Rivlin, Tom;
(2019)
Ultracold Atom-Atom Scattering with R-Matrix Methods.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
TomRivlinThesisPostVivaFinalDraft.pdf - Accepted Version Download (2MB) | Preview |
Abstract
Novel experimental methods have allowed for the routine production of ultracold (sub-Kelvin) atoms and small molecules. This has facilitated the study of chemical reactions involving only a small number of partial waves, allowing for unprecedented control over ultracold chemical reactions. This thesis describes work towards a new set of theories, based on Wigner's R-matrix methodology, which are adapted for so-called heavy particle scattering, and in particular atom-atom scattering. From these new theories a new set of methods are constructed to accurately simulate scattering observables such as scattering lengths, cross-sections, and resonances for atom-atom scattering events at ultracold temperatures by producing high resolution plots of these observables. The methods utilise software built for high-accuracy diatomic spectra, such as Duo, to provide molecular eigenenergies and wavefunctions of the bound system at short internuclear distances (in a region known as the inner region), only requiring as input a matrix of diatomic internuclear potential energy curves and couplings. These methods then act as 'harnesses', allowing this information to be used to perform an R-matrix propagation at long internuclear distances (in a region known as the outer region) using R-matrix propagation codes such as PFARM. The result of this propagation is then used to produce the aforementioned scattering observables. In this work these new R-matrix methods are applied to the case of a particle scattering off a Morse potential, to elastic argon-argon collisions, and to the intramultiplet mixing of oxygen when impacted by helium. This work also serves as a basis for the future simulation of more complex scattering events, such as atom-diatom collisions and higher polyatomic collisions.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | Ultracold Atom-Atom Scattering with R-Matrix Methods |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/10088428 |
![](/style/images/loading.gif)
![](/style/images/loading.gif)
![](/style/images/loading.gif)
1. | ![]() | 11 |
2. | ![]() | 3 |
3. | ![]() | 3 |
4. | ![]() | 2 |
5. | ![]() | 1 |
6. | ![]() | 1 |
7. | ![]() | 1 |
8. | ![]() | 1 |
9. | ![]() | 1 |
10. | ![]() | 1 |
Archive Staff Only
![]() |
View Item |