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Abstract

This thesis focuses on using the radio-frequency reflectometry technique for
dispersive gate sensing of foundry fabricated silicon nanowire quantum dot
devices. I will attempt to answer three questions relating to the scalability of
these devices. How do electron and hole spin qubits perform in silicon quantum
dots? How do we implement and distribute the placement of dispersive gate
sensors in scaled-up quantum dot arrays? And how does a single dopant in the
silicon channel affect the gate-defined quantum dot?

First, I investigate the difference between electron and hole quantum dots in an
ambipolar nanowire device which successfully demonstrated reconfigurable single
and double electron and hole quantum dots in the same crystalline environment. 1
further investigate the effective bath temperature of two-dimensional electron gas
and two-dimensional hole gas by performing the thermometry experiment on the
same type of device. Secondly, I demonstrate a two-dimensional quantum dot array
enabled by a floating gate architecture between silicon nanowires. An analytical
model is developed to study the capacitive coupling between remote quantum
dots over different distances. Coupling strength under different qubit encodings is
also discussed to show the best implementation for neighbour silicon nanowires.
Finally, the in-situ dispersive gate sensing allows the measurement of the inter-
dot transition between the bismuth donor-dot system. The novel implementation
with bismuth donor can open up the possibility of a hybrid singlet-triplet qubit or

transferring a coherent spin state between the quantum dot and the donor.



Impact statement

With the large computational spaces, fault-tolerant quantum computers can solve
complex problems in academia and industry and have a significant impact on
many fields of modern society. For instance, a quantum computer can simulate
large molecules which helps researchers find novel materials, enzymes and new
drugs. Quantum speed-up in optimization problems can help logistics and finance
greatly. Quantum speed-up in artificial intelligence can help the processing of vast
amounts of data for machine learning

The results in this thesis bring a few implementations of quantum dots based
on CMOS technology and show one step closer to large scale quantum computer
by demonstrating a scalable quantum dot bilinear array with a gate-based sensing
technique. However, it might take a few decades or even longer for a useful silicon-
based fault-tolerant quantum computer to be built.

The gate-based sensor demonstrated in this thesis has already been used as the
thermometer for cryogenic temperature. Moreover, the highly-sensitive sensor in
silicon also opens up research on fundamental theory for carrier-phonon coupling,
and charge noise characterization. Finally, the high nuclear spin donor-dot system
studied in this thesis also opens up research on quantum chaos study with a large

Hilbert space.



Acknowledgements

First of all, I am greatly grateful to my supervisor, John Morton, who has always
been supportive. I am also thankful for the freedom to explore different research
projects. At the very beginning of my PhD, he introduced me to meet many
inspiring scholars in all kinds of academic occasions. I am always inspired by his
scientific intuition and engagement in conferences and collaborations.

I am also grateful to my industrial mentor, Fernando Gonzalez-Zalba at
Quantum Motion Technologies. I sincerely acknowledge his continuous support
and guidance. He is a great experimentalist with patience, attention to details,
and a deep understanding of physics. I am grateful to work with David Ibberson,
who shows calmness and persistence at tricky experimental work.

I am grateful to all the ‘old” QSD group members for their warm welcome.
Simon Schaal and Michael Fogarty who have helped me a lot in getting started
in the lab and continous to inspire me through their fine experimental techniques.
James O’Sullivan for his Simpsons jokes at every lunch gathering. Gavin Dold,
who brings coffee beans from a Camden shop and demonstrates how to make good
coffee.Pierandrea Conti, who signs me in the football sheet to kick off my PhD.
David Wise for his witty comments. Christoph Zollitsch who kindly shares career
advices at very beginning of my PhD and also fix everthing whenever the lab is
broken. Leonid Abdurakimov from whom I happily inherent the nice desk at LCN.
Oscar Kennedy who teaches me patiently in the cleanroom. Siddharth Dhomkar
who gives good advice on experiments. I am grateful to all the ‘new’” QSD group
members for their enthusiasm and persistence. Joseph Alexander, James Williams
and Edward Thomas who share the same ‘interest’ in coffee trip to Pret. Jacob
Chittock-Wood, who shares the same love in asian food.

Felix Donaldson, Frederic Schlattner, Thomas Swift and Mathieu de Kruijf
who bring competitiveness to football. I'm grateful for all of the memories with
them at the Friday Pub.

I am thankful to have Virginia Ciriano and Sofia Patomaki as company through
every sweetness and bitterness in our PhD. I am grateful to Dan Browne and other

administrative staff for their support at Centre for Doctoral Training in Delivering



Quantum Technologies to pursue my PhD at University College London. I am also
grateful to share the journey to California with all the people in the CDT cohort
4.

Finally, I want to thank my parents, who value the importance of education
and support me unconditionally. I want to thank my wife Weiting Fan for her

selfless and unconditional support along the journey.



Publications and Conferences

Publications

e Duan, J., Lehtinen, J. S., Fogarty, M. A., Schaal, S., Lam, M. M. L.,
Ronzani, A., Shchepetov, A., Koppinen, P., Prunnila, M., Gonzalez-Zalba,
F., & Morton, J. J. L. (2021). Dispersive readout of reconfigurable

ambipolar quantum dots in a silicon-on-insulator nanowire.  Applied

Physics Letters, 118(16), 164002. https://doi.org/10.1063/5.0040259

e Duan, J., Fogarty, M. A., Williams, J., Hutin, L., Vinet, M., & Morton, J.
J. L. (2020). Remote Capacitive Sensing in Two-Dimensional
Quantum-Dot  Arrays. Nano  Letters,  20(10),  7123-7128.
https://doi.org/10.1021 /acs.nanolett.0c02393

Conferences

e Duan, J., Fogarty, M. A., Schaal, S., Chatterjee, A., Ahmed, I., Barraud,
S., M., Gonzalez-Zalba, F., & Morton, J. J. L. Detection of quantum dots
and dopants in CMOS transistors with highly-sensitive gate-based sensor.
Silicon Quantum Electronics Workshop, UNSW, Sydney, Australia (2018).

e Duan, J., Fogarty, M. A., Williams, J., Hutin, L., Vinet, M., & Morton, J.
J. L. Gate based sensing of a 2 x 2 quantum dot array in silicon nanowire.

Silicon Quantum Electronics Workshop, San Sebastian, Spain (2019).

e QOakes, G., Duan, J., Morton, J. J. L., Smith, C., & M., Gonzalez-Zalba, F.
Systematically tuning a 2xN array of quantum dots with machine learning.

APS March Meeting, Online (2021).

e Duan, J., Lehtinen, J. S., Fogarty, M. A., Schaal, S., Lam, M. M. L.,
Ronzani, A., Shchepetov, A., Koppinen, P., Prunnila, M., Gonzalez-Zalba,
F., & Morton, J. J. L. Dispersive readout of reconfigurable ambipolar
quantum dots in a silicon-on-insulator nanowire. Silicon Quantum

Electronics Workshop, Online (2021).



Contents

Page

List of Figures v
List of Tables vi
1. Introduction 1
1.1. Quantum Computing and the Qubit . . . . .. ... ... .. ... 2
1.2. Quantum Computing platforms . . . . . . .. ... ... ... ... 4
1.3. Rise of silicon and its challenge . . . . . .. ... .. ... ..... 6
1.4. Thisthesis . . . . . . . . . . 7

2. Background 10
2.1. Silicon material . . . . .. ... oo 10
2.1.1 Conduction band and valence band . . . . ... .. ... .. 10

2.1.2  Two-Dimensional Electron(Hole) Gas . . . . . ... ... .. 12

2.2. Silicon Quantum Dot . . . . . ... ... o o 13
2.2.1 Coulomb Blockade . . . . ... ... .. ... ... .. 14

2.2.2  Double Quantum Dots . . . . . .. .. ... .. ... .. 18

2.2.3 Dopantsinsilicon . . . . . ... ... L. 21

2.3. Charge and Spin statein QD . . . . . .. ..o 23
2.3.1 Chargestate. . . . . . . ... 23

2.3.2 Spinstate . . . . . ... 24

2.3.3 Chargereadout . . . .. .. .. ... ... ... 26

234 Spinreadout. . . . . ... 27

2.4. Gate-based RF readout . . . . . . ... ... ... ... ... 29
2.4.1 Tunneling between the QD and reservoir . . . . . . .. . .. 29

2.4.2 Inter-dot tunnelling between DQD . . . . . ... ... .. 32



3. Experimental methods
3.1. Silicon nanowire fabrication . . . . . .. ... ... 0L
3.1.1 Split-gate SINW . . . . . .. . ...
3.1.2 Bismuth doped SINW . . . . . .. ... ...
3.1.3  Ambipolar SINW . . . . .. ... ...
3.2. Experimental setup . . . . . .. ..o
3.2.1 Cryostat wiring . . . . . . . .. ..o
3.2.2 Measurement setup . . . . .. ...

3.2.3 PCBandcircuit. . . . . . . . . ..

4. Ambipolar quantum dots
4.1. Electron and Hole quantum dots . . . . . . . . ... ... ... ...
4.1.1 State of art platforms . . . . . . . ... ... L.
4.1.2 SOI device and experimental setup in the thesis . . . . . . .
4.2. Charge state of ambipolar quantum dot . . . . . . . . . . . ... ..
4.2.1 Transport measurement . . . . . . .. ... ... ... ...
4.2.2 Dispersive readout of inter-dot transition . . . . . .. . . ..
4.3. Thermometry with ambipolar quantum dots . . . . . . . . . .. ..
4.3.1 Temperature dependence . . . . . . . . ... ... ... ..
4.3.2 Tunable tunnel coupling . . . . . . ... ... ... ...
4.3.3 Noise characterization . . . . .. .. ... ... ... ....

4.4. Conclusion . . . . . . . . s,

5. Scalability of quantum dots array in SOI nanowire
5.1. Quantum dots array . . . . . .. ...
5.2. Charge sensing in single SINW . . . . . .. .. ... ..o
5.3. Remote sensing between two SINWs. . . . . . ... ... ... ...
5.3.1 Charge sensing of quantum dots across SINW . . . . . . ..
5.3.2 Capacitance network model . . . . . . ... ... ... ...
5.3.3 Sensitivity decay over distance . . . . . . . ... ...
5.4. Sensing scheme for scalingup . . . ... ... ... ... ... ...

5.5. Conclusion . . . . . . . .o,

6. Dispersive readout of a donor-dot spin system

i

35
35
36
40
41
42
43
45
48

52
52
52
95
57
o7
62
67
68
70
71
73

75
75
78
80
80
84
86
91
94

96



6.1. Donor in silicon . . . . . . . .. 96

6.2. Ionised charge state of donor . . . . . . . . ... ... 97
6.3. Pauli blockade of donor-dot . . . . . ... ... 99
6.4. Spin dynamics in donor-dot . . . . . .. .. .. 102
6.5. Conclusion . . . . . . . . .. 104

7. Conclusion and outlook 106
7.1. Achievements . . . . . . . . .. ... 106
7.1.1 Dispersive readout of ambipolar quantum dots . . . . . . . . 106

7.1.2  Charge sensing via floating gate . . . . . . ... .. ... .. 107

7.1.3 Charge and spin dynamics of a bismuth donor-dot system . 107

7.2. Future diections . . . . . . . ... Lo 108
721 CMOSqubit. ... ... ... .. ... 108

7.2.2  Long distance electrostatic coupling . . . . . . . .. ... .. 108

7.2.3 Hyperfine driven singlet-triplet spin qubit . . . . . .. . .. 108
Appendices 110
A. Noise analysis of dot-to-reservoir signal 110
B. Hamiltonian of donor-dot electron spin system 112

Bibliography 116

il



List of Figures

1.1

2.1
2.2

2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

2.11
2.12
2.13

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

A qubit state |¢) illustrated by Bloch sphere. . . . ... ... ... 3

Energy band of bulk silicon . . . . ... ... ... ... ... .. 11
Schematic of an n-type MOSFET and Band structure of the Si/SiO2

interface . . . . . .. L 12
Schematic of gate-defined quantum dot . . . . . . . .. .. .. ... 14
Quantum dot in transport regime and artificial atom . . . . . . .. 16
schematic of Coulomb diamond transport measurement . . . . . . . 18
schematic of double quantum dot . . . . . . . ... ... ... ... 19
Schematic stability diagram of the double-dot system . . . . . . .. 20
Single dopant as Quantum dot . . . . . . ... ... L. 22
tunnel coupled charge qubit . . . . .. ... ... 000 23

energy diagram of singlet-triplet states and energy-detuing of (1,1)-

(2,0) . . 25
Spin-to-charge conversion readout . . . . . . . ... ... L. 28
tunneling between the QD and reservoiradout . . . . ... .. ... 30
Quantum capacitance . . . . .. ..o 33
SINW field effect transistor device . . . . . . . .. ... .. ... .. 36
overview of the Split-gate SINW fabrication process. . . . . . . . .. 36
hybrid DUV /e-beam patterning process . . . . . . . . . . . .. ... 37

Top view schematic of FD-SOI split gate devices with dimensions. . 38

fabrication process for Bi doped SINW . . . . ... ... ... ... 40
fabrication process for Ambipolar SINW . . . . . ... .. ... .. 41
Wiring of dilution refridgeration system . . . . . .. ... ... ... 44
Schematic of room temperature reflectometry setup . . . . . . . .. 46
Schematic and image of PCB . . . . . .. .. .. ... ... ... 49

v



3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2
6.3

Al

B.1
B.2

Schematic and image of spiral inductor chip . . . . ... ... ... 50

Comparison of electron and hole spin qubit platform . . . .. . .. 53
Ambipolar devices and experimental setup . . . . . . . ... .. .. 56
Quantum dot formation in Device I . . . . . . .. . ... ... ... 59
Ambipolar transport Device IT . . . . . . . . . ... ... ... ... 61
Comparison of the lever arms of Poly-1 and Poly-2 gate . . . . . . . 63
Tunable barrier between the double QDs under Gate 3 and Gate 5 . 64
Ambipolar doubledots . . . . . ... ... 66
Calibration of thermometry experiment . . . . . . . . . .. ... .. 69
Tunable barrier of the e-QD and h-QD . . . . . .. ... ... ... 71
Spectral density of e-QD and h-QD and noise broadened signal . . . 72
Scalable FD-SOI quantum dot arrays. . . . . . . .. ... ... ... 76

Top view schematic of FD-SOI quantum dot arrays with dimensions. 78

Charge sensing of 2 x 2 QD array. . . . . . .. .. .. ... .... 79
Double dot transport and concurrent reflectometry measurements. . 79
Remote sensing of a quantum dot. . . . . . . . ... ... 80
capacitive network of the dual-nanowire in Floating gate device . . 84
First order and second capacitive effect on Aq . . . . . . . . .. .. 86
Normalised capacitive coupling as a function of distance. . . . . . . 87
sensor dot-lead signal linewidth. . . . . . ... ... ... .. .. .. 89
The scheme for IDT as an external sensor. . . . . . . .. ... ... 92
Triple dot charge stability diagram with virtual voltage space. . . . 94
Stability diagram of donor-dot system . . . . . . . . .. .. ... .. 98
Stability diagram of donor-dot system . . . . . . . ... .. .. ... 101
Spin dynamics of Sy and T eigenstates . . . . . . . .. .. ... .. 103

Simulation of noise broadening from gaussian noise and two-level-

fluctuator noise . . . ... ..o 111
schematic of 50 x 50 matrix of donor-dot system . . . . . . . . . .. 112
eigenstates of the 50 x 50 donor-dot hamiltonian matrix . . . . . . 115



List of Tables

3.1

4.1
4.2
4.3

Summary of the split gate SINW device’s dimension. . . . . . . .. 39
Comparison of the electron and hole spin qubits platforms. . . . . . o4
Electrostatic properties of the ambipolar quantum dots. . . . . . . 60
Lever arms of Poly 1and Poly 2 . . . . . .. ... ... .. ... .. 62

vi



Chapter 1

Introduction

Since the latter half of the 20th century, the third industrial revolution has
changed the world fundamentally, lifting the world’s production efficiency to an
unprecedented level. Two driving forces behind this fundamental change are the
mass production of integrated chips (IC) and the constant scaling of the
semiconductor-based transistors. In 1971, the first commercial IC chip - Intel
4004 contained 2,300 transistors [, 2]. As of 2021, the latest Apple M1 chip can
contain 30 billion transistors in roughly the same physical area. For several
decades, the scaling of transistors with complementary
metal-oxide-semiconductor (CMOS) process has followed the famously known
Moore’s law. Stressing the importance of integrated circuits and calling for more
investment in advancing the integration complexity in the semiconductor
industry, Gordon Moore, the co-founder of Intel, once suggested that the
transistors in each integrated chip should double every 12 to 24 months. [3, 1].
However, since 2005, the pace of this scaling has slowed down as semiconductor
manufacturing technology is reaching its physical limit. There is no more ‘free’
room at the bottom!. As the material thickness of the transistor reaches
sub-10nm, at which leakage current due to direct quantum tunnelling becomes
non-negligible, the switching speed and power consumption of the transistor
become the bottleneck of this trend [5]. Meanwhile, a certain class of tasks grows
exponentially difficult for classical computers’ polynomial-time efficiency. It is

estimated that global data centres likely consumed 205 terawatts-hour (TWh) in

!Feynman’s talk ‘Plenty of room at the bottom’ is considered the birth of nanotechnology.



2018, equivalent to 1 percent of global electricity use. The power usage
effectiveness of such data centres is dropping over time [6]. Many are asking,
“what is next after the end of Moore’s law?” [7]. Will the computation power be
enough for the ever-growing information service? There are many answers for
‘beyond CMOS’ [8].  Quantum computing is one of the most promising
alternatives that can substantially impact society. In many applications such as
optimisation, a quantum computer offers the potential to save both energy
consumption and execution time dramatically [9]. The potential application of
quantum simulation will benefit the research development of big molecules such

as pharmaceutical medicine or enzymes for industrial processes.

1.1 Quantum Computing and the Qubit

This year marks the 40th anniversary of quantum computing since the issue of
International Journal of Theoretical Physics where the leading physicists and
computer scientists discussed the ‘Physics of Computation’ [10]. In 1980, Paul
Benioff introduced a quantum version of the Turing machine [11]. In 1981
Richard Feynman pointed out the limit of classical computers in simulating
nature. He brought up the idea of the quantum computer, in which people could
use such engineered quantum systems to simulate nature [12]. In the 1990s, Lov
Grover and Peter Shor separately came up with the two seminal works on
quantum algorithms demonstrating quantum speedup over the classical
algorithm. Grover’s search algorithm [13] could find a specific item in a randomly
ordered data group, and Shor’s factoring algorithm [14] could factorise an integer
number much more effective than a classical computer. Controlling the evolution
of quantum states has become a tool to help scientists investigate the quantum
many-body problem. The variational quantum eigensolver algorithm is useful in
computing the ground state energy of a Hamiltonian, which is central to
quantum  chemistry [15]. Other  quantum  algorithms  like
Harrow/Hassidim/Lloyd [16] method for linear systems open up the research into
quantum machine learning.

Significantly reduced computation complexity by quantum computers can not



1)
Figure 1.1 A qubit state |¢) illustrated by Bloch sphere.

be achieved easily. It requires millions of interconnected functional quantum bits
- known as the Qubit. A Qubit is analogous to the ‘bit’ encountered in classical
computers. It is essentially a linear combination of quantum two-level system
(TLS) with the properties of superposition and entanglement and can utilise such
fundamental phenomena for information processing. The spin state of an electron
in a finite magnetic field is a TLS formed by spin-up state |0) and spin-down
state |1). Unlike the classical bit, which represents two discrete levels, a qubit can
represent all probabilistic superpositions of the two levels written as the Equation
1.1. In this equation, # and ¢ describe the spherical coordinates of a quantum
state visualised in a so-called Bloch sphere with the two poles being |0) and |1)
Figure 1.1. The pure state corresponds to a point on the surface of the Bloch

sphere.

0 - 0
[Y) = cos§|0> + e sin §|1> (1.1)

Superposition expands the computing resource exponentially. The
superposition of the n-qubit state can create a 2" dimensional Hilbert space. It is
possible to create entanglement between two or more qubits and make them
evolve as a whole. Manipulations of qubits, such as rotation along a particular
axis, can affect the probability distribution of all entangled quantum states.
Performing logic gates with the inherent parallelism is one of the great powers of

quantum computing.



1.2 Quantum Computing platforms

Along with the theoretical development of quantum computing, the experimental
effort also started to shine in the 1990s. Molecular nuclei in the liquid state have
demonstrated the quantum algorithm with nuclear magnetic resonance
techniques [17, ]. And soon, superconducting qubits followed with
groundbreaking quantum control experiments [19].  David P. DiVincenzo
summarised the conditions for constructing a quantum computer in 2000 [20].
DiVincenzo criteria provide an overview and guideline for this field despite
different developed routes towards realising quantum computing. Such criteria

are as follows:

A scalable physical system with well-characterised qubit: A qubit
should be well-characterised with accurate physical parameters and a
well-understood Hamiltonian. The energy of the qubit and its interaction
with the environment, including other qubits, are fully described in the
Hamiltonian. Insufficient or incorrect physical description in the
Hamiltonian can cause errors in qubit manipulation. A scalable physical
system requires a collection of interconnected qubits, and its interface

apparatus scale together.

The ability to initialise the state of the qubits: The register must be
initialised to a simple fiducial state before the computation. It is also
desirable to have a supply of known states as the ancilla qubit for checking
errors in quantum error correction. Usually, the ground state can be
initialised from cooling or after 77 relaxation time. The more generic way

of initialisation is projecting the known states via measurement.

Long relevant decoherence times: Quantum states become classical after
decoherence time which is the characteristic time for the qubit to maintain
its superposition and entanglement. Decoherence time is affected by the
interaction with its environment and neighbouring qubits. Without further
quantum error correction, it is required that all the quantum computations

should be performed within the decoherence time. The circuit depth is also



used to characterise a quantum computer. It reflects the hardware system’s
practical limit, which is bounded by the relative ratio between decoherence

and quantum gate times.

A universal set of quantum gates: In classical computing, it is possible to
create any set of logic gates with just NOR gate or NAND gate. Either of
them is the universal logic gate of classical computing. Using universal
logic gate can make the underline physical implementation more
straightforward. Complex computation can be efficiently deducted into the
simplest combination of the universal gate. Similarly, it is advantageous to
map a suitable sequence of unitary transformations to a generic quantum
algorithm. Solovay-Kitaev Theorem [21, 22] shows that it is possible to
have a set of quantum gates to simulate other arbitrary gates with efficient

approximation.

A qubit-specific measurement capability: After a quantum computation,
each qubit state is read out accurately. Often, a quantum non-demolition
readout is preferred. The qubit state is still collapsed to a specific state
after measurement but is continuously available for the initialisation of a
new task. Moreover, measurement capability needs to scale together with
the qubit number. When measurement time is shorter than decoherence, it

allows for more efficient quantum error correction without much overhead.

Divincenzo has added two criteria specific for quantum communication: the
ability to interconvert stationary and flying qubits and the ability to
faithfully transmit flying qubits between specified locations. FEven
though these seven criteria are extremely challenging and some require large
engineering effort, these following experimental platforms successfully

demonstrate all the basic elements of Divincenzo’s criteria: nuclear magnetic

resonance (NMR) [23], superconducting circuits [21, 25|, ion-trap [206, 27],
photon [28, 29], NV-centres in diamond [30], and semiconductor quantum
dot (QD) [31-33]. With the effort from academics and industry, superconducting

circuits and ion-traps become the most promising candidates to deliver quantum

advantage in a noisy intermediate-scale quantum (NISQ) era [25, 27]. To achieve



fault-tolerant quantum computing for practical quantum speed up, it requires an
enormous number of physical qubits (10%) with a low error rate (99%) and long
coherence time (>1ps) to support logical quantum algorithm [31]. There still
seem to be many challenges ahead—the quantity and quality of the qubit both
matter in the long run. The relatively short decoherence time will lead to a
shallow circuit depth, thus having a small quantum volume [35]. Meanwhile, as
the number of qubits grows, the number of accompanied control electronics grows

simultaneously. Moreover, cross-talk and overcrowding of signals lead to further

decoherence [36].  Silicon spin qubit has recently engaged many academic
researchers and industrial players like Intel and Imec [37, 38]. Silicon QD as the
host hass relative long qubit coherence time [39], small footprint [36] and

compatibility with CMOS process in scaling up the whole system [37, 40].

1.3 Rise of silicon and its challenge

The pioneering experiments of the spin qubit are demonstrated on III-V
heterostructure semiconductor QD, including the spin initialisation and
readout [31, 32|, quantum control with exchange coupling [!1]. However, III-V
host material imposes strong decoherence on the spin qubit with ‘non-zero’
nuclear spin bath. This limits the spin qubit’s coherence time 7% to less than 100
ns [12]. Silicon gains more interest as the natural silicon contains 95% of
spin-zero nuclei isotope, and only 5% of 2Si has a nuclear spin I = 1/2 [13]. This
advantage is exploited by isotopic enrichment of the nuclei element 2*Si in the
host material [11] to achieve a near-perfect ‘spin vacuum’ environment. To
further understand silicon as the host of a qubit, other properties of silicon QD,
including valley states [15, 16], orbital states [!17], and noise spectra [18, 19],
are also investigated. Recent progress of precise pulse engineering with careful
consideration of qubit Hamiltonian has enabled two-qubit gate fidelity to reach
above 99% crossing the surface code error correction [50-52]. The capability to
operate at above 1K puts spin qubit in a more economical position than other
solid-state qubit platforms for the relaxed requirement of cooling budget [53-55].

At the same time, the control of electron spin qubit uses two methods:



electron spin resonance (ESR) with transmission line [33, 50] and electric dipole
spin resonance (EDSR) with the help of micro-magnet [57, 58]. Both methods
add up the fabrication complexity in scaling up the system, therefore
all-electrical control of spin qubits is preferred to achieve faster and more scalable
control. Hole spin qubit has stayed quiet in the first decade of the century but
soon gained rapid progress in recent years owing to material stack and quantum
control technique improvement. Subject to the strong spin-orbit interaction, hole
qubit has achieved fast all-electrical two-axis control despite the drawback of
sub-microseconds coherence time [59, 60]. Electron or Hole spin qubit? There are
many discussion on which one is suitable for the large-scale quantum computer.
Also, a scalable architecture is yet to be developed and demonstrated comparable

results since all the key experiments aforementioned are demonstrated in few

QDs devices.

1.4 This thesis

As introduced before, this thesis aims to address three questions relating to the
scalability of foundry fabricated silicon quantum dot devices. 1. How do
electron and hole spin qubits perform in silicon quantum dots? 2.
How to implement and distribute the placement of dispersive gate
sensors in scaled-up quantum dot arrays? and 3. how does a single
dopant in the silicon channel affect the gate-defined quantum dot?

I use a recently-developed gate-based readout technique with a low-loss NbTi
superconducting inductor [61, 62]. Firstly, I study the charge dynamics of the
single and double quantum dots in the ambipolar silicon device fabricated at
VTT. Secondly, a nanowire quantum dot device fabricated at CEA-LETI
enabling measuring and coupling quantum dots in a two-dimensional scalable
way is presented. Finally, I use the gate-based sensor to probe the spin dynamics
of the silicon double quantum dot system formed by a bismuth dopant and a
gate-defined quantum dot.

This thesis consists of eight Chapters. The first three Chapters of the thesis

provide the necessary background on the current research in quantum computing



with silicon quantum dots, essential details of the project and the background
theory of spin qubit and experimental details.

Chapter 2 outlines the silicon quantum dot theory for both electron and hole
in the context of the DiVincenzo criteria. It also describes the background theory
for dispersive readout of the quantum dot to reservoir and inter-dot signal.

Chapter 3 introduces the experimental details for the project. It first
describes the fabrication of the different devices used in the project, ambipolar
quantum dot device from VTT and scalable silicon nanowire device from
CEA-LETTI. The measurement setup includes cooling equipment for the necessary
cold environment (mK), the electrical circuit for microwave and DC routing,
PCB for holding chip and instruments for signal generation and acquisition.

The following four Chapters describe the main experiments and results of this
project, using the theory from Chapter 2, aiming to measure single and double
quantum dot charge and spin signal in the devices of Chapter 3.

Chapter 4 demonstrates reconfigurable single and double electron and hole
quantum dots using the gate-based sensing technique. This work highlights the
measurement of inter-dot charge transition of both electron and hole double
quantum dots in the same crystalline environment, achieving a minimum
integration time of 160 (100) ps for electrons (holes). I further investigate the
effective bath temperature of two-dimensional electron gas and two-dimensional
hole gas by performing the thermometry experiment on the same type of device.
This work analyses the noise-broadening under the different regimes of dispersive
gate sensing of the quantum dot.

Chapter 5 focuses on the scalability of foundry fabricated quantum dot
devices. A floating-gate type nanowire device demonstrates the measurement
capability across different silicon nanowires. Electrostatic coupling between
quantum dots is measured and simulated for various distances—this guides the
future scaling of the device into the second dimension.

Chapter 6 introduces a silicon nanowire device implanted with a bismuth
dopant. The gate-induced quantum dot and bismuth dopant form a double
quantum dot system. Using the gate-based sensing technique and pulsing. Pauli

spin blockade is observed in the double quantum dot system. The binding energy



of 77meV is measured for the bismuth donor, and an excited energy of
0.773meV is measured for triplet states on the donor. The relaxation time
between the singlet and triplet states is also measured. This work provides a
novel implementation of a spin qubit in silicon and opens up new research
directions on hybrid donor-dot spin qubit.

Chapter 7 summarises the key outcomes of the thesis and provides future

directions on the open questions of the project.



Chapter 2

Background

For the understanding of the experiments, this Chapter briefly introduces the
concepts of silicon quantum dot as the host for spin qubit and the background

theory for dispersive readout of the quantum dot.

2.1 Silicon material

There are many types of quantum dot devices employed for quantum computing,
including self-assembled QDs [63], defects in solids [(4], and layered semiconductors
which support two-dimensional electron gas (2DEG) and two-dimensional hole
gas (2DHG) in the inversion layer. In the context of this thesis, the QDs formed

in the inversion layer in the Si-MOS device are discussed.

2.1.1 Conduction band and valence band

Silicon is the 14th element with the electron shell configuration: 1s2, 2s%, 2pS5, 3s?,

3p2.

bonding molecular orbitals at lower energy and the antibonding molecular orbitals

The combined 3s and 3p orbitals form two energy bands in the solid: the

at higher energy. There are four valence electrons per atom in silicon, resulting in
the filled valence band and the empty conduction band. The calculated electronic
energy band structure is shown in Figure 2.1. Silicon has an indirect bandgap
E, = 1.12€V (the energy gap between valence band Ey and the conduction band
E¢). The minimum conduction band is not at k& = 0 but rather at a nonzero

value k = 0.85ky, where kg is the first Brillouin zone boundary. Due to the cubic

10



Conduction band

minimum i
Valence band & Heavy Hole
maximum
[~~Light Hole
\Split-off

Figure 2.1 Band structure of bulk silicon showing the conduction band minimum,
and valence band maximum with heavy hole, light hole band. Adapted from [07]

symmetry of bulk silicon, there are six equivalent minima in momentum k-space,
which is also referred to as six degenerate valleys in the conduction band. The
constant energy surfaces of the energy minima are ellipsoidal. An energy dispersion
relation model is used to define the effective mass of the electron.

1 9E(k)
R ok?

(2.1)

3*

Take the ellipsoidal z valley, for example, the symmetry demands behaviour along
the transverse directions x and y be identical so the same effective mass m; is
used. The longitudinal z-direction has a different effective mass m;. The energy
dispersion of the valley at k = 0 is described by:

R o[k2 Ok +(k:z—/-cO)2

(2.2)
2mgy | My My my

where m; and m; are effective masses for electron in the longitudinal and transverse
direction. The values of the two effective masses are my = 0.19mg and my =
0.98myg, with mg being the free electron mass [65].

Valence bands are constructed from p, orbitals, which are highly anisotropic
and overlap strongly in the z-direction. This makes the effective mass for electrons

lower in the z-direction and higher in the xy-plane. As a result, two overlapped
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heavy hole bands and one light hole band degenerate at k¥ = 0. There is also a
non-negligible split-off band separated 44 meV below the other subbands by the
spin-orbit splitting. Near the £ = 0 point, the energy dispersion is very simply

defined by:
h2k?
2mh

E(k) = By — (2.3)

where my, could take the value of heavy hole effective mass my, = 0.53my,
light hole effective mass my, = 0.15mg and split-off band effective mass my, =

0.23my [67].

2.1.2 Two-Dimensional Electron(Hole) Gas

(a) (b) Electron density

v, / /
E
Vs [ VD EF 9

Metal Gate 7
[ Oxide [
Source Drain Metal | SiO, Si
z ‘ P-type substrate ,

Figure 2.2 (a) schematic of an n-type MOSFET with source, drain and the gate
electrode. (b) Band structure of the Si/SiO2 interface, a two-dimensional electron
gas is formed in the inversion layer when the gate voltage exceeds the threshold
voltage

Metal-oxide-silicon field-effect transistor(MOSFET) is the unit cell in the
modern IC industry. Figure 2.2(a) shows a simplified schematic of n-type
MOSFET device. Here n-type devices have n-type doped (P, As) silicon as
source and drain, and the carrier in the channel is electron during normal
operation. For the p-type device, the carrier is hole coming from p-type
doped (B, Ga) silicon as the source and drain. During normal turn-on operation
of n-type MOSFET, a gate voltage above threshold voltage V, > V4, is applied to
the metal gate, electric charge is induced at the Si/SiO2 interface, and electron
carrier flows from source to drain close to the interface. Figure 2.2(b) shows the
band structure of Si/SiO2 interface in the vicinity under such condition. The
energy band of the p-type Si substrate is bent towards the interface. The energy

level of the conduction band (Eg) at the interface has lower energy than the
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fermi level (Fr) of the p-type silicon substrate. As a result, electron bound states
along the z-axis in silicon Figure 2.2(a) accumulate, thus leading to a
two-dimensional electron subband in this inversion layer. In the 2D plane of
2DEG, electrons are unconfined in the xy plane and are confined by a triangular
potential well perpendicular to the plane. Other confinement in the xy plane can
be provided from the electrode. In a nanowire with high aspect ratio, a
one-dimension channel with few subbands is naturally created from the physical
dimension, and additional confinement towards 0D confinement can also be
provided from the electrode. Similarly, for the p-type device, a two-dimensional
hole subband can be formed when the energy level of the valence band satisfies
(Ev > Ep). The 2DEG and 2DHG have high carrier mobility and low carrier
density. In the semiclassical Drude model, the carrier movement under the
electric field is described by the gain from the electric field and loss from the
collision. The drift speed and mobility are defined as:

eT A% eT
=— = 2.4

v =

where E is the electric field, e is the elementary charge, 7 is the average relaxation
time due to collision. For a typical silicon MOSFET at room temperature. The
typical carrier mobility for electron and hole in intrinsic silicon is 1450 cm? V—1s™!
and 505cm? V=1 s7! respectly [06], and more details can be found on mobility

study of silicon and germanium in the review [67].

2.2 Silicon Quantum Dot

Quantum dots are artificial nanostructures in a solid, typically consisting of many
atoms and tightly bounded electrons [(58]. They provide the confinement of free
electrons or holes via exchange with a nearby reservoir. In this regime, Coulomb

interactions play a dominant role compared to other energy scales.
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2.2.1 Coulomb Blockade

Next, a qualitative description of the gate-defined quantum dot is introduced, as
shown in Figure 2.3(a). A charge island is tunnel coupled to a nearby source /drain

lead and capacitively coupled to a plunger gate.

H(N+1)

Hs U(N) Hp

u(N-1)

plunger
gate Y

]

Figure 2.3 (a) Schematic representation of a quantum dot system with source
and drain contacts and plunger gate. (b) Energy level structure of the system in
the quantum dot. Adapted from [69]

The source and drain tunnel barriers represented by a resistance Ry/q and a
capacitance Cy/q. The tunnel resistance Ry/q should be larger than the resistance
quantum Rq to allow the measurement of charging energy whenever the tunneling

coupling is weak enough to quantize the electron number N on the island.
Rs(d) > RQ = h/€2 (2.5)
The total charge Q on this island has an integer number of the single electron

charge () = Ne, and this leads to electrostatic energy:

_ QQ B 62N2

Ea=356= 230

(2.6)

The constant interaction model is based on the Coulomb interactions
parametrized by constant capacitance C' and voltages applied to the source Vj,
drain Vg, and gate electrode V4. The single-particle energy level is independent of
these interactions and the number of electrons. The capacitance Cy; is the sum of
the capacitances between the dot and the source/ drain lead and the gate. With

the increasing complexity of devices, capacitances to other parts of the device
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can be added.
Cy, =Cs+Cq+ Cy (2.7)

This leads to the electrostatic energy of QD with N electrons:

eN = GV, — CaVa — CeVp)? |
Ea(N) = 5 c; 1= Gl +Y E.(B) (2.8)
n=1

A convenient way to describe the energy levels of the quantum dot is the
electrochemical potential p(N). It is defined as the change in total electrostatic

energy when the N-th electron is added:

((N) = Eg(N)—Eg(N—1) = C% (N = 1/2)e — C,V, — CVi — CaVial+Ex (2.9)

where each gate voltage Vi, Vg, V, can affect the electrochemical potential
individually. For convenience the dimensionless lever arm is defined to reflect this

ratio:
Cs,

a; (2.10)

Following the electrochemical potential of the electron in QD, the addition energy

required to add the electron to the island is:

62

AEadd :/L(N—Fl) —/L(N) = C_E_'_ENJrl —EN:Ec—l—AE (211)

The addition energy consists of two parts: an electrostatic charging energy Fe =
5_22’ and the energy spacing between two discrete quantum levels AE. AFE =
En.1—FEN comes from spacing between the single-particle energy. The last term of
Equation 2.8 is a sum over the occupied single-particle energy levels E,,(B) , which
depends on the characteristics of the quantum confinement. It arises when the
dimensions of the QD is comparable or smaller than the electron Fermi wavelength
in host material silicon (Ap = 35 nm) [65]. The spin and valley degrees of freedom
in the quantum dot give this fine structure of the single-particle spectrum.

In order to resolve quantized energy levels and excited states, the thermal

energy kg1 has to be well below the energy scales of the dot E¢ and the

single-particle energy AFE. Therefore transport measurements of the quantum
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Figure 2.4 (a)Electrostatic energy of the quantum dot in linear transport
regime. (b)Electrostatic energy of the quantum dot in Coulomb blockade regime.
(c¢) Transport measurement of quantum dot showing Coulomb oscillation. (d)
Quantum dot artificial atoms with filling energy shells in analogy with three
dimensional atoms. (c,d)Adapted from [70]
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dot are performed at cryogenic temperatures. The discrete energy spectrum of
the quantum dot can be electrically probed. As shown in Equation 2.9 voltage on
the electrode Vi, Vg, V; can tune the electrochemical potential p(N) linearly via
the lever arm ratio.

Electrochemical potential pg/q of the reservoir are set by the voltages on the
source/drain leads. The source-drain bias determines the electrochemical potential
Vsa = (s — pa)/e. Electron density states in the reservoirs follow a Fermi-Dirac
probability distribution f(FE) which leads to the broadening the states determined

by temperature.
1
HEB) = I ot

(2.12)

In the linear transport regime, when a small bias Vyq = V; — Vj is applied between
the source and drain, transport through the QD is only permitted when there are
available levels p(N) of the QD in the bias window determined by the bias V4
as shown in Figure 2.4(a). In the other case, Figure 2.4(b) where there are no
QD levels in the bias window, the transport is blocked, leading to a 0 current Iy
known as the Coulomb blockade. As gate voltage V; tunes the electrochemical
potential of QD to align and misalign with the bias window, regular spikes in the
current(conductance) can be observed as a function of gate voltage V, as shown
in Figure 2.4(c). The AFE,qq is extracted (Figure 2.4(d)-inset) from the Coulomb
blockade transport measurement, and a regular QD behaves like an artificial atom
showing shell filling patterning for s- and p-shell [70].

In the non-linear transport regime V4 > 0, the window at which transport
through the QD broadens as bias voltage Vyq increases. This characteristic leads to
the so-called Coulomb diamonds pattern [09, 71]as shown in Figure 2.5(a). Outside
the grey shaded area, the transport is blocked, and the number of electrons on the
dot is constant. The highlighted black lines correspond to the situation where the
electrochemical potential of source/drain is aligned to the electrochemical potential
of the dot (s = (N +1) , g = p(N)). From the constant interaction model, the
slope for the boundary of Coulomb diamonds is obtained: eCy/Cs and —eCy/(Cy+
Cyq). In the shaded area where single-electron tunnelling occurs. An increase in
current can be observed. These can be understood as an excited state entering

the bias window as shown in Figure 2.5(b)(d). The addition energy AFE,qq and
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Figure 2.5 (a)Schematic plot of the transport current g4 as a function of eV,q and
Ve. several scenario when the level alignment is indicated with energy schematic
diagrams(b,c,d). (b)excited states ugs(N — 1) aligned with electrochemical energy
of drain. (c)two QD levels p(N) and pu(N + 1) aligned with the electrochemical
energy of the source and drain. (d)excited states ups(N + 1) aligned with
electrochemical energy of source. Adapted from [(9]

single-particle level spacing AE(N) can be extracted from the Coulomb diamond
measurement at the height shown in Figure 2.5(c)(d). The spin filling can also be
studied further in Coulomb diamond measurement from magneto-spectroscopy by

looking at the Zeeman energy shift of the Coulomb peaks [71].

2.2.2 Double Quantum Dots

This part will introduce the double quantum dot (DQD) system based on the
previous constant interaction model and quantum transport discussed for single
QD. The double quantum dots are capacitively and tunnel coupled with the mutual
capacitance FE¢p, and resistance Ry, between each other. Similar to single QD,
bot dots are coupled capacitively to the plunger gate via Cgi41, Cg242, and nearby
reservoir Cyqy. Additionally, cross-capacitances between plunger gate 1(2) and QD
2(1) is also introduced and given as Cgiqz, Cg2d1. The total capacitance of each
quantum dot is defined as: Cy2) = Cr(r) + Cg12)a1(2) + Co21ya12) + Crm-
Expanding the single QD electrostatic energy to DQD, every charge on the node

can be added up by the linear combination of each voltage via by the capacitance
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Cg1 az Cg2d1

Figure 2.6 schematic of double quantum dot QD1,QD2 with source/drain leads
and two gate voltages. Adapted from [72]

matrix 5 — CV. The electrostatic energy Eq(N,M) = %707 of this double
QD with N and M electrons on QD 1 and 2, respectively, is then given by

E4(N,M) = Ec;N?/2 4+ EcsM?/2 + Ecu NM + E N + E oM (2.13)

where Ecy(g) is the charging energies of the two dots correspondingly, Ecy, is the
electrostatic coupling energy between them, and F,,; and F),,» are the single-particle
energies of the two dots. With the sum of the capacitances directly coupled to
each quantum dot defined as C, these energies can be expressed in terms of the

capacitances as follows:

Cy

C C
—e2 2?2 R e2 2 m
CCC,—02 T a0, — 02

E FEepy, =€6—————
C1 C 60102_07271

(2.14)

To understand the DQD sytem, the stability diagram is introduced which
visualizes the equilibrium charge states of two coupled QD connected in series.
Figures 2.7(a-c) show the stability diagrams as a function of Vy and Vi for
different regimes of inter-dot coupling. When Cy, and Cyiga(g2a1) = 0, QD1 and
QD2 is completely decoupled from each other and the corresponding gate. When
C’m/C’l(g) — 1, the mutal capacitance is big enough to dominate the total
capacitance of QD, this means the two QD are strongly coupled and behave as a
big single QD. In a typical DQD stabilit diagram where all coupling capacitance
are intermediate, the triple point and inter-dot charge transistion can be

observed in the so-called honeycomb diagram. At the triple points illustrated in
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Figure 2.7 stability diagram of the double-dot systems with QD occupation
numbers (Ny, Ny) for (a)small, (b)intermediate, and large(c) inter-dot coupling.
(d) double-dot quantum transport at triple point. (e) bias-triangle Adapted
from [73]
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Figures 2.7(d), the energy levels of the two QDs are aligned with the source and
drain thus leading to the quantum transport through the DQD. At high bias
regime where Vyq > 0, these triple points broadens and turn into bias-triangle as
shown in Figures 2.7(e). Within the shaded bias-triangle area, the
electrochemical potentials of the DQD lies in the bias window of source and
drain. The vertex of the bias triangle marks the alignment of QD1 and QD2
energy levels with corresponding source and drain. Furthermore, the successive
alignment of ground and excited states contributes to conductance resonances
within the bias triangles. The tunnelling of electrons through the potential
barrier is spin conserved. In some special cases, where the electron system’s
initial and final state have orthogonal spin configurations, the transport is
forbidden, and the tunnelling current is strongly suppressed. This event is called
spin blockade and usually observed in double quantum dots transition with
electron numbers (1,1) - (2,0) or effective configuration with filled shell [74].
From the transport measurements forementioned (Coulomb diamond and
bias-triangle), charging energies, QD configurations, capacitances and inter-dot

coupling can be all extracted.

2.2.3 Dopants in silicon

Another quantum dot realization in silicon is dopant. There are two methods to
achieve precise dopant placement in silicon: ion implantation [75] and scanning
probe lithography [76]. Figure 2.8(a) shows the crystal structure of single 3'P
dopant in silicon. The electrostatic potential of a single-dopant atom is radially
symmetric and steep, which creates the confinement of free electron. In
Figure 2.8(b), a 3'P dopant atom has three charge states: the ionized D% state
which corresponds to an empty dopant with a filled orbit which does not appear
as an electron energy state, the neutral DY state with one electron bound to the
dopant, and the negatively charged D~ state with two electrons in the outer shell
bound to the dopant. The binding energy of the dopant is defined as the energy
difference between D~ and D° states. A nearby gate electrode can electrically
control the dopant charge state. The dopant in solid especially donor in silicon

can be found in review [(4]. The system Hamiltonian of the donor nuclear spin
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Figure 2.8 (a) crystal structure of single 3'P dopant in Silicon adapted
from [77]. (b) Band structure of the single dopant quantum confinement with
the corresponding atom ionized state.

and electron spin under applied static magnetic field By can be written as:

H=H,+ Hyy+ Hy + Hy (2.15)

The four terms describe the Zeeman, hyperfine, spin-spin and spin-orbit
interactions. The first term Zeeman energy H, consists of the electron spin and

nuclear spin Zeeman energy:

Hz = ’VeBO .S — ’}/HB() -1 (216)

where the S and I represents the electron and nuclear spin , Yo = gopte/h is the
electron gyromagnetic ratio, with g, being the electron g-factor. ~, = gnpin/h
is the nuclear gyromagnetic ratio, with g, being the nuclear g-factor and u, the
nuclear magneton. g, ~ 2 is usually used for electrons in silicon. The hyperfine
term describes the contact hyperfine interaction between the electron and donor

nucleus:

th = A.hfS -1 (217)

where Ay¢ is the hyperfine tensor, S-I creates the N-th dimensional Hilbert space(
N = dim(S) x dim(I)). For phosphors donor in silicon, I = 1/2,S = 1/2, there
are 4 eigenstates represented by |mg), |m;) for this system, where |mg) = +1/2,
and |my) = +£1/2 [78]. For high nuclear spin number donor such as antimony(/ =
7/2) [79] and bismuth(/ = 9/2) [30] in silicon, a much larger hilbert space (16th,
20th dimensional respectively) can be created and quantum chaos experiments are

explored in these system [31].
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The spin-spin term consist of the exchange interaction dependent on energy
detuning and spin dipole-dipole coupling Hyzgy = DS -1 in which D is dependent on
spatial separation (1/r%) between the spins [32]. The spin-orbit term H,, = Ag,L-S
where L is the orbital quantum number and S is the spin quantum number. The
spin-orbit coupling Ay, is large in the material system such as GaAs which has a
high atomic number and bulk anisotropy in solids. The spin-orbit coupling is small
in the silicon conduction band due to its bulk inversion symmetry. In the donor-dot

system in Chapter 7, only Zeeman and the hyperfine term are considered.

2.3 Charge and Spin state in QD

2.3.1 Charge state

The first implementation of qubit in silicon is single electron charge state in tunnel
coupled DQD. The one-electron charge states (0,1) and (1,0) representing whether
the electron is on the right dot or the left, form the basis states |0) and |1).

As shown in Figure 2.9(a). the energy detuning ¢ is defined as the gate voltage

b)) E

Figure 2.9 (a)stability diagram of double quantum dot with less than 2 electron,
charge qubit encoded in the detuning (¢) direction with the (0,1) and (1,0) states
(b)energy diagram of the double quantum dot as a charge qubits

variable which crosses the (1,0) and (0,1) interdot charge transition (IDT) and sets
the energy splitting. The tunnel coupling, which represents the interdot tunnelling
transition (t. = A./2) gives the off-diagonal terms in the Hamiltonian, leading to
the overall Hamiltonian and eigenenergies given in terms of Pauli spin matrices
Ory» 8S:

H.(e)=——0, — =0, (2.18)



where the detuning e is the difference in electrochemical potentials of the two
dots. The eigenstates of this system (bonding and antibonding charge states) are
represented by £+ = «|0) + 8]1) bounded by an avoided crossing representing the

energy level with no tunnel coupling.

1
B, =+5/@ + A2 (2.19)

At zero detuning € = 0, the eigenstates are shifted from the avoided crossing by
the amount of ¢, leading to the total splitting in between of A, = 2t. as shown in
Figure 2.9(b) and the system has same probability to be in the (1,0) and (0,1) basis.
At far detuning € > 0, the system is almost classical and shows a classical charge
state. With zero applied magnetic fields, the two eigenstates are spin-degenerate.
It can be coherently driven between both states with microwave of which energy
that matches the Ec, splitting hv = \/m . The energy level spectroscopy and
measurements of the charge qubit’s coherence time can be performed through the
process known as photon assisted tunnelling. With chopped microwave control,
the charge fluctuation can be removed and measure the charge coherence time

more acurately [32, 83].

2.3.2 Spin state

Silicon is an ideal environment for the spin state in the solid state, one and two-
electron spin states in a quantum dot are considered in this following part. The
non-zero magnetic field splits spin state of a single electron in quantum dot by the
Zeeman energy AE, = p.gB,. where p, is the Bohr magneton and ¢ represents
electron g-factor. The spin-up and spin-down electron defined by the applied field
form the basis state | 1) and | |) of the spin qubit. A spin qubit can be manipulated
using Electron Spin Resonance (ESR) or Electron Dipole Spin Resonance (EDSR).
With non-zero magnetic field By, microwave applied to an on-chip transmission
line to create an oscillating magnetic field By, rotations between | 1) and | |) can
be coherently driven [50]. The alternative EDSR uses the oscillating electric field,
which requires the interaction between the electric field and the electron spin. In

silicon, the intrinsic spin-orbit coupling which couples the electric field and the
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electron spin is weak. An external micro-magnet is used to create a magnetic
field gradient that couples the electric field and the electron spin via synthetic
spin-orbit coupling [57]. For hole spin qubit, the spin-orbit coupling at valence
band is relative big [34], this removes the complexity in incorporating extra micro-
structures in qubit devices.

The spin state of two electron in a quantum dot leads to four states. These

singlet and triplet states are defined by following equations:

1S) = (| 1) — | 41)/V2, (2.20)

To) = (I 14) + [ 41)/v2, (2.21)
Ty) = 11), (2.22)
T-) = [ 1) (2.23)
(a) (b)
S' sT
E
I | 4E,

Figure 2.10 (a)stability diagram of double quantum dot with less than 2 electron,
charge qubit encoded in the detuning (¢) direction with the (0,1) and (1,0) states
(b)energy diagram of the double quantum dot as a charge qubits. Adapted from
ref [71]

As shown in Figure 2.10(a), the ground state singlet with two electrons
occupying the lowest orbital with antiparallel spins has a total spin quantum
number S, = 0. The other three triplets are degenerate at zero-field and they
require one electron to occupy a higher orbital in the QD. In silicon, the energy

difference between S — Ty singlet-triple FEgr is a result of orbital-valley
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mixing [71]. At a finite magnetic field, the T’y (S, = 1) state and the T_ (S, =
-1) state are shifted by +AFE,. It is proposed to use two spin states S and Tj as
the basis for the S — T qubit which is resilient to magnetic noise [35]. The
operation S — T qubit is located in the (1,1)-(2,0) charge transition of the DQD.
Figure 2.10(b) shows the energy-detuning plot of the two-spin energy states.
Only considering the tunnelling coupling between S(1,1) — S(2,0), the
eigenstates of this DQD system at the finite field are S bonding and antibonding
states and three triplet states. At the far detuning of S(1,1) — (2,0) mixed state,
the S(1,1) and Typ(1,1) are almost degenerate due to the small overlap between
the electron wavefunctions. The two states are differed by the exchange coupling
J(e). For a fixed tunnel coupling between the DQD, exchange coupling is
dependent on the detuning e, therefore controllable by gate voltages. Exchange
coupling is used to drive qubit rotations between S — T, states. Pauli spin
blockade lies in the S(2,0) — To(2,0) energy difference Egp for given detuning,
therefore it is be used to initialize and readout the singlet-triple state [30].

Other spin state mixing such as S — 7T_ is shown in Figure 2.10(b) and 7'(1, 1)
and 7'(2,0) not shown at high detuning of Figure 2.10(b). The S — T_ crossing is
mixed due to the host’s spin-orbit coupling and nuclear spin.  Angular
momentum conservation leads to a simultaneous spin ‘flop’ of the neighbouring
nuclear spin. This mixing in GaAs (S — 7', for positive g-factor) could build up a
nuclear spin polarization by repetitively driving detuning across the
transistion [87, 88]. As a result, the inhomogeneous coherence time Ty is
significantly increased [39]. This S — T crossing is also studied in the donor-dot
system (Chapter 7) as an indirect way to access the donor nuclear spin. 7'(1,1)
and T(2,0) mixing via tunnel coupling occur at large detuning due to large
valley-orbital energy splitting Esr in QDs [90]. Moreover, at a high spin state
with a high magnetic field, mixing of spin states with total spin angular

momentum up to S = 3 has been demonstrated [91].

2.3.3 Charge readout

Measurement of single charge via direct transport is limited by the tunnel rates

between the reservoir and integration time. Instead, local charge sensors are
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proposed to determine the number of electrons in single or double quantum dots
via electrostatic coupling. = Charge sensors are realized in one-dimensional
constrictions known as quantum point contact (QPC) or using charge islands
such as single electron transistor (SET) or single electron box (SEB) [92, 93].
The charge sensor is placed close to the qubit device and biased at the point of
maximum transconductance dI/dV for optimal sensitivity [91]. In order to
benchmark the charge sensing performance, the noise spectral density Sp(w) and
the sensitivity of the current to charge environment (0I/0Q) are used to define

the charge sensitivity [95]:

0q = % (2.24)
The current noise spectral density Sp(w) has three main contributors: the
thermal noise [90, 97], the shot noise [9%] and the charge noise [99]. Tt is
calculated for a practical charge sensor at T = 100mK, the dominant noise
comes from the fluctuations in the nearby charge trap [100]. With the typical

resistance (R ~ 100kQ) of the measurement apparatus and the capacitive
components (C' ~ 1nF) in the cables, the bandwidth of the charge sensor in DC
transport is estimated to be in the order of kHz [101]. To further improve the
sensitivity and  bandwidth  of the charge sensing measurement,
radio-frequency (RF) electrometers are pioneered by Schoelkopf et al. [101] to
overcome the dominating charge noise at low frequency. A sensitivities as low as
6q = 1pe/v/Hz is achieved with a measurement bandwidth up to 10 MHz [102].
Benefitting from the improvements in bandwidth, sub-microsecond measurement

is possible for high fidelity readout of silicon spin qubit.

2.3.4 Spin readout

Measurement of spin state has been conventionally done with spin resonance

techniques.  Bulk spin resonance typically has the detection limit of 10!3

spins [103].  This limit is brought down to 10> hundred spins by using
micro-resonators [104, ]. NV-centres could sense single spins in close
proximity but are difficult to incorporate [100, ]. In QD devices, spin-charge

conversion is used to measure spin state indirectly via charge movement.
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Spin-selective tunnelling: A energy-selective tunnelling method relys on
exchanging electrons with the nearby reservoir to readout the spin state of the
electron. At a magnetic field B,, the spin up and down states of the electron ( j4
and p)) are splitted by the energy AE.. During the readout, the reservoir Fermi
level jies is placed near the centre of the window between the py and ) state.
For a spin-up state, electron tunnels onto the reservoir and is then followed by
an electron tunnelling back onto the spin-down state of the QD. On the contrary,
an electron initially at a spin-down state remains in the QD and no tunnelling
event happens [31]. This spin-dependent tunnelling event shows as a blip in the
time-domain sensor signal, and the spin state can be determined as shown in
Figure 2.11(a). The tunnelling rate of spin up and spin down state need to be
slower than the measurement bandwidth for detection of tunnel event, and the
Zeeman splitting window need to be much larger than the thermal broadening of

reservoir fermi level for high-fidelity readout [105].
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Figure 2.11 (a) the readout method based on Spin-selective tunnelling. (b) the
readout method based on Pauli spin blockades.

Pauli spin blockade: In the DQD system, the spin state can be measured
without the exchange with the reservoir by the Pauli spin blockade. At the
detuning where (1,1) state is the ground state, both 7'(2,0) and S(2,0) state can
transition to (1,1) state. While a detuning where the S(0,2) state is ground
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state, the S(1,1) state transitions to S(0,2) via elastic tunnelling, while the
T(1,1) —T(2,0) state remains blocked due to the orbital energy but can be lifted
after spin relaxation time. This delayed charge transition can be monitored in
the sensor signal and used to measure the spin state between S — T or single spin

state in the target QD.

2.4 Gate-based RF readout

Following the successful implementation of RF-QPC [109, ], RF-SET [101,

|, gate-based RF sensors is developed and provided to be a compact, sensitive
readout method and can be implemented in a scalable way for readout of spin
qubits  [112]. Unlike the previous RF techniques requiring the extra
nanostructure (QPC or SET), the gate-based RF sensors read out the signal
dispersively through a resonant circuit which connects to one of the gates near
the QD. The reflection mode of RF readout is used in this thesis. The
transmission mode of gate-based sensing can be found in reference: [113, ]. In
the gate-based configuration, the device capacitance has two main components:
the geometric capacitances which comes from geometric capacitances in the
nanostructures and voltage independent, and the parametric capacitances which
comes from electron tunnelling event in the device. This parametric capacitance
includes an electron charge tunnel induced tunnel capacitance and a
state-dependent ‘quantum capacitance’ at the dispersive regime where the
resonator and two level system are detuned [115, |. The gate-based sensing is
centred around the voltage-dependent parametric capacitance Cpaa. It is
implemented in the following two scenarios: cyclic electron tunnelling
between the QD and reservoir and inter-dot 