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Introduction
Recent years have seen an explosion in the use of 
deep learning algorithms for medical imaging,1–4 
including ophthalmology.5–9 Deep learning has 
been very efficient in detecting clinically signifi-
cant features for ophthalmic diagnosis9,10 and 
prognosis.11,12 Recently, Google Brain demon-
strated how one can, surprisingly, predict sub-
ject’s cardiovascular risk, age, and sex from a 
fundus image,13 a task impossible for an expert 
clinician.

Research effort has so far focused on the develop-
ment of post hoc deep learning algorithms for 
already acquired data sets.9,10 There is, however, 
growing interest for embedding deep learning at 
the medical device level itself for real-time image 
quality optimization, with little or no operator 
expertise. Most of the clinically available fundus 
cameras and optical coherence tomography 
(OCT) devices require the involvement of a 
skilled operator in order to achieve satisfactory 

image quality, for clinical diagnosis. Ophthalmic 
images display inherent quality variability due to 
both technical limitations of the imaging devices 
and individual ocular characteristics. Recent 
studies in hospital settings have shown that 38% 
of nonmydriatic fundus images for diabetic 
screening,14 and 42–43% of spectral domain 
(SD)-OCTs acquired for patients with multiple 
sclerosis15 did not have acceptable image quality 
for clinical evaluation.

Desktop retinal cameras have been increasingly 
replaced by portable fundus cameras in stan-
dalone format16–18 or as smartphone add-ons,19 
making the retinal imaging less expensive and 
accessible to various populations. The main 
drawback of the current generation portable 
fundus camera is the lower image quality. 
Some imaging manufacturers have started to 
include image quality assessment algorithms to 
provide a feedback for the operator to either re-
acquire the image or accept it.20 To the best of 
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our knowledge, no current commercial system is 
automatically reconstructing ‘the best possible 
image’ from multiframe image acquisitions.

Embedding of more advanced algorithms and 
high computation power at the camera level can 
be referred to as ‘smart camera architectures’,21 
with or without the use of deep learning. For 
example, Google launched its Clips camera, and 
Amazon Web Services (AWS) its DeepLens cam-
era which are capable of running deep learning 
models within the camera itself without relying on 
external processing Verily, the life sciences 
research organization of Alphabet Inc., partnered 
with Nikon and Optos to integrate deep learning 
algorithms for fundus imaging and diabetic retin-
opathy screening (https://verily.com/projects 
/interventions/retinal-imaging/). Similar imple-
mentation of ‘intelligence’ at the device level is 
happening in various other medical fields,22 
including portable medical ultrasound imaging, 
with more of the traditional signal processing 
being accelerated graphics processing units 
(GPUs),23 with the deep learning integrated at 
the device level.24

There are various ways of distributing the signal 
processing from data acquisition to clinical diag-
nostics. For example, the use of fundus cameras 
in remote locations with no Internet access 
requires all the computations to be performed 
within the device itself, a system which has been 
implemented by SocialEyes, for retinal screening 
on GPU-accelerated tablets.25 This computing 
paradigm, known as edge computing,26 is based on 
locally performed computations, on the ‘edge’,27,28 
as opposed to cloud computing in which the fun-
dus image is transmitted over the Internet to a 
remote cloud GPU server, allowing subsequent 
image classification. In some situations, when 
there is a need for multilayer computational load 
distribution, additional nodes are inserted 
between the edge device and the cloud – a 
computation paradigm known as mist29 or fog 
computing.30 This situation applies typically to 
Internet-of-things (IoT) medical sensors, which 
often have very little computational capability.31

The main aim of the current review is to summa-
rize the current knowledge related to device-level 
(edge computing) deep learning. We will refer to 
this as ‘active acquisition’, for improved ophthal-
mic diagnosis via optimization of image quality 
(Figure 1). We will also overview various possi-
bilities of computing platforms integrate into the 

typical clinical workflow with a focus on standard 
retinal imaging techniques (i.e. fundus photogra-
phy and OCT).

Embedded ophthalmic devices

Emerging intelligent retinal imaging
The increased prevalence of ophthalmic condi-
tions affecting the retinas and optic nerves of vul-
nerable populations prompts higher access to 
ophthalmic care both in developed33 and develop-
ing countries.34 This translates into an increased 
need of more efficient screening, diagnosis, and 
disease management technology, operated with 
no or little training in clinical settings or even at 
home.16 Although paraprofessionals with techni-
cal training are currently able to acquire fundus 
images, a third of these images may not be of sat-
isfactory quality, being nongradable,35 due to 
reduced transparency of the ocular media.

Acquisition of such images may be even more dif-
ficult in nonophthalmic settings, such as emer-
gency departments.36 Recent attempts have aimed 
to automate retinal imaging processing using a 
clinical robotic platform InTouch Lite (InTouch 
Technologies, Inc., Santa Barbara, CA, USA)37 
or by integrating a motor to the fundus camera 
for automated pupil tracking (Nexy; Next Sight, 
Prodenone, Italy).38 These approaches have not 
been validated clinically and are based on rel-
atively slow motors, possibly not adapted to 
clinically challenging situations. Automated 
acquisition becomes even more important with 
the recent surge of many smartphone-based fun-
dus imagers.39 Due to the pervasiveness of smart-
phones, this approach would represent a perfect 
tool for non-eye specialists.40

Similar to fundus imaging, OCT systems are getting 
more portable and inexpensive and would benefit 
from easier and robust image acquisition.17,18,41 
Kim and colleagues41 developed a low-cost exper-
imental OCT system at a cost of US$ 7200 using 
a microelectromechanical system (MEMS) 
mirror42 with a tunable variable focus liquid lens 
to simplify the design of scanning optics, with 
inexpensive Arduino Uno microcontroller43 and 
GPU-accelerated mini PC handling the image 
processing. The increased computing power from 
GPUs enables some of the hardware design 
compromises to be offset through computa-
tional techniques.44,45 For example, Tang and 
colleagues46 employed three GPU units for 
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real-time computational adaptive optics (AO) 
system, and recently Maloca and colleagues47 
employed GPUs for volumetric OCT in virtual 
reality environment for enhanced visualization in 
medical education.

Active data acquisition
The computationally heavier algorithms made 
possible by the increased hardware performance 
can be roughly divided into two categories: (1) 
‘passive’ single-frame processing and (2) ‘active’ 
multiframe processing. In our nomenclature, the 
‘passive’ techniques refer to the standard way of 
acquiring ophthalmic images in which an opera-
tor takes an image, which is subsequently sub-
jected to various image enhancement algorithms 
either before being analyzed by clinician or graded 
automatically by an algorithm.48 In ‘active’ image 

acquisition, multiple frames of the same structure 
are obtained either with automatic reconstruction 
or with interactive operator-assisted reconstruc-
tion of the image. In this review, we will focus on 
the ‘active’ paradigm, where clinically meaningful 
images would be reconstructed automatically 
from multiple acquisitions with varying image 
quality.

One example for the active acquisition in retinal 
imaging is the ‘Lucky imaging’ approach,49,50 in 
which multiple frames are acquired in quick suc-
cession assuming that at least some of the frames 
are of good quality. In magnetic resonance imag-
ing (MRI), a ‘prospective gating scheme’ is pro-
posed for acquiring because motion-free image 
acquisition is possible between the cardiovascu-
lar and respiration artifacts, iterating the imag-
ing until satisfactory result is achieved.51 For 

Figure 1. Comparison between traditional passive acquisition and intelligent active acquisition approaches 
for fundus imaging. (Top-left) In passive acquisition, the healthcare professional manually aligns the camera 
and decides the best moment for image acquisition. This acquisition has to be often repeated, especially if 
the patient is not compliant, if the pupils are not dilated, or if there are media opacities, that is, cornea scar, 
cataract, and so on. (Top-right) In an ‘intelligent’ active acquisition process, the device is able vary imaging 
parameters and iterates automatically frames until the deep learning is been able to reconstruct an image 
of satisfactory quality. (Bottom) This intelligent acquisition serves as automated data curation operator for 
diagnostic deep learning networks (C)9,10 leading to improved deep leading to better class separation (healthy 
D vs disease E). In traditional passive acquisition, the image quality is less consistent leading to many false 
positives [patient from disease population B (cyan) is classified as healthy A (red)] and negatives [patient from 
healthy population A (red) is classified as disease B (cyan)]. The gray line represents the decision boundary of 
the classifier,32 and each point represents one patient.
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three-dimensional (3D) computed tomography 
(CT), an active reinforcement learning-based 
algorithm was used to detect missing anatomical 
structures from incomplete volume data52 and 
trying to re-acquire the missing parts instead of 
relying just on postacquisition inpainting.53 In 
other words, the active acquisition paradigms 
have some level of knowledge of acquisition com-
pleteness or uncertainty based on ideal images, 
for example, via ‘active learning’ framework54 or 
via recently proposed Generative Query Networks 
(GQNs).55

To implement active data acquisition on an oph-
thalmic imaging device, we need to define a loss 
function (error term for the deep learning network 
to minimize) to quantify the ‘goodness’ of the 
image either directly from the image or using 
some auxiliary sensors and actuators, to drive the 
automatic reconstruction process. For example, 
eye movement artifacts during acquisition of 
OCT can significantly degrade the image 
quality,56 and we would like to quantify the reti-
nal motion either from the acquired frames itself57 
or using auxiliary sensors such as digital micro-
mirror device (DMD).58 The latter approach has 
also been applied for correction of light scatter by 
opaque media.59 Due to the scanning nature of 
OCT, one can re-acquire the same retinal volume 
and merge only the subvolumes that were sam-
pled without artifacts.60,61

Deep learning–based retinal image processing
Traditional single-frame OCT signal processing 
pipelines have employed GPUs allowing real-
time signal processing.62,63 GPUs have been 
increasingly used in medical image processing 
even before the recent popularity of deep 
learning.64 The GPUs are becoming essentially 
obligatory with contemporary high-speed OCT 
systems.65 The traditional image restoration 
pipelines employ the intrinsic characteristics of 
the image in tasks such as denoising66 and deblur-
ring67 without considering image statistics of a 
larger data set.

Traditionally, these multiframe reconstruction 
algorithms have been applied after the acquisition 
without real-time consideration of the image qual-
ity of the individual frames. Retinal multiframe 
acquisition such as fundus videography can exploit 
the redundant information across the consecutive 
frames and improve the image degradation model 
over single-frame acquisition.68,69 Köhler and 

colleagues70 demonstrated how a multiframe 
super-resolution framework can be used to recon-
struct a single high-resolution image from sequen-
tial low-resolution video frames. Stankiewicz and 
colleagues71 implemented a similar framework for 
reconstructing super-resolved volumetric OCT 
stacks from several low-quality volumetric OCT 
scans. Neither of these approaches, however, 
applied the reconstruction in real time.

In practice, all of the traditional image processing 
algorithms can be updated for deep learning 
framework (Figure 2). The ‘passive’ approaches 
using input–output pairs to learn image process-
ing operators range from updating individual pro-
cessing blocks,74 to joint optimization of multiple 
processing blocks,75,76 or training an end-to-end 
network such as DeepISP (ISP, Image Signal 
Processor) to handle image pipeline from raw 
image toward the final edited image.77 The 
DeepISP network was developed as offline algo-
rithm,77 with no real-time optimization of camera 
parameters during acquisition. Sitzmann and col-
leagues78 extended the idea even further by jointly 
optimizing the imaging optics and the image pro-
cessing for extended depth of field and 
super-resolution.

With deep learning, many deep image restoration 
networks have been proposed to replace tradi-
tional algorithms. These networks are typically 
trained with input versus synthetic corruption 
image pairs, with the goodness of the restoration 
measured as the network’s capability to correct 
this synthetic degradation. Plötz and Roth79 dem-
onstrated that the synthetic degradation model 
had significant limitation, and traditional state-
of-the art denoising algorithm BM3D80 was still 
shown to outperform many deep denoising net-
works, when the synthetic noise was replaced 
with real photographic noise. This highlights the 
need of creating multiframe database of multiple 
modalities from multiple device manufacturers 
for realistic evaluation of image restoration net-
works in general, as was done by Mayer and 
colleagues81 by providing a freely available multi-
frame OCT data set obtained from ex vivo pig eyes.

Image restoration. Most of the literature on mul-
tiframe–based deep learning has focused on 
super-resolution and denoising. Super-resolution 
algorithms aim to improve the spatial resolution 
of the reconstructed image beyond what could be 
obtained from a single input frame.82 Tao and 
colleagues83 implemented a deep learning ‘subpixel 

http://journals.sagepub.com/home/oed


P Teikari, RP Najjar et al.

journals.sagepub.com/home/oed 5

Fi
gu

re
 2

. 
Ty

pi
ca

l i
m

ag
e 

pr
oc

es
si

ng
 o

pe
ra

to
rs

 u
se

d 
in

 r
et

in
al

 im
ag

e 
pr

oc
es

si
ng

 th
at

 a
re

 il
lu

st
ra

te
d 

w
ith

 2
D

 fu
nd

us
 im

ag
es

 fo
r 

si
m

pl
ic

ity
. (

a)
 M

ul
tip

le
 fr

am
es

 a
re

 
ac

qu
ir

ed
 in

 a
 q

ui
ck

 s
uc

ce
ss

io
n,

 w
hi

ch
 a

re
 th

en
 r

eg
is

te
re

d 
(a

lig
ne

d)
 w

ith
 s

em
an

tic
 s

eg
m

en
ta

tio
n 

fo
r 

cl
in

ic
al

ly
 m

ea
ni

ng
fu

l s
tr

uc
tu

re
s 

su
ch

 a
s 

va
sc

ul
at

ur
e 

(in
 b

lu
e)

 a
nd

 
op

tic
 d

is
c 

(in
 g

re
en

). 
(b

) R
eg

io
n-

of
-i

nt
er

es
t (

R
O

I) 
zo

om
 o

n 
op

tic
 d

is
c 

of
 th

e 
re

gi
st

er
ed

 im
ag

e.
 T

he
 im

ag
e 

is
 d

en
oi

se
d 

w
ith

 s
ha

pe
 p

ri
or

s 
fr

om
 th

e 
se

m
an

tic
 s

eg
m

en
ta

tio
n 

to
 h

el
p 

th
e 

de
no

is
in

g 
to

 k
ee

p 
sh

ar
p 

ed
ge

s.
 T

he
 n

oi
se

 r
es

id
ua

l i
s 

no
rm

al
iz

ed
 fo

r 
vi

su
al

iz
at

io
n 

sh
ow

in
g 

so
m

e 
re

m
ov

al
 o

f s
tr

uc
tu

ra
l i

nf
or

m
at

io
n.

 T
he

 d
en

oi
se

d 
im

ag
e 

is
 d

ec
om

po
se

d72
 in

to
 b

as
e 

th
at

 c
on

ta
in

 th
e 

te
xt

ur
e-

fr
ee

 s
tr

uc
tu

re
 (e

dg
e-

aw
ar

e 
sm

oo
th

in
g)

 a
nd

 th
e 

de
ta

il 
th

at
 c

on
ta

in
s 

th
e 

re
si

du
al

 te
xt

ur
e 

w
ith

ou
t t

he
 v

as
cu

la
tu

re
 

an
d 

op
tic

 d
is

c.
 (c

) A
n 

ex
am

pl
e 

of
 h

ow
 th

e 
de

co
m

po
se

d 
pa

rt
s 

ca
n 

be
 e

di
te

d 
‘la

ye
r-

w
is

e’
73

 a
nd

 c
om

bi
ne

d 
to

 d
et

ai
l e

nh
an

ce
d 

im
ag

e,
 in

 o
rd

er
 to

 a
llo

w
 fo

r 
op

tim
iz

ed
 

vi
su

al
iz

at
io

n 
of

 th
e 

fe
at

ur
es

 o
f i

nt
er

es
t.

http://journals.sagepub.com/home/oed


Therapeutic Advances in Ophthalmology 00(0)

6 journals.sagepub.com/home/oed

motion compensation’ network for video input 
capable of learning the inter-frame alignment (i.e. 
image registration) and motion compensation 
needed for video super-resolution. In retinal 
imaging, especially with OCT, typical problems 
for efficient super-resolution are the retinal 
motion, lateral resolution limits set by the optical 
media, and image noise. Wang and colleagues84 
demonstrated using photographic video that 
motion compensation can be learned from the 
data, simplifying data set acquisition for retinal 
deep learning training.

Deblurring (or deconvolution), close to denois-
ing, allows the computational removal of static 
and movement blur from acquired images. In 
most cases, the exact blurring point spread func-
tion (PSF) is not known and has to be estimated 
(blind deconvolution) from an acquired image85 
or sequential images.86 In retinal imaging, the 
most common source for image deblurring is reti-
nal motion,56 scattering caused by ocular media 
opacities,87 and optical aberrations caused by the 
optical characteristics of the human eye itself.88 
This estimation problem falls under the umbrella 
term inverse problems that have been solved with 
deep learning recently.89

Physical estimation and correction of the image 
degradation. Efficient PSF estimation retinal 
imaging can be augmented with auxiliary sensors 
trying to measure the factors causing retina to 
move during acquisition. Retinal vessel pulsations 
due to pressure fluctuations during the cardiac 
cycle can impact the quality. Gating allows imag-
ing during diastole, when pressure remains almost 
stable.90 Optical methods exist for measuring reti-
nal movement directly using, for example, 
DMDs58 and AO systems measuring the dynamic 
wavefront aberrations as caused, for instance, by 
tear film fluctuations.88

All these existing physical methods can be com-
bined with deep learning, providing the measured 
movements as intermediate targets for the net-
work to optimize.91 Examples of such approaches 
are the works by Bollepalli and colleagues,92 who 
provided training of the network for robust heart-
beat detection, and Li and colleagues,93 who have 
estimated the blur PSF of light scattered through 
a glass diffuser simulating the degradation caused 
by cataract for retinal imaging.

Fei and colleagues94 used pairs of uncorrected and 
AO-corrected scanning laser ophthalmoscopic 

(AOSLO) images for learning a ‘digital AO’ cor-
rection. This type of AO-driven network training 
in practice might be very useful, providing a cost-
effective version of super-resolution imaging. For 
example, Jian and colleagues95 proposed to 
replace deformable mirrors with waveform-cor-
recting lens lowering the cost and simplifying the 
optical design,95 Carpentras and Moser96 demon-
strated a see-through scanning ophthalmoscope 
without AO correction, and very recently a hand-
held AOSLO imager based on the use of minia-
ture MEMS mirrors was demonstrated by 
DuBose and colleagues.97

In practice, all the discussed hardware and 
software corrections are not applied simultane-
ously, that is, joint image restoration with image 
classification.75 Thus, the aim of these operations 
is to achieve image restoration without loss of 
clinical information.

High-dynamic-range ophthalmic imaging. In oph-
thalmic applications requiring absolute or relative 
pixel intensity values for quantitative analysis, as 
in fundus densitometry,98 or Purkinje imaging for 
crystalline lens absorption measurements,99 it is 
desirable to extend the intensity dynamic range 
from multiple differently exposed frames using an 
approach called high-dynamic-range (HDR) 
imaging.100 OCT modalities requiring phase 
information, such as motion measurement, can 
benefit from higher bit depths.101 Even in simple 
fundus photography, the boundaries between 
optic disc and cup can sometimes be hard to 
delineate in some cases due to overexposed optic 
disc compared with surrounding tissue, illustrated 
by Köhler and colleagues70 in their multiframe 
reconstruction pipeline. Recent feasibility study 
by Ittarat and colleagues102 showed that HDR 
acquisition with tone mapping100 of fundus 
images, visualized on standard displays, increased 
the sensitivity but reduced specificity for glau-
coma detection in glaucoma experts. In multi-
modal or multispectral acquisition, visible light 
range acquisition can be enhanced by high-inten-
sity near-infrared (NIR) strobe103 if the visible 
light spectral bands do not provide sufficient illu-
mination for motion-free exposure. The vascula-
ture can be imaged clearly with NIR strobe for 
estimating the motion blur between successive 
visible light frames.104

Customized spectral filter arrays. Another opera-
tion handled by the ISP is demosaicing105 which 
involves interpolation of the color channels. Most 
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color RGB (red-green-blue) cameras, including 
fundus cameras, include sensors with a filter grid 
called Bayer array that is composed of a 2 × 2 
pixel grid with two green, one blue, and one red 
filter. In fundus imaging, the red channel has very 
little contrast, and hypothetically custom demosa-
icing algorithms for fundus ISPs may allow for 
better visualization of clinically relevant ocular 
structures. Furthermore, the network training 
could be supervised by custom illumination based 
on light-emitting diodes (LEDs) for pathology-
specific imaging. Bartczak and colleagues106 
showed that with pathology-optimized illumina-
tion, the contrast of diabetic lesions is enhanced 
by 30–70% compared with traditional red-free 
illumination imaging.

Recently, commercial sensors with more than 
three color channels have been released, 
Omnivision (Santa Clara, CA, USA) OV4682, 
for example, replaced one green filter of the Bayer 
array with an NIR filter. In practice, one could 
acquire continuous fundus video without pupil 
constriction using just the NIR channel for the 
video illumination and capturing fundus snapshot 
simultaneously with a flash of visible light in addi-
tion to the NIR.

The number of spectral bands on the filter array 
of the sensor was extended up 32 bands by Imec 
(Leuven, Belgium). This enables snapshot multi-
spectral fundus imaging for retinal oximetry.107 
These additional spectral bands or custom illumi-
nants could also be used to aid the image process-
ing itself before clinical diagnostics.108 For 
example, segmenting the macular region becomes 
easier with a spectral band around blue 460 nm, 
as the macular pigment absorbs strongly at that 
wavelength and appears darker than its back-
ground on this band.109

Depth-resolved fundus photography. Tradition-
ally, depth-resolved fundus photography has been 
done via stereo illumination of the posterior pole 
that involves either dual path optics increasing the 
design complexity or operator skill to take a pic-
ture with just one camera.110 There are alterna-
tives for depth-resolved fundus camera in a 
compact form factor such as plenoptic fundus 
imaging that was shown to provide higher degree 
of stereopsis than traditional stereo fundus pho-
tography using an off-the-shelf Lytro Illum 
(acquired by Google, Mountain View, CA, USA) 
consumer light field camera.111 Plenoptic cam-
eras, however, trade spatial resolution for angular 

resolution, for example, Lytro Illum has over 40 
million pixels, but the final fundus spatial resolu-
tion consists of 635 × 433 pixels. Simpler optical 
arrangement for depth imaging with no spatial 
resolution trade-off is possible with depth-from-
focus algorithms112 that can reconstruct depth 
map from a sequence of images of different focus 
distances (z-stack). This rapid switching of focus 
distances can be achieved in practice, for exam-
ple, using variable-focus liquid lenses, as demon-
strated for retinal OCT imaging by Cua and 
colleagues.113

Compressed sensing. Especially with OCT imag-
ing, and scanning-based imaging techniques in 
general, there is a possibility to use compressed 
sensing to speed up the acquisition and reduce 
the data rate.114 Compressed sensing is based on 
the assumption that the sampled signal is sparse 
in some domain, and thus it can be undersampled 
and reconstructed to have a matching resolution 
for the dense grid. Most of the work on combined 
compressed sensing and deep learning has been 
on MRI brain scans.115 OCT angiography 
(OCTA) is a special variant of OCT imaging that 
acquires volumetric images of the retinal and cho-
roidal vasculature through motion contrast imag-
ing. OCTA acquisition is very sensitive to motion 
and would benefit from sparse sampling with 
optimized scan pattern.116

Defining cost functions. The design of proper cost 
function used to define suboptimal parts of an 
image is not trivial at all. Early retinal processing 
work by Köhler and colleagues117 used the retinal 
vessel contrast as a proxy measure for image qual-
ity, which was implemented later as fast real-time 
algorithm by Bendaoudi and colleagues.118 Saha 
and colleagues119 developed a structure-agnostic 
data-driven deep learning network for flagging 
fundus images either as acceptable for diabetic 
retinopathy screening or as to be recaptured. In 
practice, however, the cost function used for deep 
learning training can be defined in multiple ways 
as reviewed by Zhao and colleagues.120 They com-
pared different loss functions for image restora-
tion and showed that the most commonly used 
2  norm (squared error or ridge regression) was 
clearly outperformed in terms of perceptual qual-
ity by the multiscale structural similarity index 
(MS-SSIM).121 This was shown to improve even 
slightly when the authors combined MS-SSIM 
with 

1  norm (absolute deviation, lasso regression). 
One could hypothesize that a data-driven quality 
indicator that reflects the diagnostic differentiation 
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capability of the image accompanied with percep-
tual quality would be optimal particularly for fun-
dus images.

Physics-based ground truths. The unrealistic 
performance of image restoration networks with 
synthetic noise and the lack of proper real noise 
benchmark data sets are major limitations at 
the moment. Plötz and Roth79 created their noise 
benchmark test by varying the ISO setting of 
the camera and taking the lowest ISO setting as 
the ground truth ‘noise-free’ image. In retinal 
imaging, construction of good-quality ground 
truth requires some special effort. Mayer and 
colleagues81 acquired multiple OCT frames of 
ex vivo pig eyes to avoid motion artifacts between 
acquisitions for speckle denoising.

In humans, commercially available laser speckle 
reducers can be used to acquire image pairs with 
two different levels of speckle noise122,123 (Figure 
3). Similar pair for deblurring network training 

could be acquired with and without AO correc-
tion125 (see Figure 3). In phase-sensitive OCT 
application such as elastography, angiography, 
and vibrometry, a dual beam setup could be 
used with a highly phase-stable laser as the 
ground truth and ‘ordinary’ laser as the input to 
be enhanced.126

Emerging multimodal techniques, such as 
combined OCT and SLO,127 and OCT with 
photoacoustic microscopy (PAM), optical 
Doppler tomography (ODT),128 and fluorescence 
microscopy,129 enable interesting joint training 
from complementary modalities with each of 
them having different strengths. For example, in 
practice, the lower quality but inexpensive modal-
ity could be computationally enhanced.130

Inter-vendor differences could be further 
addressed by repeating each measurement with 
different OCT machines as taken into account 
with clinical diagnosis network by De Fauw and 

Figure 3. High-level schematic representation of an adaptive optics retinal imaging system. The wavefront 
from (a) retina is distorted mainly by (b) the cornea and crystalline lens, which is corrected in our example by 
(c) lens-based actuator designed for compact imaging systems.95 (d) The imaging optical system88 is illustrated 
with a single lens for simplicity. The corrected wavefront on (e) the image sensor is a (h) sharper version of 
the image that would be of (f) lower quality without (c) the waveform correction. The ‘digital adaptive optics’ (g) 
universal function approximator maps the distorted image (f) to corrected image (h), and the network (g) is the 
network that was trained with the image pairs (uncorrected and corrected). For simplicity, we have omitted the 
wavefront sensor from the schematic and estimated the distortion in a sensorless fashion.88

Images (f) and (h) are courtesy of Professor Stephen A. Burns (School of Optometry, Indiana University) from AOSLO off-axis 
illumination scheme for retinal vasculature imaging.124
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colleagues.9 All these hardware-driven signal res-
torations could be further combined with existing 
traditional filters and the filter output could be 
used as targets for so-called ‘copycat’ filters that 
can estimate existing filters.131

Quantifying uncertainty. Within the automatic 
‘active acquisition’ scheme, it is important to be 
able to localize the quality problems in an image 
or in a volume.132,133 Leibig and colleagues134 
investigated the commonly used Monte Carlo 
dropout method132 for estimating the uncer-
tainty in fundus images for diabetic retinopathy 
screening and its effect on clinical referral deci-
sion quality. The Monte Carlo dropout method 
improved the identification of substandard 
images that were either unusable or had large 
uncertainty on the model classification boundar-
ies. Such an approach should allow rapid identi-
fication of patients with suboptimal fundus 
images for further clinical evaluation by an 
ophthalmologist.

Similar approach was taken per-patch uncertainty 
estimation in 3D super-resolution135 and in voxel-
wise segmentation uncertainty.136 Cobb and 
colleagues137 demonstrated an interesting exten-
sion to this termed ‘loss-calibrated approximate 
inference’ that allowed the incorporation of utility 
function to the network. This utility function was 
used to model the asymmetric clinical implica-
tions between prediction of false negatives and 
false positives.

The financial and quality-of-life cost of an uncer-
tain patch in an image leading to false-negative 
decision might be a lot larger than false-positive 
that might just lead to an additional checkup by 
an ophthalmologist.The same utility function 
could be expanded to cover disease prevalence138; 
enabling end-to-end screening performance to be 
modeled for diseases such as glaucoma with low 
prevalence needs very high performance in order 
to be cost-efficient to screen.139

The regional uncertainty can then be exploited 
during active acquisition by guiding the acquisi-
tion iteration to only that area containing the 
uncertainty. For example, some CMOS sensors 
(e.g. Sony IMX250) allow readout from only a 
part of the image, faster than one could do for the 
full frame. One scenario for smarter fundus imag-
ing could, for example, involve initial imaging 
with the whole field of view (FOV) of the device, 
followed by multiframe acquisition of only the 

optic disc area to ensure that the cup and disc are 
well distinguishable, and that the depth informa-
tion is of good quality (Figure 4). Similar active 
acquisition paradigm is in use, for example, in 
drone-based operator-free photogrammetry. In 
that application, the drone can autonomously 
reconstruct a 3D building model from multiple 
views recognizing where it has not scanned yet 
and fly to that location to scan more.141

Distributing the computational load
In typical postacquisition disease classification 
studies with deep learning,10 the network training 
has been done on large GPU clusters either locally 
or using cloud-based GPU servers. However, 
when embedding deep learning within devices, 
different design trade-offs need to be taken into 
account. Both in hospital and remote healthcare 
settings, proper Internet connection might be 
lacking due to technical infrastructure or institu-
tional policy limitations. Often, the latency 
requirements are very different for real-time pro-
cessing of signals making the use of cloud services 
impossible.142 For example, a lag due to poor 
Internet connection is unacceptable at intensive 
care units (ICUs) as those seconds can affect 
human lives, and the computing hardware needs 
to placed next to the sensing device.143

Edge computing
In recent years, the concept of edge computing 
(Figure 5) has emerged as a complementary or 
alternative to the cloud computing, in which 
computations are done centrally, that is, away 
from the ‘edge’. The main driving factor for edge 
computing is the various IoT applications145 or 
Internet of Medical Things (IoMT).146 Gartner 
analyst Thomas Bittman has predicted that the 
market for processing at the edge will expand to 
similar or increased levels than the current cloud 
processing.147 Another market research study by 
Grand View Research, Inc.148 projected edge 
computing segment for healthcare and life sci-
ences to exceed US$ 326 million by 2025. 
Specifically, the edge computing is seen as the key 
enabler of wearables to become a reliable tool for 
long-term health monitoring.149,150

Fog computing
In many cases, an intermediate layer called fog or 
mist computing layer (Figure 5) is introduced 
between the edge device and the cloud layer to 
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distribute the computing load.31,151–153 At sim-
plest level, this three-layer architecture could 
constitute of simple low-power IoT sensor (edge 
device) with some computing power.154 This IoT 
device could be, for example, an inertial measure-
ment unit (IMU)-based actigraph that sends data 
real time to user’s smartphone (fog device) which 
contains more computing power than the edge 
device for gesture recognition.155 The gesture rec-
ognition model could be used to detect the falls in 
elderly or send corrective feedback back to edge 

device which could also contain some actuators 
or a display. An example of such actuator could 
be a tactile buzzer for neurorehabilitation 
applications156 or a motorized stage for aligning 
a fundus camera relative to the patient’s eye.157 
The smartphone subsequently sends the relevant 
data to the cloud for analyzing long-term patterns 
at both individual and population levels.16,158 
Alternatively, the sensor itself could do some data 
cleaning and have the fog node to handle the 
sensor fusion of typical clinical one-dimensional 

Figure 4. (a) Example of re-acquisition using a region of interest (ROI) defined from the initial acquisition (the 
full frame). The ROI has 9% of the pixels of the full frame making the ROI acquisition a lot faster if the image 
sensor allows ROI-based readout. (b) Multiframe ROI re-acquisition is illustrated with three low-dynamic 
range (8-bit LDR) with simulated low-quality camera intensity compression. The underexposed frame (b, 
left) exposes optic disc correctly with less details visible on darker regions of the image as illustrated by the 
clipped dark values in histogram (c, left, clipped values at 0), whereas the overexposed frame (c, right) exposes 
dark vasculature with detail while overexposing (c, right, clipped values at 255) the bright regions such as the 
optic disc. The normal exposure frame (b, center) is a compromise (c, center) between these two extreme 
exposures. (d) When the three LDR frames are combined together using a exposure fusion technique140 into a 
high-dynamic range (HDR) image, all the relevant clinical features are exposed to correct possibly improving 
diagnostics.102
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(1D) biosignal. An illustration of this concept is 
the fusion of depth and thermal cameras for hand 
hygiene monitoring,159 including indoor position 
tracking sensors to monitor healthcare processes 
at a hospital level.

Balancing edge and fog computations
For the hardware used in each node, multiple 
options exist, and in the literature, very heteroge-
neous architectures are described for the whole 
system.31,160 For example, in the SocialEyes 
project,25 the diagnostic tests of MARVIN (for 
mobile autonomous retinal evaluation) are imple-
mented on GPU-powered Android tablet 
(NVIDIA SHIELD). In their rural visual testing 
application, the device needs to be transportable 
and adapted to the limited infrastructure. In this 
scenario, most of the computations are already 
done at the tablet level, and the fog device could, 
for example, be a low-cost community smart-
phone/Wi-Fi link. The data can then be submit-
ted to the cloud holding the centralized electronic 
health records (EHRs).161 If the local computa-
tions required are not very heavy, both the edge 
and fog functionalities could be combined into 
one low-cost Raspberry Pi board computer.162 In 

hospital settings with large patient volumes, it 
would be preferable to explore different task-spe-
cific data compression algorithms at the cloud 
level to reduce storage and bandwidth require-
ments. In a teleophthalmology setting, the com-
pression could be done already at the edge level 
before cloud transmission.163

In the case of fundus imaging, most of that real-
time optimization would be happening at the 
device level, with multiple different hardware 
acceleration options.164,165 One could rely on a 
low-cost computer such as Raspberry Pi166 and 
allow for limited computations.167 This can be 
extended if additional computation power is pro-
vided at the cloud level. In many embedded medi-
cal applications, GPU options such as the 
NVIDIA’s Tegra/Jetson platform168 have been 
increasingly used. The embedded GPU platforms 
in practice offer a good compromise between ease-
of-use and computational power of Raspberry Pi 
and desktop GPUs, respectively.

In some cases, the general-purpose GPU (GPGPU) 
option might not be able to provide the energy 
efficiency needed for the required computation 
performance. In this case, field-programmable 

Figure 5. Separation of computations to three different layers. (1) Edge layer – the computations done at 
the device level which in active acquisition ocular imaging (top) require significant computational power, for 
example, in the form of an embedded GPU. With wearable intraocular measurement, the contact lens can 
house only a very low-power microcontroller (MCU), and it needs to let the (2) Fog layer to handle most of the 
signal cleaning, whereas for ocular imaging, the fog device mainly just relays the acquired image to (3) Cloud 
layer. The standardization of the data structure is ensured through FHIR (Fast Healthcare Interoperability 
Resources) API (application programming interface)144 before being stored on secure cloud server. This 
imaging data along with other clinical information can then be accessed via healthcare professionals, patients, 
and research community.
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gate arrays (FPGAs)169 may be used as an alter-
native to embedded GPU, as demonstrated 
for retinal image analysis170 and real-time video 
restoration.171 FPGA implementation may, 
however, be problematic due to increased 
implementation complexity. Custom-designed 
accelerator chips172 and Application-Specific 
Integrated Circuit (ASIC)173 offer even higher 
performance but at even higher implementation 
complexity.

In ophthalmology, there are only a limited num-
ber of wearable devices, allowing for continuous 
data acquisition. Although the continuous assess-
ment of intraocular pressure (IOP) is difficult to 
achieve, or even controversial,174 commercial prod-
ucts by Triggerfish® (Sensimed AG, Lausanne, 
Switzerland) and EYEMATE® (Implandata 
Ophthalmic Products GmbH, Hannover, 
Germany) have been cleared by the Food and Drug 
Administration (FDA) for clinical use.

Interesting future direction for this monitoring 
platform is an integrated MEMS/microfluidics 
system175 that could simultaneously monitor the 
IOP and has a passive artificial drainage system 
for the treatment of glaucoma.176 The continuous 
IOP measurement could be integrated with ‘point 
structure + function measures’ for individualized 
deep learning–driven management of glaucoma 
as suggested for the management of age-related 
macular degeneration (AMD).11

In addition to pure computational restraints, the 
size and the general acceptability of the device by 
the patients can represent a limiting factor, requir-
ing a more patient-friendly approach. For exam-
ple, devices analyzing eye movements177,178 or 
pupillary light responses179 can be better accepted 
and implemented when using more practical 
portable devices rather than bulky research lab 
systems. For example, Zhu and colleagues180 have 
designed an embedded hardware accelerator for 
deep learning inference from image sensors of the 
augmented/mixed reality (AR/MR) glasses.

This could be in future integrated with MEMS-
based camera-free eye tracker chip developed by 
University of Waterloo spin-off company AdHawk 
Microsystems (Kitchener, ON, Canada)181 for 
functional diagnostics or to quantify retinal 
motion. In this example of eye movement diag-
nostics, most of the computations might be per-
formed at the device level (edge), but the patient 
could carry a smartphone or a dedicated Raspberry 

Pi for further postprocessing and transmission to 
cloud services.

Cloud computing
The cloud layer (Figure 5) is used for centralized 
data storage, allowing both the healthcare profes-
sional and patients to access the EHRs, for exam-
ple, via the FHIR (Fast Healthcare Interoperability 
Resources) API (application programming inter-
face).144 Research groups can analyze the records 
as already demonstrated for deep learning for 
retinopathy diagnosis.9,10 Detailed analysis of dif-
ferent technical options in the cloud layer is beyond 
the scope of this article, and interested readers are 
referred to the following clinically relevant 
reviews.182,183

Discussion
Here, we have reviewed the possible applica-
tions of deep learning, introduced at the oph-
thalmic imaging device level. This extends 
well-known application of deep learning for 
clinical diagnostics.9,10,48 Such an ‘active acqui-
sition’ aims for automatic optimization of imag-
ing parameters, resulting in improved image 
quality and reduced variability.8 This active 
approach can be added to the existing hardware 
or can be combined with novel hardware designs.

The main aim of an embedded intelligent deep 
learning system is to favor acquisition of a high-
quality image or recording, without the interven-
tion of a highly skilled operator, in various 
environments. There are various healthcare deliv-
ery models, in which embedded deep learning 
could be used in future routine eye examination: 
(1) patients could self-screen themselves, using a 
shared device located either in a community clinic 
or at the supermarket, requiring no human super-
vision; (2) the patients could be imaged by a tech-
nician in a ‘virtual clinic’,184 in a hospital waiting 
room before an ophthalmologist appointment, or 
at the optician (https://www.aop.org.uk/ot/industry 
/high-street/2017/05/22/oct-rollout-in-every 
-specsavers-announced); (3) patients could be 
scanned in remote areas by a mobile general 
healthcare practitioner185; and (4) the patients 
themselves could do continuous home monitor-
ing for disease progression.16,186 Most of the fun-
dus camera and OCT devices come already with 
some quality metrics probing the operator to re-
take the image, but so far no commercial device is 
offering sufficient automatic reconstruction, for 
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example, in presence of ocular media opacities 
and poorly compliant patients.

Healthcare systems experiencing shortage of 
manpower may benefit from modern automated 
imaging. Putting more intelligence at the device 
level will relieve the healthcare professionals from 
clerical care for actual patient care.187 With the 
increased use of artificial intelligence (AI), the 
role of the clinician will evolve from the medical 
paternalism of the 19th century and evidence-
based medicine of the 20th century to (big) data-
driven clinician working more closely with 
intelligent machines and the patients.188 The 
practical-level interaction with AI is not just 
near-future science fiction, but very much a real-
ity as the recent paper on ‘augmented intelli-
gence’ in radiology demonstrated.189 A synergy 
between clinicians and AI system resulted in 
improved diagnostic accuracy, compared with 
clinicians’, and was better than AI system’s own 
performance.

At healthcare systems level, intelligent data acqui-
sition will provide an additional automated data 
quality verification, resulting in improved man-
agement of data volumes. This is required because 
size of data is reported to double every 12–14 
months,190 addressing the ‘garbage in–garbage 
out’ problem.190,191 Improved data quality will 
also allow more efficient EHR mining,192 ena-
bling the healthcare systems to get closer to the 
long-term goal of learning healthcare systems193 
leveraging on prior clinical experience in struc-
tured data/evidence-based sense along with expert 
clinical knowledge.188,194

Despite the recent developments of deep learning 
in ophthalmology, very few prospective clinical 
trials per se have evaluated its performance in real, 
everyday life situations. IDx-DR has recently been 
approved as the first fully autonomous AI-based 
FDA-approved diagnostic system for diabetic 
retinopathy,48 but the direct benefit of patients, in 
terms of visual outcome, is still unclear.195 Future 
innovations emerging from tech startups, aca-
demia, or from established companies will hope-
fully improve the quality of the data, through 
cross-disciplinary collaboration of designers, engi-
neers, and clinicians,196,197 resulting in improved 
outcomes of patients with ophthalmic conditions.
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