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Optimising classification of Parkinson’s disease based on
motor, olfactory, neuropsychiatric and sleep features
Jonathan P. Bestwick 1✉, Stephen D. Auger1, Anette E. Schrag 2, Donald G. Grosset3, Sofia Kanavou4, Gavin Giovannoni1,5,
Andrew J. Lees 2, Jack Cuzick 1 and Alastair J. Noyce 1,2

Olfactory loss, motor impairment, anxiety/depression, and REM-sleep behaviour disorder (RBD) are prodromal Parkinson’s
disease (PD) features. PD risk prediction models typically dichotomize test results and apply likelihood ratios (LRs) to scores
above and below cut-offs. We investigate whether LRs for specific test values could enhance classification between PD and
controls. PD patient data on smell (UPSIT), possible RBD (RBD Screening Questionnaire), and anxiety/depression (LADS) were
taken from the Tracking Parkinson’s study (n= 1046). For motor impairment (BRAIN test) in PD cases, published data were
supplemented (n= 87). Control data (HADS for anxiety/depression) were taken from the PREDICT-PD pilot study (n= 1314).
UPSIT, RBDSQ, and anxiety/depression data were analysed using logistic regression to determine which items were associated
with PD. Gaussian distributions were fitted to BRAIN test scores. LRs were calculated from logistic regression models or score
distributions. False-positive rates (FPRs) for specified detection rates (DRs) were calculated. Sixteen odours were associated with
PD; LRs for this set ranged from 0.005 to 5511. Six RBDSQ and seven anxiety/depression questions were associated with PD; LRs
ranged from 0.35 to 69 and from 0.002 to 402, respectively. BRAIN test LRs ranged from 0.16 to 1311. For a 70% DR, the FPR was
2.4% for the 16 odours, 4.6% for anxiety/depression, 16.0% for the BRAIN test, and 20.0% for the RBDSQ. Specific selections of
(prodromal) PD marker features rather than dichotomized marker test results optimize PD classification. Such optimized
classification models could improve the ability of algorithms to detect prodromal PD; however, prospective studies are needed
to investigate their value for PD-prediction models.
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INTRODUCTION
Parkinson’s disease (PD) affects about 1% of individuals over
the age of 60 years1. Clinical PD diagnosis is usually made late
in the disease process and current treatments only relieve
symptoms. Identifying earlier stages of PD may increase
chances of slowing disease progression2,3. Accordingly, risk
prediction models have been developed. In PREDICT-PD, a pilot
study of 1323 individuals aged 60–80 years recruited from the
general UK population4, the risk of PD was estimated based
upon systematic review and meta-analysis of risk factors and
early features5. Separately, the Movement Disorders Society
(MDS) produced criteria for the diagnosis of prodromal PD6,7, a
risk algorithm based upon primary-care presentations has also
been described8, as well as risk algorithms based on clinical and
genetic classification9,10. Most of these algorithms dichotomize
exposure variables and risk factors, which in turn can lead to a
loss of information if the underlying trait is continuous or
discrete11.
In reporting the baseline and year 3 follow-up data from the

PREDICT-PD pilot study, preliminary support for the validity and
the value of the risk algorithm was assessed by comparing
‘intermediate outcome markers’ for PD between those at
estimated highest and lowest risk. These intermediate markers
comprised three of the strongest indicators of increased PD risk:
olfactory loss, reduced finger-tapping speed, and possible rapid
eye movement (REM)-sleep behaviour disorder (RBD)4,12. These

markers, along with age, and anxiety and depression scores,
represent the continuous data used in most prediction settings.
In the PREDICT-PD study, RBD was assessed subjectively using

the RBD Screening Questionnaire (RBDSQ), with a score of ≥5
indicating possible RBD13. Olfactory loss was assessed objectively
using the University of Pennsylvania Smell Identification Test
(UPSIT), a 40-item ‘scratch-and-sniff’ smell test14. A score ≤ 15th

centile was used to indicate olfactory loss, which equated to an
UPSIT score of ≤274,12. Recently, members of our group used a
data-driven approach to propose smaller subsets of the 40 items
in the UPSIT, which could be used on a wider scale to predict
olfactory loss15. Finger-tapping speed was used as an objective,
quantitative motor marker with the Bradykinesia Akinesia
Incoordination (BRAIN) test16. Users completed the BRAIN test
online by alternately tapping the ‘S’ and ‘:’ keys on a keyboard as
rapidly and accurately as possible in 30 s. The best two parameters
generated are the kinesia score (KS, the total number of key taps)
and the akinesia time (AT, the mean dwell time of keys in
milliseconds). In year 3 of follow-up in PREDICT-PD, a KS score ≤44
(≤15th centile) signified reduced tapping speed12. In the PREDICT-
PD algorithm, anxiety and depression contributed to risk
estimation and was assessed using the Hospital Anxiety and
Depression Scale (HADS)17 with scores ≥11, indicating moderate
anxiety or depression.
Common to all PD-prediction models is the modification of

the age-related risk of PD using the presence or absence of risk
factors or protective factors. The MDS criteria do this using
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likelihood ratios based on results of prospective studies: e.g., the
likelihood ratios for those with olfactory loss (denoted LR+) are
6.4 and 0.40 (denoted LR−) for those without; for possible RBD
(based on the RBDSQ), the likelihood ratios (with and without)
are 2.8 and 0.89, for abnormal quantitative motor testing the
likelihood ratios (with and without) are 3.5 and 0.60, and for
anxiety or depression the likelihood ratios (with and without) are
1.6 and 0.877.
Here we investigate whether the use of likelihood ratios

generated from the full range of test values or test items rather
than using likelihood ratios for dichotomized test results optimizes
classification of PD. Furthermore, we explored whether inclusion
of objective measures (age, finger tapping, and smell) were more
valuable than subjective traits (anxiety and depression, and
possible RBD).

RESULTS
Smell
The median number of correctly identified odours (out of 40) was
18 among PD cases and 32 among controls (p < 0.001). Among the
32 odours common to both the UK and US versions of the UPSIT,
correlation coefficients between pairs of odours were low; all <0.3,
with 95% of correlations <0.2. Table 1 shows the results of the
multivariate logistic regression analyses on items from the UPSIT.
In a multivariate model, of the 32 odours, 16 were found to be
statistically significantly associated with PD (Supplementary
Table 1 shows univariate odds ratios for each of the 32 odours)
with the remaining 16 odours not adding to the model. The table
also shows the results for the six odours that were most strongly
associated with PD. Figure 1 shows the distribution of likelihood
ratios and receiver operating characteristic (ROC) curves for each
set of odours. Based on the 16 odours, the median likelihood
ratios for PD were 36 (95% confidence interval (95% CI) 29–44)

and 0.05 (95% CI 0.04–0.06) in PD cases and controls, respectively
(p < 0.001), and ranged from 0.009 to 5511 in PD cases (10th–90th
centile 1.10–556) and from 0.005 to 515 in controls (10th–90th
centile 0.02–0.68). For 50%, 60%, 70%, and 80% detection rates,
false-positive rates were 1.1%, 1.9%, 2.4%, and 3.7%, respectively.
Corresponding internally validated estimates were 1.4%, 2.2%,
2.7%, and 4.2%, respectively. The area under the ROC curve (AUC)
was 0.97 and the internally validated AUC was 0.96. Using an
UPSIT cut-off of ≤27, as was done when UPSIT scores were
previously dichotomized4,12, the detection rate was 85% and the
false-positive rate 14.9%. Using lower cut-offs of 23 and 25, the
detection and false-positive rates were 84% and 6.2%, and 85%
and 9.4% respectively; higher cut-offs yielded the same perfor-
mance as with the cut-off of 27. For the same 14.9% false-positive
rate for the cut-off of 27, the detection rate for the 16 odours was
10 percentage points higher (95% vs. 85%). Based on the 6 odours
that were most strongly associated with PD in this analysis, the
median likelihood ratios were 32 (95% CI 24–33) in PD cases and
0.03 (95% CI 0.03–0.03) in controls (p < 0.001), and ranged from
0.03 to 1429 in PD cases (10th–90th centile 0.72–305) and from
0.03 to 315 in controls (10th–90th centile 0.03–1.07), and
corresponding false-positive rates for 50%, 60%, 70%, and 80%
detection rates were 0.9%, 1.6%, 2.8%, and 4.4%, respectively.
Corresponding internally validated estimates were 0.9%, 1.7%,
2.9%, and 4.4%, respectively. The AUC was 0.95 and the internally
validated AUC was also 0.95. For the same 14.9% false-positive
rate using an UPSIT cut-off of ≤27, the detection rate for the six
odours was 92%.
Supplementary Table 2 shows results for the multivariate model

for the six odours previously identified as being predictive of
olfactory loss15,18. Supplementary Fig. 1a shows the distribution of
likelihood ratios in PD cases and controls, and Fig. 1b shows the
ROC curve based on these six odours. The median likelihood ratios
were 6.0 (95% CI 5.5–7.1) in PD cases and 0.14 (95% CI 0.14–0.14)

Table 1. Results of multivariate logistic regression analyses of the odours common to the UK and US versions of the UPSIT, and the 6 odours most
strongly associated with Parkinson’s disease.

Odour Model including all significant odours Model including 6 odours most strongly associated
with PD

Likelihood ratio test
statistics between
nested models

Coefficient OR (95% CI) p-Value Coefficient OR (95% CI) p-Value χ2 p-Value

Gasoline −1.492617 0.22 (0.15–0.34) 5.66 × 10−12 −1.952729 0.14 (0.1–0.21) 2.17 × 10−24 663.52 2.57 × 10−146

Soap −1.956232 0.14 (0.10–0.21) 4.43 × 10−23 −2.232339 0.11 (0.08–0.15) 1.36 × 10−34 354.48 4.486 × 10−79

Watermelon −1.436059 0.24 (0.15–0.37) 6.69 × 10−11 −1.859984 0.16 (0.11–0.23) 5.82 × 10−21 230.33 5.042 × 10−52

Lemon −1.402295 0.25 (0.17–0.35) 1.40 × 10−14 −1.511823 0.22 (0.16–0.3) 6.21 × 10−20 131.11 2.337 × 10−30

Cinnamon −1.174883 0.31 (0.21–0.45) 8.66 × 10−10 −1.544792 0.21 (0.15–0.3) 2.35 × 10−18 96.36 9.601 × 10−23

Natural gas −1.084457 0.34 (0.21–0.54) 6.15 × 10−6 −1.561454 0.21 (0.14–0.32) 7.06 × 10−13 55.57 9.03 × 10−14

Rose −0.8652221 0.42 (0.28–0.63) 2.71 × 10−5 38.76 4.79 × 10−10

Paint thinner −0.8597572 0.42 (0.29–0.61) 6.03 × 10−6 28.29 1.05 × 10−7

Pineapple −0.7759867 0.46 (0.30–0.71) 0.0004 20.42 6.21 × 10−6

Banana −0.6495947 0.52 (0.35–0.77) 0.0011 13.07 0.0003

Cedar −0.5584326 0.57 (0.39–0.84) 0.0048 10.25 0.0014

Cherry −0.5074133 0.60 (0.41–0.88) 0.0087 7.12 0.0076

Strawberry 0.6116164 1.84 (1.21–2.81) 0.0045 7.00 0.0082

Coconut −0.4896007 0.61 (0.41–0.91) 0.0143 5.87 0.0154

Menthol −0.6320504 0.53 (0.32–0.88) 0.0148 4.22 0.0400

Mint 0.5117308 1.67 (1.08–2.57) 0.0209 5.48 0.0192

Constant 8.66404 5790.88 (2480.46–13519.39) 3.09 × 10−89 7.313897 1501.02 (754.9–2984.58) 1.33 × 10−96
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in controls (p < 0.001), and ranged from 0.14 to 112 in PD cases
(10th–90th centile 0.55–51) and from 0.14 to 195 in controls
(10th–90th centile 0.14–1.91; 0.14 is the LR assigned to someone
that correctly identified all 6 odours; 59% of controls did so). For
50%, 60%, 70%, and 80% detection rates, false-positive rates were
4.1%, 5.3%, 8.5%, and 14.7%, respectively (i.e., poorer performance
than for the six odours that were most strongly associated with PD
in this analysis). Corresponding internally validated estimates were
4.2%, 5.4%, 8.7%, and 15.0%, respectively. The AUC was 0.88 and
the internally validated AUC was also 0.88.
For the alternative approach examining the total UPSIT scores,

there was a small but significant decrease in UPSIT scores with

increasing age (0.61 per 5 years of age, 95% CI 0.31–0.92; p <
0.001) and males overall had lower scores than females (1.26
points lower, 95% CI 0.66–1.87; p < 0.001). The regression
equations for males and females are given in Eqs. (1) and (2),
respectively:

UPSIT score ¼ 39:59� 0:1221 ´ age (1)

UPSIT score ¼ 40:86� 0:1221 ´ age (2)

Using these equations to convert to delta values gave the
distribution of scores shown in Supplementary Fig. 2a. In both PD
cases and controls, there was evidence of a mixture of two

Fig. 1 Classification of Parkinson’s Disease (PD) based on smell. a Distribution of likelihood ratios among PD cases and controls using the 16
odours of the University of Pennsylvania Smell Identification test (UPSIT) common to both the UK and US versions of the UPSIT identified as
being associated with PD (see Table 1). b Observed detection rate according to false-positive rate (receiver operating characteristic [ROC]
curve) for the 16 odours of the UPSIT identified as being associated with PD. c Distribution of likelihood ratios among PD cases and controls
using the 6 odours common to both the UK and US versions of the UPSIT most strongly associated with PD (see Table 1). d ROC curve for the 6
odours of the UPSIT most strongly associated with PD. AUC, area under the receiver operating characteristic curve.
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Gaussian distributions (p < 0.001 for both, indicating mixtures of
two Gaussian distributions fit the data better than a single
Gaussian distribution in PD cases and a single Gaussian
distribution in controls).
In neither PD cases nor controls was there evidence of more

than two underlying distributions. The means, SDs, and mixing
proportions are given in the Supplementary Material. Supplemen-
tary Fig. 2b shows the likelihood ratio according to UPSIT score
multiple of the median (MoM) values. Risk reversal occurred below
UPSIT delta values of −23.71 and above 4.15, and truncation limits
were applied at these points. The median likelihood ratio in PD
cases was 10.2 (95% CI 8.9–11.3) and in controls was 0.12 (95% CI
0.12–0.13) (p < 0.001) with a range in likelihood ratios from 0.07 to
45 (10th–90th centile 0.32–37.6 in PD cases, 0.07–1.67 in controls).
Supplementary Fig. 2c shows an ROC curve for the UPSIT delta
values. For observed detection rates of 50%, 60%, 70%, and 80%,
the false-positive rates were 2.5%, 3.6%, 4.7%, and 8.7%,
respectively, higher than the false-positive rates derived from
the results of the logistic regression analyses. The AUC was 0.91,
lower than the AUC values based on the logistic regression
analyses. For the same 14.9% false-positive rate using an UPSIT
cut-off of ≤27, the detection rate for the mixture distributions
was 85%.

Possible REM-sleep behaviour disorder
Table 2 shows the results of the multivariate logistic regression
analyses on items of the RBDSQ. Six of the 12 questions were
significantly associated with being a PD case (Supplementary
Table 3 shows univariate odds ratios for each question of the
RBDSQ). Figure 2a shows the distribution of likelihood ratios and
Fig. 2b an ROC curve based on the results in Table 2. The median
likelihood ratio was 1.14 (95% CI 1.00–1.14) in PD cases and 0.80
(95% CI 0.70–0.79) in controls (p < 0.001), and the range was
0.35–69 in PD cases (10th–90th centile 0.35–11) and 0.35–29
(10th–90th centile 0.35–1.6) in controls. For a 50% detection rate,
the false-positive rate was 16%; for detection rates of 60%, 70%,
and 80%, the false-positive rate was constant at 20%. Correspond-
ing internally validated estimates were 12.2%, 20.4%, 20.3%, and
13.2%, respectively. The AUC was 0.74 and the internally validated
AUC was 0.73. Using a cut-off of ≥5 as is typically done when
RBDSQ scores are dichotomized, the detection rate was 35% and
the false-positive rate 14.1%. For the same 14.1% false-positive
rate, the detection rate for the 16 odours was 51%.

Anxiety and depression
Table 3 shows the results of the multivariate logistic regression
analyses on items common to both the HADS and Leeds Anxiety

and Depression Scale (LADS). Seven of the nine questions were
significantly associated with being a PD case in a multivariate
model with the question “I feel as if I am slowed down” being
most strongly associated with PD (OR= 10.3, 95% CI 8.43–12.58)
(Supplementary Table 4 shows univariate odds ratios for each
question common to both the HADS and LADS). Figure 3a shows
the distribution of likelihood ratios and Fig. 3b an ROC curve
based on the results in Table 3. The median likelihood ratio was
8.2 (95% CI 6.2–10.2) in PD cases and 0.19 (95% CI 0.18–0.21) in
controls (p < 0.001), and the range was 0.010–402 in PD cases
(10th–90th centile 0.57–77) and 0.002–132 in controls (10th–90th
centile 0.03–0.9). For 50%, 60%, 70%, and 80% detection rates,
false-positive rates were 2.1%, 2.9%, 4.6%, and 6.1%, respectively.
Corresponding internally validated estimates were 2.2%, 2.9%,
4.7%, and 6.2%, respectively. The AUC was 0.92 and the internally
validated AUC was 0.91. As the question “I feel as if I am slowed
down” may be subject to bias given that slowness of movement is
a main symptom of PD and cases in the analysis were recently
diagnosed, a post hoc sensitivity analysis was performed
excluding this question. With this question excluded, false-
positive rates were notably higher (19%, 33%, 53%, and 58% for
50%, 60%, 70%, and 80% detection rates, respectively) and the
AUC substantially lower (0.71). The range of risks were also much
narrower; 0.16–56 in PD cases (10th–90th centile 0.47–6.26) and
0.16–13.5 in controls (10th–90th centile 0.35–1.74).

Quantitative motor impairment
For the BRAIN test scores, KS followed a Gaussian distribution, and
AT did after log-transformation. There was a small but significant
decrease in KS scores with increasing age (−1.02 per 5 years of
age, 95% CI −0.31 to −1.72; p= 0.005) and females overall had
higher scores (1.49 higher, 95% CI 0.10 to 2.87; p= 0.035). The
regression equations for males and females are given in Eqs. (3)
and (4), respectively.

KS ¼ 66:10� 0:2030 ´ age (3)

KS ¼ 67:59� 0:2030 ´ age (4)

There was a small but significant increase in log (natural) AT
scores with increasing age (0.04 per 5 years of age, 95% CI
0.01–0.06; p= 0.001) and females overall had higher scores (0.08
higher, 95% CI 0.04–0.12; p < 0.001). The regression equations for
males and females are given in Eqs. (5) and (6), respectively.

ln ATð Þ ¼ 4:126þ 0:006932 ´ age (5)

ln ATð Þ ¼ 4:211þ 0:006932 ´ age (6)

Table 2. Results of multivariate logistic regression analyses of the questions that make up the REM-sleep behaviour Screening Questionnaire
(RBDSQ).

RBDSQ question Coefficient OR (95% CI) p-Value Likelihood ratio test
statistics between
nested models

χ2 p-Value

5. It thereby happened that I (almost) hurt my bed partner or myself 1.566722 4.79 (3.26 –7.04) 1.44 × 10−15 23.15 2.88 × 10−52

3. The dream contents mostly match my nocturnal behaviour 1.044969 2.84 (2.14–3.78) 5.38 × 10−13 73.62 9.47 × 10−18

1. I sometimes have very vivid dreams −0.872100 0.42 (0.34–0.51) 5.89 × 10−17 49.64 1.84 × 10−12

6. I have or had any of the following phenomena during my dreams:

6.1 Speaking, shouting, laughing very loudly 0.7731019 2.17 (1.71–2.74) 9.31 × 10−11 57.56 3.28 × 10−14

6.4 Things that fell down around the bed, e.g., bedside lamp, book, glasses 0.7478248 2.11 (1.38–3.24) 0.0006 13.99 0.0002

4. I know that my arms or legs move when I sleep 0.3166089 1.37 (1.09–1.73) 0.0076 7.03 0.0080

Constant −0.6268203 0.53 (0.46–0.62) 1.50 × 10−17
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After transforming values into delta values for KS and
MoM values for AT using the above regression equations, mean
KS values were 12.8 points lower in PD cases than in controls, and
AT values 36% higher (both p < 0.001). Supplementary Fig. 3
shows probability plots for delta KS values (3a) and AT MoM values
(3b), with AT MoM values plotted on a log scale. Delta KS values
start to deviate, or the data were sparse, below −30 and above 10,
and for AT below 0.5 MoM and above 3.0 MoM. These values were
therefore used as truncation limits. However, the point of risk
reversal for AT was at 0.75, so values less than this were truncated.
All distributions were reasonably Gaussian as indicated by the
points roughly falling on straight lines. Figure 4 shows the
distribution of delta KS (4a) and AT MoM (4b) values in PD cases
and controls. KS had the best discrimination between PD cases

Fig. 2 Classification of Parkinson’s Disease (PD) based on the
REM-sleep behaviour Screening Questionnaire (RBDSQ). a Dis-
tribution of likelihood ratios among PD cases and controls using the
6 questions of the RBDSQ identified as being associated with PD
(see Table 2). b The observed detection rate according to false-
positive rate (receiver operating characteristic curve) for the 6
questions of the RBDSQ identified as being associated with PD. AUC,
area under the receiver operating characteristic curve.
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and controls. Supplementary Table 5 shows the parameters
(means, SDs, correlation coefficients, truncation limits) in PD cases
and controls. Figure 4c shows the distributions of likelihood ratios
in PD cases and controls. The median likelihood ratio in PD cases
was 2.73 (95% CI 1.99–3.95) and in controls was 0.39 (95% CI
0.37–0.42) (p < 0.001) with a range in likelihood ratios from 0.18 to
1311 in PD cases (10th–90th centile 0.35–81) and 0.16–458 in
controls (10th–90th centile 0.18–1.9). Figure 4d shows an ROC
curve for the combination of delta KS and AT MoM values. For
50%, 60%, 70%, and 80% detection rates, false-positive rates were
6.7%, 9.3%, 16.0%, and 40%, respectively. Corresponding internally
validated estimates were the same to one decimal place. The AUC

was 0.82 and the internally validated AUC was the same to two
decimal places. Using a KS cut-off of ≤44 as was done when the
scores were previously dichotomized, the detection rate was 62%
and the false-positive rate 16.5%. For the same 16.5% false-
positive rate, the detection rate using the new approach was 62%.

Combining likelihood ratios generated from different tests
Pairwise correlation coefficients between likelihood ratios gener-
ated from each test and scale are shown separately for PD cases
and controls in Supplementary Table 6 (among PD cases, it was
not possible to calculate correlations between likelihood ratios
from the BRAIN test and any of likelihood ratios generated from
UPSIT, RBDSQ, or anxiety, and depression tests and scales).
Correlation coefficients were between −0.03 and 0.07, and despite
some just reaching statistical significance, this indicates the tests
are largely independent and likelihood ratios can be multiplied
together in risk estimation. Supplementary Table 7 shows screen-
ing performance when likelihood ratios based on the RBDSQ, and/
or anxiety and depression are combined with likelihood ratios for
the UPSIT (using the 16 or 6 most discriminating odours), limited
to PD cases (n= 835) and controls (n= 887) with complete data.
The addition of likelihood ratios for the RBDSQ yielded only a
small improvement in screening performance. For example, using
the 16 odours that discriminated between PD cases and controls,
for an 80% detection rate the false-positive rate decreased from
3.6% to 3.0%, but at a 90% detection rate the false-positive rate
increased from 6.4% to 6.7%. The AUC was, however, statistically
significantly higher at 0.971 with and 0.967 without the RBDSQ (p
= 0.006). The addition of likelihood ratios for anxiety and
depression to likelihood ratios for the 16 items of the UPSIT did
yield an improvement in screening performance (false-positive
rates of 1.5% and 3.9% for 80% and 90% detection rates
respectively; AUC= 0.986, p < 0.001 compared with the AUC for
the 16 items of the UPSIT [0.967]) but when the question “I feel as
if I am slowed” was excluded the improvement was trivial (false-
positive rates of 3.2% and 6.2% for 80% and 90% detection rates,
respectively).

Sensitivity analyses
Supplementary Table 8 shows the sensitivity analysis results of the
multivariate conditional logistic regression analyses on items from
the UPSIT in which controls were matched to PD cases on the
basis of age category and gender. Of the 32 odours, 11 were
found to be statistically significantly associated with PD. Ten of
these odours were found to be associated with PD in the full
dataset and odds ratios are similar. Only onion was found to be
associated with PD in the matched dataset but not in the full
dataset. The table also shows the results for the six odours that
were most strongly associated with PD, which were the same six
odours that were identified using the full dataset.
Supplementary Table 9 shows the sensitivity analysis results of

the multivariate conditional logistic regression analyses on items
from the UPSIT in which PD cases with dementia or cognitive
impairment were excluded. Of the 32 odours, 14 were found to be
statistically significantly associated with PD. Twelve of these
odours were found to be associated with PD in the full dataset and
odds ratios are similar. Chocolate and motor oil were found to be
associated with PD in the dataset excluding PD cases with
dementia or cognitive impairment but not in the full dataset. The
table also shows the results for the six odours that were most
strongly associated with PD, which were the same six odours that
were identified using the full dataset.

DISCUSSION
Our results show that maximizing information on markers for PD
that are either continuous or discrete substantially extends the

Fig. 3 Classification of Parkinson’s Disease (PD) based on anxiety
and depression scales. a Distribution of likelihood ratios among PD
cases and controls using the seven questions common to both the
Hospital and Leeds Anxiety and Depression Scales (HADS and
LADS), respectively, used in PREDICT-PD and Tracking Parkinson’s,
which were associated with PD (see Table 3). b The observed
detection rate according to false-positive rate (receiver operating
characteristic curve) for the seven questions common to the HADS
and LADS identified as being associated with PD. AUC, area under
the receiver operating characteristic curve.
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range of likelihood ratios than is achieved by dichotomization and
can improve screening performance in terms of an increase in the
detection rate for the same false-positive rate observed using
dichotomized test results. In comparison to dichotomous like-
lihood ratios for olfactory performance of 6.4 for those with
olfactory loss vs. 0.40 for those with normosmia7, olfactory
likelihood ratios presented here ranged from 0.07 to 45 based
on the full range of olfactory performance (using the total score
from the 40-item UPSIT) and ranged from 0.009 to about 5500
using the logistic regression approach that identified 16 odours,
which were significantly associated with PD. Similarly, possible
RBD likelihood ratios ranged from 0.35 to 69, which compares
favourably to respective likelihood ratios of 0.89 and 2.8 for those
without or with possible RBD previously reported7. For anxiety and
depression, likelihood ratios ranged from 0.002 to 402 compared
to likelihood ratios of 0.87 and 1.6 for those without and with at
least moderate anxiety or depression, although the range was
narrower after excluding the question “I feel as if I am slowed
down” (0.16 to 56). Finally, likelihood ratios for finger-tapping
speed based on two BRAIN test parameters ranged from 0.16 to
about 1300, whereas previous dichotomized values were 0.60 and
3.5 for those without and with abnormal quantitative motor
testing, respectively7. Although the range of likelihood ratios is
large, it does occur that likelihood ratios can be small for some PD
cases and large for some controls, even though overall there is an
improvement in performance. Any revision to an algorithm will
ultimately reclassify some people incorrectly where they may have

previously been categorized correctly, but for the majority the
reclassification will be correct.
The practical use of likelihood ratios that are specific to an

individual’s test or scale responses is no different to the use of
positive or negative likelihood ratios, which depend on a cut-off
used to dichotomize scores. The positive likelihood ratio is the
detection rate divided by the false-positive rate (or sensitivity
divided by the complement of the specificity). The resulting range
of possible likelihood ratios is large in comparison with the
likelihood ratios in the MDS research criteria for prodromal PD6,7.
The likelihood ratios in the MDS research criteria are based on
prospective studies and incident PD, whereas this study is cross-
sectional with recently diagnosed PD cases, which represents a
limitation and direct comparison of likelihood ratios is not
possible. Although the range of likelihood ratios presented here
is large, conceptually it is reasonable, e.g., that an individual that
was only able to identify a third of odours be assigned a likelihood
ratio greater than an individual who was able to identify half of
the odours, whereas when dichotomizing they would both be
assigned the same likelihood ratio. Similarly, it is reasonable that
an individual who could identify all odours be assigned a lower
likelihood ratio than an individual who could identify 75% of
odours. Although the likelihood ratios presented here may appear
extreme, in other areas of medicine, risk prediction algorithms can
yield far more extreme likelihood ratios. For example, with the
commonly used ‘Combined test’ (one ultrasound marker, two
serum markers, and maternal age) in prenatal screening for Down
syndrome, likelihood ratios of >1,000,000 are possible19.

Fig. 4 Classification of Parkinson’s Disease (PD) based on the Bradykinesia Akinesia Incoordination (BRAIN) test. a Distributions of kinesia
score (difference from the median [delta] KS) in PD cases and controls. b Distributions of akinesia time (multiple of the median [MoM] AT) in
PD cases and controls. c Distributions of likelihood ratios based on the multivariate Gaussian distributions of KS and AT. d The observed
detection rate according to false-positive rate (receiver operating characteristic curve) based on the multivariate Gaussian distributions of KS
and AT. AUC, area under the receiver operating characteristic curve.
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The logistic regression approach to UPSIT provided more
information than examining total UPSIT scores and offers potential
improvement compared to simply dichotomizing scores. There are
a number of different tests of smell on the market, such as the
Sniffin’ Sticks and conversion of scores from this test to the full 40-
item UPSIT has been described20. For researchers using alternative
smell tests, conversion could be performed and likelihood ratios
for total UPSIT scores applied (using Supplementary Fig. 2b).
Otherwise, a logistic regression approach could be used to
develop a model to calculate likelihood ratios using different smell
tests provided there are sufficient data. We presented two six-item
odour tests, one from previous work that selected items on their
ability to predict olfactory loss in healthy controls15,18 and a new
selection based on their ability to differentiate PD cases from
controls in the current analysis. The 6-item test from the current
analysis had similar performance to the test using 16 of the 32
odours common to both the UK and US UPSIT. The six-item test
based on previous work performed less well, but this test may
have an advantage in that it was primarily designed to test for
olfactory loss, in which case it could be more generalizable to
diseases other than PD and has been externally validated in a
dataset independent to the one used to derive it18. In any case,
either six-item test could offer substantial cost savings over
routinely using the full UPSIT when administered on a large scale.
Other studies have also have investigated subsets of the UPSIT

or other smell tests21–24. The most comparable to our study was
by Morley et al.24 who examined 12 items of the UPSIT and, using
a logistic regression approach, found an AUC of 0.80 and, using a
cut-off of 8/12 correctly identified odours, a sensitivity of 82% and
specificity of 68%24. They found, however, that the discriminatory
power was not the same in two independent cohorts (for the 40
UPSIT items discriminatory power was higher in the independent
cohorts) but this was judged solely by the AUC, which is not
recommended25,26. A preferred method is comparison of sensi-
tivity for given reasonable (i.e., higher) levels of specificity and/or
specificity for given reasonable (higher) levels of sensitivity26.
Where subsets of smell tests have been studied, there has been a
lack of uniformity in the odours that are associated with PD with
one of the possible reasons being because of cultural or other
differences between populations24. In this study, this is somewhat
mitigated by the fact that the PD cases completed the UK version
of the UPSIT and the controls of the US version, so we only
examined the 32 odours common to both versions.
Although there is an advantage in dichotomizing variables to

clinically easily interpretable thresholds for categorizing cases, in
other areas of medicine such as a patient having hypertension or
not, dichotomizing variables comes at the cost of loss of
information11 and is avoided in other areas of medical risk-
assessment calculations (e.g., using actual blood pressure readings
in cardiovascular disease prediction rather than dichotomizing at a
fixed value as hypertensive or not). Using individual questions for
tests or scales such as the UPSIT, RBDSQ, or HADS/LADS, or using
information on the exact scores of tests such as the BRAIN test
maximizes information but is likely to be of most use for objective
measures such as the UPSIT and BRAIN test. Although we were
unable to combine likelihood ratios for the BRAIN test with those
from the other tests, combining likelihood ratios for the RBDSQ
with those from the UPSIT did not materially affect screening
performance, and when combining UPSIT and HADS/LADS
likelihood ratios, there was an improvement in screening
performance (Supplementary Table 7), but not with the exclusion
of the question ‘I feel as if I am slowed’. This question particularly
is likely subject to bias given that slowness of movement is a main
symptom of PD and cases in the analysis were recently diagnosed;
in those who get a PD diagnosis in the future, the odds ratio is
likely to be smaller than the value of 10.3 observed in this study.
Similarly, the question ‘Worrying thoughts constantly go through
my mind’ could resemble PD-related worries rather than indicate

depression. The lack of improvement in screening performance
with the addition of likelihood ratios based on multivariate logistic
regression models for the RBDSQ and HADS/LADS could be a
reflection of the subjective nature of these tests; as such, there is
unlikely to be much advantage in calculating likelihood ratios
based on individual questions from these scales over dichotomiz-
ing. Further work based on prospective data and incident PD
would be needed before considering the use of likelihood ratios
based on specific answers to questions of the RBDSQ and HADS/
LADS.
In this study, we have used an approach similar to that which

has been used for many years in prenatal screening for Down
syndrome, as well as more recently in prenatal screening for
trisomy 18, trisomy 13, and preeclampsia. In the same way as MoM
values take account of natural changes in ultrasound and serum
markers with gestational age in prenatal screening for Down
syndrome and similar conditions19,27, our delta and MoM values
take account of normal changes in smell loss and tapping
parameters with age, and also between males and females.
Researchers wishing to use delta or MoM values could generate
these from their own data in the same way as done here, using
regression analysis among those without PD, or in a cohort study
by regression analysis in all participants. Emerging blood or other
biomarkers for PD would also benefit from the use of delta or
MoM values instead of mass units, with the added advantage of
accounting for of systematic differences between different assays
and laboratories by calculating delta or MoM values based on local
data. The use of multivariate Gaussian distributions also allows for
a modular approach, i.e., adding new markers to risk prediction
models as they are discovered, without needing data on each
marker to be measured in the same participants, albeit under the
assumption of independence with established markers.
A weakness of this study is that the estimates of screening

performance are based on cross-sectional marker distributions in
those with diagnosed PD. In practice, such risk estimation will take
place before diagnosis, so screening performance estimates in a
‘healthy population’ are likely to be lower than those presented
here. To mitigate this as much as possible, we used the earliest
possible data collected in the Tracking Parkinson’s study, such that
we used the baseline assessments of RBD, and anxiety and
depression, which were performed on average 1.4 years after PD
diagnosis and the UPSIT was performed on average 6.7 months
after baseline (on average, 1.9 years since PD diagnosis). Further,
olfactory deficits have often been shown to be independent of PD
disease duration and disease stage21,28. Our logistic regression
analysis of the UPSIT did not adjust for age and gender, because in
algorithms such as the MDS research criteria for prodromal
Parkinson’s and the PREDICT-PD risk algorithm, the age-specific
risk is modified by the likelihood ratios according to gender6,7,12,
so to include age and gender in the multivariate logistic
regression models would double count age and gender in the
algorithm. Nevertheless, the sensitivity analysis in which PD cases
and controls were matched on age and gender produced similar
results, including the same six odours in the six-item test, which is
not surprising given that even though females and younger
participants scored statistically significantly higher on the UPSIT,
the effect of age and gender was small. Similarly, we were unable
to adjust for cognitive deficit, because this was defined using
Montreal Cognitive Assessment scores in PD cases, but equivalent
data were not available in controls. A large population-based
study found that after adjustment for age, sex, education, and
depressive symptoms, higher smell test scores were significantly
associated with better verbal abilities and semantic memory,
better ability to learn new verbal information, verbal memory, and
delayed free recall, attention or cognitive processing speed, and
executive function29. Therefore, given the cross-sectional
case–control nature of this study, we cannot exclude bias arising
from cognitive deficits. However, in our sensitivity analysis where
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PD cases with dementia or cognitive impairment were excluded,
reassuringly the same six odours were associated with PD, with
similar odds ratios to those using the full dataset.
Ideally, the approaches used in this study would be assessed

and likelihood ratios generated using prospective data, but until
cohorts that include the assessments examined in this study
mature so that they include a large enough number of individuals
diagnosed with PD with sufficient follow-up, such as the PREDICT-
PD cohort, this study represents a starting point and, until
prospective data with enough PD cases is available, the LRs
presented here can be used to calculate PD risk in a research
framework. However, to what the degree the classification models
of the present study can be translated and used for PD-prediction
models will require further methodological investigation. We have,
however examined the likelihood ratios presented here for smell,
tapping speed, RBD and anxiety and depression together with age
and other factors, such as smoking status and family history of PD,
to determine by how much the spread of risk increases in the
PREDICT-PD cohort, and how risk estimates are associated with PD
diagnosis in the limited number that have been diagnosed so far
in this cohort30. In this study, we examined each test or scale
separately to avoid a large reduction in the number of PD cases
and controls that would have resulted were we to have jointly
examined the tests and scales where possible. However, pairwise
correlations between likelihood ratios obtained from the separate
tests in both PD cases and controls were very small, indicating that
the tests are largely independent. In practice, therefore, it is
possible to multiply likelihood ratios from the separate tests in
estimating PD risk. It is recognized that estimates of performance
of a predictive model are often overestimated when determined
on the sample from which the model is derived due to
overfitting31, but our internally validated estimates of performance
were very similar. We used the bootstrap method for internal
validation, which provides a level of optimism of the observed
AUC and detection rates for specified false-positive rates and false-
positive rates for specified detection rates based on all data, and is
a more efficient method of internal validation than splitting the
dataset into training and validation sets, with the latter method
being shown to be overly pessimistic31,32. Despite our internally
validated estimates of the performance of the tests being similar
to those based on the original data, showing good internal
validation, the approach used here also needs to be externally
validated in independent datasets and ideally assessed using
prospective data with incident PD as the outcome. This will also
determine whether the individual items of the UPSIT, RBDSQ, and
depression and anxiety questions that were identified as being
associated with PD can be replicated. A further weakness of this
study is that data on PD cases came from a different source to that
of controls, and for assessing anxiety and depression, different but
overlapping scales were used. Although the age profiles were
similar between PD cases and controls, because we limited to
those aged 60–80 years, we cannot exclude the presence of
residual confounding, reinforcing the need for external validation.
In summary, this study shows that maximizing information on

continuous and discrete markers for PD has potential, by
providing more precise risk estimates, to improve the ability of
algorithms to detect PD and this study provides the methods for
incorporating this approach into other algorithms. This approach
needs to be validated in independent prospective datasets and
the translation of the association models and LRs to valid
prediction models is needed.

METHODS
Data sources
In this cross-sectional case–control study, control data came from
individuals in the PREDICT-PD pilot study who had not been diagnosed
with PD during follow-up at year 6 (mean age 67 years, 62% female);

participants had completed the UPSIT (n= 887) and/or BRAIN test (n=
1071), and/or RBDSQ (n= 1314) and/or HADS (n= 1314). Full details of the
study were previously published4. Data from cases with PD were derived
from several sources: the assessment of UPSIT and RBDSQ scores, and
anxiety and depression were taken from baseline data of those aged
between 60 and 80 years in the Tracking Parkinson’s study (young-onset
PD cases were excluded), a multicentre prospective longitudinal epide-
miological and biomarker study of PD (n= 1046, mean age 69 years, 47%
female; RBDSQ scores available on n= 983; anxiety and depression data
available on n= 872)33. For the BRAIN test, 59 PD cases came from
previously published data34, supplemented with unpublished data for a
total of n= 87 PD cases. BRAIN tests were performed ‘off’ treatment in
PD cases.

Calculation of likelihood ratios
For the full 40-item UPSIT, total scores were adjusted by performing a
median regression of UPSIT scores against age and gender among
controls, then subtracting all participants’ UPSIT scores from their expected
score from the regression equations (UPSIT delta values). Previous work,
based on the University of Pennsylvania 12-item Brief Smell Identification
Test, showed that 9/49 PD cases had normal olfactory function and 12/52
controls had abnormal olfactory function21; therefore, we expected there
would be a mixture of distributions of total UPSIT scores in both PD cases
and controls. To investigate whether there was a mixture of Gaussian
distributions among PD cases and controls, finite mixture models with
more than one Gaussian component were fitted. From the final
distributions, likelihood ratios according to UPSIT delta values were
calculated as the height of the modelled distribution (density) in PD cases
divided by the height of the modelled distribution in controls, with
truncation limits applied to avoid risk reversal35 (see Supplementary
Material). In addition to using the full 40-item UPSIT score, we also
performed logistic regression to determine which odours were associated
with PD. A forward stepwise procedure was used for this analysis (with a
0.05 significance level for entry into the model), using the 32 odours that
were common to both the UK and US version of the UPSIT (the PREDICT-
PD pilot study used the US version, whereas the Tracking Parkinson’s study
used the UK version). We also explored the performance of a subset of the
six odours most strongly associated with PD identified from the forward
stepwise procedure. We further examined the results of a six-item smell
test, which was based on the four odours that discriminated most between
those with and without olfactory loss from previous work, plus a further
two odours that most discriminated between PD and controls (menthol,
clove, orange, onion, coconut, and cherry)15,18. Using the logistic
regression approach, likelihood ratios were calculated by calculating the
log odds based on the final multivariate logistic regression models,
exponentiating and then dividing by 932/887; the number of PD cases
divided by the number of controls in the analysis.
For the BRAIN test, results for the worst of KS and AT scores from each

hand were adjusted by performing a median regression of scores against
age and gender among controls, then either subtracting (for KS) or
dividing (for AT) all participants’ scores by the expected score from the
regression equations. Fits of adjusted BRAIN test scores to Gaussian
distributions were assessed by inspection of probability plots. The points at
which data started to deviate from a Gaussian distribution were used as
truncation limits, to avoid extreme KS or AT values having an unwanted
impact on the combined likelihood ratio. Where there were any points of
risk reversal within the limit, the point of risk reversal was used as a
truncation limit. The means, SDs, and correlation coefficients between the
two parameters were calculated to define a bivariate Gaussian distribution
in PD cases and controls. To avoid the influence of outliers, the median was
used as the mean and robust SDs were calculated as the 90th centile
minus the 10th centile divided by 2.563 (i.e., number of SDs between the
10th and 90th centiles of a Gaussian distribution). Likelihood ratios
according to adjusted KS and AT values were calculated as the height of
the bivariate Gaussian distribution in PD cases, divided by the height of the
bivariate Gaussian distribution in controls (see Supplementary Material for
formula).
For total RBDSQ scores, the final question that scores 1 if a person was

diagnosed with a disease of the nervous system was not included, given
that all PD cases would score 1. As with analyses on UPSIT scores,
multivariate logistic regression using a forward stepwise procedure was
used to determine which questions in the RBDSQ were associated with PD.
Likelihood ratios were calculated by calculating the log odds based on the
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fitted multivariate logistic regression model, exponentiating and then
dividing by (875/1314).
For assessment of anxiety and depression, the PREDICT-PD pilot study

used the HADS, whereas the Tracking Parkinson’s study used the LADS36

with the addition of two questions from HADS. The LADS consists of six
questions related to anxiety and six to depression; four of the anxiety
questions and three of the depression questions matched questions in the
HADS (of the three depression questions, two were the converse of the
questions in the HADS, so reversing the scores for these two questions
equated them). Therefore, there were nine questions common to both the
PREDICT-PD and Tracking Parkinson’s cohorts that could be used in the
analysis; multivariate logistic regression using a forward stepwise
procedure was used to determine which of these were associated with
PD, with the scores for each question, which ranged from 0 to 3 (Likert-
type scales) treated as linear, to preserve the ordinal nature of responses
and to minimize degrees of freedom. Likelihood ratios were calculated by
calculating the log odds based on the fitted multivariate logistic regression
model, exponentiating and then dividing by (872/1314).
For each marker and approach, the performance in predicting PD was

estimated as false-positive rates for specified detection rates. The AUC was
also calculated. Internal validation of the specified models was performed
using the bootstrapping method31,32. Briefly, for the fitted logistic
regression models using all data, a new model was fitted on a bootstrap
sample, and that model tested on the bootstrap sample and on the
original data, with the AUC and false-positive rates for specified detection
rates calculated. This process was repeated 1000 times. The average
difference in the AUC and false-positive rates for specified detection rates
provided estimates of the optimism of the performance of the models
fitted on all data. The estimates of optimism were then subtracted from the
performance measures to estimate the internally validated performance.
Similar bootstrap estimates of performance to the observed performance
using the original full data indicate good internal validation. For the BRAIN
test, a similar method was used but was based on fitting bivariate Gaussian
distributions to bootstrap samples. In this analysis, setting truncation limits
based on where the distributions deviated from a Gaussian distribution
cannot be automated, so were the same as those based on all data, unless
they were set at the point(s) of risk reversal. However, in practice,
truncation limits have little impact on detection or false-positive rates or
the AUC.
Sensitivity analyses were performed for the logistic regression approach

to the UPSIT in which (i) a reduced dataset was used where controls were
matched to PD cases by age (in 3-year categories) and gender, to
determine whether this impacted the multivariate models given that
younger people and females have been shown to perform better on the
UPSIT, and (ii) a reduced dataset in which PD cases with dementia or
cognitive impairment were excluded.
Spearman’s rank correlation was used to determine whether likelihood

ratios generated from the different tests were independent. Statistical
significance was set at 5% and all analyses were performed using Stata
version 16 (StataCorp, College Station, Texas).

Ethical approval
The PREDICT-PD study was approved by Central London Research
Committee 3 (reference number 10/ H0716/85). Seventy-two sites in the
United Kingdom providing secondary care treatment for PD patients as
part of the UK National Health Service (and in selected sites, their linked
academic institutions) are participating in the Tracking Parkinson’s study,
with multicentre ethics committee and local research and development
department approvals. All PREDICT-PD participants provided informed
consent via the PREDICT-PD website. All Tracking Parkinson’s study
participants provided written informed consent at the time of recruitment.
Participants whose data were used, who were not part of the PREDICT-PD
or Tracking Parkinson’s study, provided written informed consent. BRAIN
test data used in this study that was not part of the PREDICT-PD or
Tracking Parkinson’s studies were from patients recruited from the
Movement Disorder clinic at the Royal London Hospital, approved by the
Queen Square Research Ethics Committee (reference number 09/H0716/
48) or the East London PD Project, approved by the Southwest Bristol
Ethics Committee (reference number 18/SW/0255), and for both,
participants provided written informed consent.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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