UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The Work and Preliminary Results of the C4u Project on Advanced Carbon Capture for Steel Industries Integrated in Ccus Clusters

Porter, Richard TJ; Abanades, Juan Carlos; Amieiro, Alvaro; Abbas, Syed Zaheer; Baltac, Silvian; Brown, Solomon; Cano Bertiz, Marcos; ... van Zelm, Rosalie; + view all (2022) The Work and Preliminary Results of the C4u Project on Advanced Carbon Capture for Steel Industries Integrated in Ccus Clusters. In: Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16). SSRN Green open access

[thumbnail of SSRN-id4276718.pdf]
Preview
Text
SSRN-id4276718.pdf - Published Version

Download (2MB) | Preview

Abstract

This paper provides an overview of the aims, objectives and preliminary findings of the C4U holistic interdisciplinary project, which addresses all the essential elements required for the optimal integration of CO2 capture in the iron and steel industry as part of the Carbon Capture, Utilisation and Storage (CCUS) chain. The project’s scope spans pilot-scale demonstration of two highly efficient CO2 capture technologies at TRL7 designed for optimal integration into an iron and steel plant along with detailed consideration of the safety, environmental, societal, policy and business aspects for successful incorporation of CCUS into the North Sea Port industrial cluster. The new sorbent-based CO2 capture technologies in C4U are known as DISPLACE (high temperature sorption-DISPLACEment process for CO2 recovery) and CASOH (Calcium Assisted Steel-mill Off-gas Hydrogen production). Both approaches involve high-temperature gas-solid separation processes that reduce the exergy penalty associated with CO2 capture. The progress made on the design and construction of pilot-scale CO2 capture test facilities for assessing the technologies’ performance is presented, along with results of uniquely developed mathematical models and laboratory-scale tests performed for gaining understanding of the physical and chemical phenomena underpinning the processes. The use of these results to establish the full-scale design of the technologies for deployment in an integrated steel-mill using process simulation techniques while quantifying the techno-economic and environmental performance in comparison to reference technologies (e.g. amine based CO2 capture) is also discussed. Analysis undertaken to help interface the technologies with CO2 transport and storage infrastructure is described with particular regard to requirements to meet target compositional specifications, operational safety of CO2 pipelines while also carrying impurities and mathematical tools required for the design and operation of a CCUS cluster in view of future expansion. The development of novel business models for facilitating deployment so that the long-term business case can be established through consideration of the concerns of a multitude of various stakeholders and identification of optimal scenarios for overcoming financial risks is discussed. Progress on evaluating societal readiness and public support for CCUS through just transitions in industrial clusters is also presented. The project’s work is expected to demonstrate CO2 capture from an integrated steel-mill in safe and economic CCUS value chains while establishing viable pathways to rollout of CCUS in industrial clusters.

Type: Proceedings paper
Title: The Work and Preliminary Results of the C4u Project on Advanced Carbon Capture for Steel Industries Integrated in Ccus Clusters
Event: 16th Greenhouse Gas Control Technologies Conference (GHGT-16)
Open access status: An open access version is available from UCL Discovery
DOI: 10.2139/ssrn.4276718
Publisher version: https://ghgt.info/
Language: English
Additional information: This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Steel sector, pilot-scale demonstation, process simulation, cost analysis, CO2 quality, pipeline transport, utilisation and storage, just transition, business model
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Chemical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/10162735
Downloads since deposit
230Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item