Teikari, P;
Najjar, RP;
Schmetterer, L;
Milea, D;
(2019)
Embedded deep learning in ophthalmology: making ophthalmic imaging smarter.
Therapeutic Advances in Ophthalmology
, 11
10.1177/2515841419827172.
Preview |
Text
2515841419827172.pdf - Published Version Download (940kB) | Preview |
Abstract
Deep learning has recently gained high interest in ophthalmology due to its ability to detect clinically significant features for diagnosis and prognosis. Despite these significant advances, little is known about the ability of various deep learning systems to be embedded within ophthalmic imaging devices, allowing automated image acquisition. In this work, we will review the existing and future directions for ‘active acquisition’–embedded deep learning, leading to as high-quality images with little intervention by the human operator. In clinical practice, the improved image quality should translate into more robust deep learning–based clinical diagnostics. Embedded deep learning will be enabled by the constantly improving hardware performance with low cost. We will briefly review possible computation methods in larger clinical systems. Briefly, they can be included in a three-layer framework composed of edge, fog, and cloud layers, the former being performed at a device level. Improved egde-layer performance via ‘active acquisition’ serves as an automatic data curation operator translating to better quality data in electronic health records, as well as on the cloud layer, for improved deep learning–based clinical data mining.
Type: | Article |
---|---|
Title: | Embedded deep learning in ophthalmology: making ophthalmic imaging smarter |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1177/2515841419827172 |
Publisher version: | https://doi.org/10.1177/2515841419827172 |
Language: | English |
Additional information: | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
Keywords: | artificial intelligence, deep learning, embedded devices, medical devices, ophthalmic devices, ophthalmology |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Brain Repair and Rehabilitation |
URI: | https://discovery.ucl.ac.uk/id/eprint/10091543 |
Archive Staff Only
View Item |