12 from page 45 we illustrate that this mapping

is generally less smooth than the total projections. The situation changes if we assume that

T , is (in each entry Tij) analytic, cf. (Kato 1995, p. 73).

Theorem 60 Let the function x �→ T (x) be analytic. Then, with the exception of a discrete

set, the eigenprojections are also analytic.

We also cite, again in abbreviated form, Theorem 6.1 on page 120 in Kato’s book.

Theorem 61 If the analytic family T (x) is real and symmetric, then the eigenvalues µi(x)

and the eigenprojections are analytic on the real axis.
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higher-order graph spaces, 24

hodograph plane, 96

image, 11

inertial type, 99

internal trace, 105

inverse inequality, 121

Lipschitz domain, 24

LS-DGFEM, 126

LS-norm, 126

maximal boundary conditions, 78

Moyer’s example, 81

normal, 25

outward normal, 25
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parabolic equation, 92

perturbation theory, 148

range, 11

relatively compact, 15

Riesz-Thorin theorem, 148

second-order hyperbolic equations, 88

segment property, 20

semi-admissibility, 65

shape-regular, 117

skew-Hermitian coefficients, 59

streamline diffusion, 110

strong local Lipschitz property, 24

superconvergence, 131

total projection, 149

trace

external, 105

internal, 105

operator, 31

space, 31

Tricomi equation, 94

uniform hyperbolicity, 87

zero extension, 28


