Noyce, A;
(2021)
Optimising classification of Parkinson’s disease based on motor, olfactory, neuropsychiatric and sleep features.
npj Parkinson's Disease
, 7
, Article 87. 10.1038/s41531-021-00226-2.
Preview |
Text
Lees_s41531-021-00226-2.pdf - Published Version Download (1MB) | Preview |
Abstract
Olfactory loss, motor impairment, anxiety/depression, and REM-sleep behaviour disorder (RBD) are prodromal Parkinson’s disease (PD) features. PD risk prediction models typically dichotomize test results and apply likelihood ratios (LRs) to scores above and below cut-offs. We investigate whether LRs for specific test values could enhance classification between PD and controls. PD patient data on smell (UPSIT), possible RBD (RBD Screening Questionnaire), and anxiety/depression (LADS) were taken from the Tracking Parkinson’s study (n = 1046). For motor impairment (BRAIN test) in PD cases, published data were supplemented (n = 87). Control data (HADS for anxiety/depression) were taken from the PREDICT-PD pilot study (n = 1314). UPSIT, RBDSQ, and anxiety/depression data were analysed using logistic regression to determine which items were associated with PD. Gaussian distributions were fitted to BRAIN test scores. LRs were calculated from logistic regression models or score distributions. False-positive rates (FPRs) for specified detection rates (DRs) were calculated. Sixteen odours were associated with PD; LRs for this set ranged from 0.005 to 5511. Six RBDSQ and seven anxiety/depression questions were associated with PD; LRs ranged from 0.35 to 69 and from 0.002 to 402, respectively. BRAIN test LRs ranged from 0.16 to 1311. For a 70% DR, the FPR was 2.4% for the 16 odours, 4.6% for anxiety/depression, 16.0% for the BRAIN test, and 20.0% for the RBDSQ. Specific selections of (prodromal) PD marker features rather than dichotomized marker test results optimize PD classification. Such optimized classification models could improve the ability of algorithms to detect prodromal PD; however, prospective studies are needed to investigate their value for PD-prediction models.
Type: | Article |
---|---|
Title: | Optimising classification of Parkinson’s disease based on motor, olfactory, neuropsychiatric and sleep features |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/s41531-021-00226-2 |
Publisher version: | https://doi.org/10.1038/s41531-021-00226-2 |
Language: | English |
Additional information: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Movement Neurosciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/10133460 |
Archive Staff Only
![]() |
View Item |