UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Gate-based sensing of silicon quantum dot devices towards 2D scaling

Duan, Jingyu; (2022) Gate-based sensing of silicon quantum dot devices towards 2D scaling. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Jingyu_thesis_final.pdf]
Preview
Text
Jingyu_thesis_final.pdf - Accepted Version

Download (18MB) | Preview

Abstract

This thesis focuses on using the radio-frequency reflectometry technique for dispersive gate sensing of foundry fabricated silicon nanowire quantum dot devices. I will attempt to answer three questions relating to the scalability of these devices. How do electron and hole spin qubits perform in silicon quantum dots? How do we implement and distribute the placement of dispersive gate sensors in scaled-up quantum dot arrays? And how does a single dopant in the silicon channel affect the gate-defined quantum dot? First, I investigate the difference between electron and hole quantum dots in an ambipolar nanowire device which successfully demonstrated reconfigurable single and double electron and hole quantum dots in the same crystalline environment. I further investigate the effective bath temperature of two-dimensional electron gas and two-dimensional hole gas by performing the thermometry experiment on the same type of device. Secondly, I demonstrate a two-dimensional quantum dot array enabled by a floating gate architecture between silicon nanowires. An analytical model is developed to study the capacitive coupling between remote quantum dots over different distances. Coupling strength under different qubit encodings is also discussed to show the best implementation for neighbour silicon nanowires. Finally, the in-situ dispersive gate sensing allows the measurement of the inter-dot transition between the bismuth donor-dot system. The novel implementation with bismuth donor can open up the possibility of a hybrid singlet-triplet qubit or transferring a coherent spin state between the quantum dot and the donor.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Gate-based sensing of silicon quantum dot devices towards 2D scaling
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Electronic and Electrical Eng
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL
URI: https://discovery.ucl.ac.uk/id/eprint/10157370
Downloads since deposit
Loading...
282Downloads
Download activity - last month
Loading...
Download activity - last 12 months
Loading...
Downloads by country - last 12 months
Loading...

Archive Staff Only

View Item View Item