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Abstract

Novel experimental methods have allowed for the routine production of ultracold

(sub-Kelvin) atoms and small molecules. This has facilitated the study of chemical

reactions involving only a small number of partial waves, allowing for unprece-

dented control over ultracold chemical reactions.

This thesis describes work towards a new set of theories, based on Wigner’s

R-matrix methodology, which are adapted for so-called heavy particle scattering,

and in particular atom-atom scattering. From these new theories a new set of meth-

ods are constructed to accurately simulate scattering observables such as scattering

lengths, cross-sections, and resonances for atom-atom scattering events at ultracold

temperatures by producing high resolution plots of these observables.

The methods utilise software built for high-accuracy diatomic spectra, such as

DUO, to provide molecular eigenenergies and wavefunctions of the bound system at

short internuclear distances (in a region known as the inner region), only requiring

as input a matrix of diatomic internuclear potential energy curves and couplings.

These methods then act as ‘harnesses’, allowing this information to be used to per-

form an R-matrix propagation at long internuclear distances (in a region known as

the outer region) using R-matrix propagation codes such as PFARM. The result of

this propagation is then used to produce the aforementioned scattering observables.

In this work these new R-matrix methods are applied to the case of a particle

scattering off a Morse potential, to elastic argon-argon collisions, and to the intra-

multiplet mixing of oxygen when impacted by helium. This work also serves as

a basis for the future simulation of more complex scattering events, such as atom-

diatom collisions and higher polyatomic collisions.
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Impact Statement

This research is the beginning of a new, long-term project, focused on the

scattering of atoms and molecules at ultracold temperatures. Because this project

has only recently begun, practical applications of the research are still only a long-

term goal. The work presented here can be thought of as ‘blue skies’ research;

whilst lacking in direct non-academic applications, future studies will rely on it.

This thesis has laid the groundwork for others to study more complex interac-

tions using the methods developed here. In particular, two grants have already been

awarded to researchers working on extensions of the code written for this work.

Whilst this work focused on the one-dimensional problem of atom-atom collisions,

two postdoctoral researchers have begun work on the next stage of the project since

this work began: they have been developing the methodology required to produce

results for the three-dimensional atom-diatom collision process.

The atom-diatom case is notable because by studying atom-diatom interac-

tions, it is possible to study reactions where the species of molecule involved in

the interaction can change. This represents a new contribution to the study of the

physics of chemicals. Once the atom-diatom project is completed, not only will it

be possible to explore reaction dynamics, but it will be possible to explore precise

state-to-state reaction dynamics with high resolution and accuracy.

The work on atom-diatom reactions would not have been possible without

the research presented here. There were unexpected mathematical, numerical, and

physics-related issues that were discovered, and this work solved many of them in

anticipation of the upcoming research on more complex systems.

Once the work on atom-diatom scattering is complete, it is possible to imagine

that a general molecule-molecule scattering code could be constructed using these

methods, and that this method will be effective at ultracold temperatures. This could

be useful for the future study of more complex Bose-Einstein condensates, and for

research into efficient and usable qubit designs in the field of quantum comput-

ing, where the low temperatures, small systems, and high accuracy that this project

promises are all required.
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ap between 11Å and 26Å. The other parameters were held constant

at N = 200, Nprop = 2500, a0 = 10Å.
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Chapter 1

Introduction

1.1 Ultracold Physics and Chemistry

Cold and ultracold atoms and molecules have never been more accessible to work-

ing physicists [1], thanks to a variety of experimental techniques which make them

easier than ever to produce [1, 2, 3], trap [4], and study [5, 6].

Laser cooling remains a cornerstone of the field of ultracold physics for the

cooling of atoms, ions, and molecules [7, 8], and one of the most common ways

to bring particles to ultracold temperatures. The 1997 Nobel Prize for its discovery

also emphasised one particular type of laser cooling called ‘Sisyphus cooling’ [9,

10, 11], due to the way the atoms being cooled would be forced to roll up a potential

‘hill’ to drain it of kinetic energy, only to be pushed to the bottom of the hill to start

the cycle again.

A variety of other cooling techniques exist, too. For instance, sympathetic

cooling is a technique which allows one to cool particles by placing them in contact

with other, already cooled particles. The utility of the method is due to the possi-

bility of using one type of particle that is relatively simple to cool using standard

laboratory techniques to cool down other particles that are more difficult to cool

[12, 13, 14, 15].

Atoms and molecules that can be cooled can more easily be contained and

trapped. The most common form of trapping involves different types of magnetic

confinement [10, 4], which use magnetic fields, sometimes rotating magnetic fields,
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as barriers to prevent the particles escaping.

There are a number of reasons why these ultracold systems are useful to physi-

cists and chemists. When in these ultracold states, the interactions between atoms

and molecules can involve a very small number of quantum states, or possibly only

a single state. To quote Stuhl et al. [1], this is “perhaps the most elementary study

possible of scattering and reaction dynamics.”

One consequence of these developments is that it is now possible to control in-

vidual molecules (especially diatomic molecules) with high precision [16, 1], and,

as a consequence, study in unprecedented detail the fundamentals of chemical reac-

tions. Some examples of ultracold collisions and interactions that have been studied

include two polar molecules in a one-dimensional harmonic trap, ultracold atoms

colliding with trapped ions, and Coulomb crystals, which provide translationally

cold, localised ions that can collide with molecules [17, 18, 19, 20, 21, 22, 23].

The possibility of controlling reactions with such a small number of states

[24, 25] could pave the way to precise control of reaction rates [26] and improved

efficiency of chemical reaction processes. This is due to the unique properties atoms

and molecules have when cooled down to ultracold temperatures, but it is also due

to the fact that there are fewer states the reactants can be in, making reactions easier

to account for. Again quoting Stuhl et al. [1]: “colder is cleaner.”

For a given system, the exact temperature that can be defined as ‘ultracold’ can

vary, but it is usually when the scattering particles interact with a mutual scatter-

ing energy of the order of 10−6 to 100 Kelvin. It is worth noting that the coldest

naturally occurring places in the universe – parts of interstellar space – have tem-

peratures of a few Kelvin [24].

In ultracold scattering, the particles themselves may have relatively high en-

ergy, but interesting ultracold phenomena are still observed when the translational

kinetic energy between the particles is at an ultracold level. For example, merged

molecular beam experiments involve molecules travelling alongside each other at

speeds which are supersonic in the lab frame, but are only hundreds of millikelvin

when measured relative to each other [27].
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But even when just considering cooled and trapped particles, ultracold temper-

atures are increasingly easy to reach for a variety of physical systems in the modern

physics lab, and many interesting experiments have been done on these types of

system [24, 8, 6, 28].

The implications of this new paradigm are subtle but far-reaching. The abil-

ity to observe reactive scattering between small atoms and molecules in precisely

defined states with minimal thermal noise is, in a sense, one of the most power-

ful tests possible of the fundamentals of the field of chemistry [1]. The vision of

being able to perform a chemical reaction and precisely control the start and end

quantum states of all the atoms involved is becoming increasingly possible in many

circumstances [24].

As such, this emerging field of research is in need of a robust theoretical frame-

work to assist with these experimental endeavours [24]. This work is designed to

contribute to that need by providing a method for generating high-accuracy scat-

tering observables for collisions involving two atoms, including low-energy cross-

sections (excluding differential cross-sections) for both elastic and inelastic [19]

collisions, and low-temperature observables such as scattering lengths and effective

ranges.

The algorithm introduced in this work, known as RmatReact, is based on the

R-matrix method, which is widely applied to electron-atom and electron-molecule

collisions [29, 30], and which has here been adapted to the calculation of scattering

observables in the atom-atom case.

These scattering observables describe non-reactive scattering processes: pro-

cesses in which the chemical configuration of the reactants cannot be changed by

the interaction. For the atom-atom collisions being studied here, it is only possi-

ble for the two atoms to have their quantum numbers (their ‘levels’ or ‘channels’)

altered by the process. This work does not consider the possibility that the atoms

remain bound after the collision, or that one or both atoms are ionised.

This work serves as an exploratory study in anticipation of more complex re-

actions, including atom-diatom collisions and beyond. In these cases, it will be
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Figure 1.1: A typical plot of a resonance in the eigenphase δ (E) as a function of energy E
(these quantities will be defined in Chapter 2).

possible to study [31] reactions of the type

A+BC→ AB+C. (1.1)

This is known as reactive scattering, and it is arguably the simplest possible chem-

ical reaction, right at the border between physics and chemistry. Eventually, it is

hoped that it will be possible to study ultracold collisions between two polyatoms,

each with an arbitrary number of atoms.

The key feature of ultracold collisions which make them useful for control-

ling reactions is the presence of resonances. These are features of the cross-section

which arise in conjunction with a variety of physical phenomena, such as the pres-

ence of quasibound states with non-trivial lifetimes, or the coupling of closed chan-

nels with open ones. Resonances can affect the dynamics and scattering observables

of the system at certain energies in quantifiable ways [32, 33]. These resonances

tend to only be distinguishable at very low temperatures [34]. When they appear

in plots of scattering observables such as the cross-section, resonances have a num-

ber of characteristic functional forms, such as the Breit-Wigner form [35, 30, 36],

as seen in Figure 1.1, and the Fano profile [37]. This is discussed more in Sec-

tion 2.1.4.

Figure 1.1 represents a resonance profile that could belong to a shape reso-
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nance. The profile appears discontinuous but is not – its supposed discontinuity is

an artefact of the fact that the vertical axis is measured in radians between −π

2 and
π

2 and the resonance increases the value of the quantity δ (E) by π .

These resonances are associated with quasibound energy levels, which are

higher in energy than the asymptotic energy of an electronic state (see Figure 1.3),

but lower in energy than the peak of the centrifugal barrier when J > 0 (not featured

in Figure 1.3, which is a J = 0 state). As a consequence, particles occupying these

energy levels can tunnel through the centrifugal barrier, and thus have finite life-

times as bound states, hence the name ‘quasibound’. Similarly, shape resonances

are so-called because they arise due to the shape of the effective electronic PEC

for J > 0. These types of resonance appear in elastic and inelastic scattering cross-

sections.

Other types of resonances also exist, such as Feshbach resonances [32, 33]

(sometimes called Fano-Feshbach resonances [24]). These types of resonance are

common in more complex systems, such as open-shell atoms interacting with other

open-shell atoms. They can appear in systems like the ones studied here when a

closed channel interferes with an open channel if those channels are still coupled by

potential terms, and they can appear in elastic and inelastic cross-sections for open

channels – those that lie below the scattering energy.

As with shape resonances, the physical origin of a Feshbach resonance is a

quasibound state with a finite lifetime. In the case of Feshbach resonances, the

state in question is one belonging to a closed channel. If a scattering event occurs

with a scattering energy E relative to the threshold for one channel, but below the

threshold for another channel, then under normal circumstances, the higher channel

is considered closed and does not participate in the reaction. However, if the higher,

closed channel supports a bound state with an energy close to the value of E, and

if a coupling exists between the open and closed channels, then it is possible for

mixing, even strong mixing, to occur between the open and closed channels [32].

This mixing results in the reactant being trapped in a quasibound state, which

can be thought of as the state the reactant would have ended up in if the reaction
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ended with the two reactants being bound and if it could access the closed channel.

The quasibound state leads to a corresponding resonance in scattering observables.

Besides appearing in features in the eigenphase and cross-section, the scattering

length is known to be large when affected by the resonance [32].

Of particular interest to this work are systems with deep potential wells which

can support many bound states, where there may be many opportunities for novel

physics to be uncovered [38]. One example of this is the RbCs system – a rubidium

atom scattering off a caesium atom [39]. Systems such as this one are significant

because it is likely that they support a large number of Feshbach resonances, but

it is also worth noting that molecules in general can support many more Feshbach

resonances than atoms can due to the large number of bound ro-vibrational states

they have [34].

In fact, it has been shown that that ultracold atomic collisions can have an

overwhelmingly large density of resonances when measured as a function of scat-

tering energy [34]. A similar phenomenon has been observed in a hot system: the

well-known, near-dissociation H+
3 spectrum [40, 41, 42, 43].

In Mayle et al. [34], the density of resonances in the systems they simulated,

which included RbCs colliding with RbCs, were so large that a statistical approach

to the study of the resonances was appropriate, including the use of a density of

states parameter. If one is not taking a statistical approach to the large density of

resonances in these simulations as Mayle et al. did, then it is clear that a highly

fine-grained approach to resonance finding is needed.

Manipulation of these resonances, especially Feshbach resonances, via electric

and magnetic fields [20] is also a rich area of research. This is because it is possi-

ble to adjust the location of Feshbach energy levels using magnetic fields, making

them more accessible for a larger number of systems [32, 24]. Taking advantage of

resonance structure is just one example of the many ways that the manipulation of

magnetic fields can be used in ultracold physics [44].

These techniques have already been used to help form ultracold molecules such

as the aforementioned RbCs [17]. They offer some of the best opportunities avail-
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able for quantum control and steering in these systems. Resonances are required for

efficient magnetoassociation, but overlapping Feshbach resonances can cause com-

plications in experiments that utilise them [45], meaning that a better understanding

of these dense resonances is required.

The control these methods offer has already led to the experimental verification

of novel physical effects [46, 47, 48, 49, 50, 51, 52, 53, 54, 55], including the strange

Efimov trimers. This is an unusual quantum phenomenon with a ‘Borromean’-

like property where three identical bosons can bind together to form a trimer, even

when each individual pair of particles has too weak a mutual interaction to bind to

each other. A fascinating universal scaling law results from these systems, where

increasing the length scale by a constant factor approximately equal to eπ results

in two new Efimov states being found with approximately e±π times more binding

energy – a process which can be repeated infinitely many times to produce infinitely

many states.

Finally, a discussion of interesting quantum phenomena at cold temperatures

would not be complete without mentioning the famous Bose-Einstein Condensate

(BEC). As with laser cooling, ever since its Nobel Prize-winning discovery [56], it

has been a field of research unto itself. BECs are typically formed at nanokelvin

temperatures – even colder than the ones being considered here. At these tempera-

tures the quantum system being studied can only be in one state: the ground state,

and it has an assortment of strange, purely quantum properties as a result.

The connection between BECs and this work is that simulations of BECs rely

on the scattering length, which this work is well-suited to producing [32, 57]. A

better understanding of the scattering properties of ultracold systems may be use-

ful for simulations and experiments involving the construction and manipulation of

BECs.

1.2 Simulating Ultracold Systems

Theoretical studies of ultracold collisions require a different theoretical framework

to room temperature or even cold collisions. In those cases, it is often preferable to
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use time-dependent methods, which explicitly model interactions occuring forwards

in time via the time-dependent Schrödinger equation, and here literature around the

theoretical methodology is fairly robust [58]. Part of the reason why these meth-

ods are known to fail at ultracold temperatures is that they are less able to handle

resonances. Resonant states have finite lifetimes which are long relative to the in-

teraction time, even though these ultracold collisions tend to themselves be slow on

molecular time-scales, and which can be missed by a method that integrates over a

finite amount of time.

By contrast, time-independent methods have no such difficulties, as they treat

the problem with no time variable by solving the time-independent Schrödinger

equation. Examples of such methods include the method proposed in this work, and

a wide variety of coupled-channel methods, including Hutson’s MOLSCAT method

[59], and different hyperspherical methods [60, 61, 62], including those presented

by Kendrick [63] and by Launay et al. [64].

All of these methods also tend to work more effectively with these ultracold

systems due to the fact that they rely on a partial wave expansion. A partial wave ex-

pansion is a method by which a wavefunction with full 3D coordinate dependence

is presented as a sum over 1D radial wavefunctions multiplied by angular terms

[65, 66]. The sum is over individual ‘partial waves’, each of which has a different

symmetry and set of quantum numbers. The concept is introduced rigorously in

Chapter 2. At lower energies, fewer states, or partial waves, are energetically ac-

cessible, and hence fewer terms in the partial wave expansion are required to obtain

accurate results.

The particular time-independent method proposed in this work is based on R-

matrix methods. These methods are established standards for electron-atom and

electron-molecule collisions at ‘low temperatures’ – so-called light particle scatter-

ing [30, 67, 29, 68] – where the energy is below the ionisation threshold of 105

K. This is, of course, much higher than the ultracold temperatures considered here,

and so it is not guaranteed that the method will succeed in this temperature regime.

The type of R-matrix algorithm proposed in this work has only been tested with
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atom-atom or atom-molecule collisions – so-called heavy particle scattering – in

one exploratory study [69] (see Section 1.5).

The R-matrix method is similar in spirit to the multichannel quantum defect

theory (MQDT) which has been extensively used to study ultracold atom-atom

[70, 71, 72, 73], and atom-molecule collisions [74, 75, 76]. Both methods per-

form a short range calculation once and re-use the results of that calculation over a

range of energies, and both methods consider the problem in two regions to lever-

age the difference in length and energy scales between the two regions. In fact, the

treatment of the outer region in the two methods can be very similar. Furthermore,

both methods can be used to simultaneously obtain information about the bound

and scattering states of a system.

However, while MQDT approximates a full solution of the close-coupling

equations by using quantum defects which only have a weak dependence on the

collision energy, the R-matrix method aims to provide an exact solution to the close-

coupling problem based on an inner region with no energy dependence.

1.3 Yes, but what exactly is an R-matrix?

The R-matrix in its original form was invented by Eugene Wigner and Leonard

Eisenbud in the 1940s as an entirely quantum mechanical method for solving nu-

clear scattering problems [77, 78]. The method and its descendants are still used

for nuclear problems today [79]. The initial impetus for the development of the

method was the issue in nuclear scattering theory of not having a robust theory of

the sources of potential energy in atomic nuclei. Without a good ansatz for the form

these potential energy curves took, it was difficult to model interactions along these

curves.

As such, the R-matrix method developed around the idea of partitioning space

into an inner and outer region along the reaction coordinate(s), as outlined in Fig-

ure 1.2. The two regions could then be treated with different levels of approximation

to obtain the scattering observables with the desired accuracy [30]. The two levels

of approximation were both still within a quantum mechanical framework, with no
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Figure 1.2: A schematic demonstrating how space is partitioned by the R-matrix method
in the 1D, atom-atom collision being studied here. R(r) is the single-channel
R-matrix at distance r.

semiclassical approximations being made. This original approach can be thought of

as a ‘Phenomenological’ R-Matrix Method, as it only involved simple approxima-

tions of the short-range physics that were not based on well-understood theory.

The concepts that arose from this partitioning method were then adapted to

apply to other scattering problems. Here modern R-matrix theory is presented as

applied to the one-dimensional case of two atoms colliding – the sole focus of this

work – to illustrate the principle.

The inner region can be defined as the space in which the two nuclei of the

atoms are within a certain internuclear separation of each other, r≤ a0, as illustrated

in Figure 1.2. Within the inner region, the two atoms are treated as a bound diatomic

system in a specific electronic state via the Born-Oppenheimer approximation [80],

which will have a form similar to that of Figure 1.3, and they are analysed in a
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Figure 1.3: The typical form of the potential energy curve for a diatomic molecule with no
centrifugal barrier along the coordinate of internuclear separation.

fully quantum mechanical framework, with the full complexity of their interactions

considered, by solving the time-independent Schrödinger equation within a finite

region for the bound system.

The result of this is a set of eigenenergies, Ei, and eigenfunctions, χi(r), de-

scribing the diatomic system in the inner region, with molecular quantum numbers

describing energy levels and electronic states. This information is all used to con-

struct the object known as the R-matrix on the boundary between the inner and outer

regions. It is only at the construction of the R-matrix that the scattering energy is

inserted into the problem.

In the outer region, by contrast, it is generally assumed that the long-range

form of the potential between the two atoms is given by a polynomial in r−1. This

work does, however, deviate from this assumption by introducing an exponentially

decaying outer-region potential for some calculations, and later chapters will dis-

cuss the implications of this. In either case, it is also assumed that a partial wave

expansion of the appropriate functions with a small number of terms is sufficient to

obtain accurate results.

The results of the inner region calculations combined with the scattering en-

ergy, in the form of the R-matrix, are used to construct the outer region problem.

This problem is then solved by propagating the R-matrix from the boundary to some
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asymptotic distance by constructing an iteration equation over the space using the

potential between the atoms.

The R-matrix on the boundary is the connection between the inner and outer

regions because it can be defined in two ways: it can be defined both as the log-

derivative of the asymptotic channel functions of the two scattering atoms in the

outer region, and in terms of a sum over bound, diatomic, inner region wavefunc-

tions and eigenenergies. For a single channel (elastic) scattering event involving

only one partial wave, the two definitions take the form [30]:

ψ(a0,E) = a0R(a0,E)
dψ(r,E)

dr

∣∣∣∣
r=a0

, (1.2)

R(a0,E) =
h̄2

2µa0

N

∑
k=0

|χk(a0)|2

Ek−E
, (1.3)

where ψ(r,E) is the total scattering wavefunction for two atoms a distance r apart

which are scattering off each other with relative energy E, a0 is the position of the

boundary between the inner and outer regions, µ is the reduced mass of the two

atoms, the counting index k (not to be confused with the scattering wavenumber

k, defined in the next chapter) counts over all of the bound and continuum states

of the finite inner region diatomic system (up to some number, N), and χk(r) and

Ek are the kth eigenfunction and eigenenergy of the inner region diatomic system

respectively.

The two definitions essentially take the form of a log-derivative of a quantity

associated with the outer region (Equation 1.2) and a sum (Equation 1.3) over quan-

tities associated with the inner region. The equivalence of these two definitions [30]

allows one to use information about the bound diatomic system to derive properties

of the scattering event. This means one can avoid having to solve the two-body

Schrödinger equation over all space.

The R-matrix formalism is naturally suited to the type of problem being studied

here. There are fundamental differences between the short-range and long-range

behaviours of the atoms as they interact: at short range the interaction is complex,
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and it merits a high-level of approximation to capture all of the physics involved.

At long-range the interactions are simpler, yet a larger range of distances must be

considered for the physics of the long-range interactions to be fully captured.

Treating the two regions differently is therefore sensible – little extra accuracy

is to be gained by treating the long-range effects with the same level of approxima-

tion as the short-range ones, and a potentially very large increase in computational

efficiency can be obtained from the way the long-range is handled by the R-matrix

method.

1.4 This Work

As Equation 1.3 shows, construction of an accurate R-matrix is dependent on highly

accurate solutions to the time-independent Schrödinger equation over a finite re-

gion for the inner region portion of the method. In order to obtain these solutions,

nuclear motion programs designed for high resolution spectroscopy are utilised.

Because this work relies on high-accuracy potential energy curves to describe the

short-range physics of the scattering problem, it can be thought of as the ‘Cal-

culable’ R-Matrix Method, in contrast to the Phenomenological version originally

introduced by Wigner and Eisenbud.

It is not immediately apparent why a work dedicated to obtaining scattering

observables for atom-atom interactions would need to dedicate so much effort to

solving the Schrödinger equation for diatomic molecules, but that is exactly the

case. In A scattering theory of diatomic molecules: General formalism using the

channel state representation [81], F. H. Mies says that a “complete theory of di-

atomic molecules should be indistinguishable from a complete theory of atom-atom

scattering.” In the spirit of this idea, the next chapter will explain in more detail the

connections between the two physical systems from a theoretical perspective.

There has been much progress in the field of accurate solutions to the

Schrödinger equation for bound multi-atom systems over the years. For instance

in water, which has a deep well and many bound states, there are high-accuracy line

lists up to and beyond dissociation [82, 83, 84]. There have also been spectroscopic
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observations of resonances in water [84, 85].

The main focus for RmatReact so far has been on DUO [86], which is a code

designed to obtain high-accuracy spectra for diatomic molecules, and in particular

open-shell, coupled-state molecules [87]. Some of the work in this thesis was also

completed using the similar but less general diatomic code LEVEL [88]. It is

anticipated that similar codes for polyatomics, such as DVR3D [89], WAVR4 [90],

and TROVE [91, 92] will be used for the equivalent scattering calculations in larger

systems. For this work, DUO was modified to use a different basis set with boundary

conditions more suited to this work, and to solve the surface term problem which

arises in calculations of solutions to the Schrödinger equation over a finite region,

as discussed in Chapter 3.

The outputs of the ‘inner region’ codes such as DUO were then input into a

‘harness’ code which constructed the R-matrix for a given set of scattering energies,

and passed that R-matrix on to an ‘outer region’ code.

In the outer region, two different types of R-matrix propagation have been used

in this work. In the single channel case, a simple propagator based on the work of

Light and Walker [93] was implemented directly into the harness code, and the scat-

tering observables obtained directly from that propagator. In the multichannel case,

a version of an R-matrix propagation code for electron-atom collisions, PFARM

(also known as PRMAT) [94], was used to propagate the R-matrix and produce the

scattering observables.

PFARM is the parallelised version of the older code FARM: the Flexible

Atomic R-Matrix package [95]. In this work, PFARM was modified to account

for the differences between electron-atom scattering and atom-atom scattering. The

scattering observables themselves were calculated using the harness code, and with

the software reskit where appropriate.

The method presented here was tested against three different systems. First

it was compared to analytic scattering results from the elastic scattering of a parti-

cle off a Morse potential. Next, it was used to obtain scattering lengths, effective

ranges, and cross-sections of argon elastically scattering off argon at ultracold tem-
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peratures, with the intention of searching for shape resonances, and of using the

results to shed light on an outstanding issue concerning the bound states of the Ar2

dimer. Finally, inelastic scattering was introduced to explore cross-sections for in-

tramultiplet mixing in oxygen due to ultracold interactions with helium atoms, and

a selection rule governing these transitions was studied.

1.5 Other Works

With the exception of a single proof-of-principle study by Bocchetta and Gerratt

[69], the methods developed here have not been applied to so-called heavy particle

scattering before. There are also several significant differences between the study

of Bocchetta and Gerratt and the method employed in this work. This is discussed

in more detail in Chapter 3.

Bocchetta and Gerratt’s work is unique because when heavy particle scattering

is usually simulated using R-matrix methods, an alternate R-matrix method is used.

This alternate method only uses the outer-region propagation part of the method

[96, 93, 97]. As such, one can refer to these methods as Propagator-Based R-Matrix

Methods, in contrast to the Calculable methods used here and by Bocchetta and

Gerratt, and to the Phenomenological methods used by the progenitors of R-matrix

theory.

In Propagator-Based methods, the boundary between the two regions is set

to be close to zero internuclear separation. Since there is a large repulsive barrier

in a typical diatomic potential energy curve – the classically forbidden region, as

displayed in Figure 1.3 – this will mean that the diatomic wavefunctions, and by

extension the R-matrix, will be close to zero, and so it is assumed to be zero. This

R-matrix is then propagated from the boundary, through the outer region, over the

potential energy curve to the asymptotic region.

This makes this technique especially useful for heavy-particle scattering,

where there often is little resonance structure in the scattering observables, and thus

not a large need to produce fine-grained plots of observables as a function of en-

ergy. Propagator-Based techniques have the advantage that they avoid the need for
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diagonalisation in the inner region. Since diagonalisation is usually an expensive

process, any method which avoids the need for it has many built-in advantages.

It is anticipated, however, that the Calculable R-matrix methods presented in

this work will be an improvement on the Propagator-Based studies for the systems

being considered here, both in terms of computational expense and in the accuracy

of the simulation. This is due to one key aspect of the algorithm. Specifically,

Propagator-Based methods must repeat the entire calculation for every different

scattering energy value one wishes to sample. Therefore they do not leverage the ef-

ficiency of variational nuclear motion programs at solving the Schrödinger equation

at short range.

This is especially problematic if the potential is rapidly varying, as with, for

instance the deep potential wells studied here. In those cases, the various propagator

methods will need a large number of iterations in order to achieve accuracy. Having

a large inner region alleviates this problem by handling most of the complicated

physics of the close-range interactions in one diagonalisation (or a small number

of diagonalisations) – the entire inner-region must only be calculated once, inde-

pendent of scattering energy, and then the results can be re-used for any scattering

energy.

This allows one to construct fine-grained plots of scattering observables such

as the cross-section as a function of the scattering energy, allowing one to more

easily detect resonant behaviour from these observables.

Other similar, non-R-matrix methods do exist to study the systems being stud-

ied here. Already mentioned is Hutson’s MOLSCAT [59]. This uses coupled-channel

methods to obtain cross-sections and other assorted scattering observables, includ-

ing low-energy ones such as the scattering length and effective range, which this

work places an emphasis on, too.

MOLSCAT’s coupled-channel methods have much in common with the R-

matrix methods discussed here: both are time-independent, both involve coupling

potential energy curves together, both use partial wave expansions, both involve

matching wavefunctions to asymptotic boundary conditions, and both involve prop-
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agating a quantity identified as a log-derivative of a wavefunction over an internu-

clear coordinate. Indeed, it is possible to use R-matrix propagation methods such as

that due to Light and Walker in MOLSCAT, along with a number of other propagation

methods.

One important difference between R-matrix methods and the coupled-channel

methods of MOLSCAT is the presence of the scattering energy-independent inner

region in the former (though as previously stated not all R-matrix methods use an

inner region). In coupled-channel methods, by contrast, the entire calculation must

be repeated for each scattering energy being considered, often at great computa-

tional expense.

It is worth noting that coupled-channel methods can be used to solve the types

of problems presented in this thesis, and indeed MOLSCAT has been used to solve

ultracold atom-atom and atom-diatom problems before [98, 99, 100]. Whilst this

project treads well-established grounds, future versions of RmatReact are antici-

pated to be able to solve previously unsolved problems in the theory and simulation

of ultracold molecular collisions.

For instance, another important difference between R-matrix and coupled-

channel theory will be more apparent in future work on RmatReact, in that no matter

the dimensionality of the system being studied, MOLSCAT only ever propagates over

a single radial coordinate, and treats all other coordinates in the problem separately.

This will not be the case in the atom-diatom versions of RmatReact in development

(or indeed in versions of RmatReact for even larger systems). In fact, the chem-

istry that will be simulated in later RmatReact projects will even require coordinate

transformations [31].

As with coupled-channel methods, the previously mentioned MQDT methods

also have an ‘inner region’ of sorts, although propagation is still performed in the

inner region in MQDT. These methods are based on the concept of parameterising a

set of energy levels using only a small number of parameters (in an analogous way

to how scattering lengths parameterise ultra-low-energy scattering, as discussed in

Chater 2 [101]). Whilst they were originally developed empirically for approximat-
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ing the energy levels of alkali metal atoms as deviations from hydrogenic energy

levels [102, 103], they have since been expanded to account for other potentials

arising in other systems.

The original alkali atom paramaterisation was possible because the short-range

and long-range physics of the outer electron’s interaction with the inner core of the

atom was separable due to the way the electrons effectively ‘shielded’ the charge of

the nucleus from view [101]. The spirit of this short-range versus long-range dis-

tinction still persists in the method today. MQDT methods remain semi-empirical

– the parameters, or defects, can be obtained empirically [102] or analytically [76],

with the extension to multichannel cases meaning that couplings between potentials

are included, too.

Finally, the Calculable R-Matrix Method employed in this work is especially

well-suited to the problems arising in the study of systems with deep potential wells.

This is due to the fact that the inner-region needs to be solved only once. Deep po-

tential wells tend to have a very large number of vibrational energy levels below

dissociation (related to the large number of Feshbach resonances they support, as

discussed above), and in particular they have complicated short-range physics in-

volving many partial waves at small distances.

The consequence of this is that a large basis set is needed to account for all

of these states in the diagonalisation process. Because the Calculable approach

performs this diagonalisation only once (and can discard high-lying states from the

R-matrix sum, as discussed further in Chapter 3), it has efficiency advantages when

compared to Propagator-Based R-Matrix methods, and other methods discussed in

this section such as MQDT and hyperspherical approaches.

1.6 The Structure of this Thesis

• Chapter 2 introduces scattering theory and observables, in the single- and

multichannel cases. There is also a discussion of the key theoretical results

underpinning the R-matrix method, and some of the more specific theories

utilised in this work. The two R-matrix definitions are explored in more detail.
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Propagator methods are discussed, followed by a discussion of asymptotic

expansions. Chapter 2 ends with a derivation of the analytic expression for

the scattering observables for a particle scattering off a Morse potential.

• Chapter 3 explores the methods and algorithms employed in this work. A

complete description of the entire RmatReact method used here is presented.

There is a large discussion on the subject of Gaussian quadratures of various

kinds, and variational basis representations and discrete variable representa-

tions are introduced and discussed. There is a section featuring a discussion

of the numerical and computational issues that were encountered in the im-

plementation of the RmatReact method.

• Chapter 4 presents results for scattering off a Morse potential, and compar-

isons to analytic results. This chapter is largely adapted from the paper Rivlin

et al. (2019a) [104].

• Chapter 5 presents results for the ultracold elastic scattering of argon atoms

off other argon atoms. The chapter is largely adapted from the paper Rivlin et

al. (2019b) [105]. There is one additional section in this chapter concerning

S-matrix poles which was not present in the original paper.

• Chapter 6 presents the theory for intramultiplet mixing in oxygen due to ultra-

cold inelastic scattering with oxygen atoms, and presents preliminary results

comparing cross-sections generated here with results from literature sources.

• Chapter 7 presents conclusions from the current work, descriptions of some

ongoing work on the RmatReact method, and discussions of the potential

future avenues the research featured here could take.



Chapter 2

Theory

In this chapter the quantum theory necessary to describe two atoms colliding over a

set of mutual potential energy surfaces will be developed, in order to obtain scatter-

ing observables such as cross-sections. The R-matrix theory method for obtaining

these scattering observables will then be presented. Theory will also be presented

for analytic scattering, specifically over the Morse oscillator potential energy curve

[106].

2.1 Scattering Theory
Before explaining R-matrix theory specifically, it is necessary to discuss quantum

scattering in general.

Note that while many of the derivations in this chapter and the next one

are standard (much of it is taken from P. G. Burke’s R-Matrix Theory of Atomic

Collisions [30]), it is usually given in atomic units (where it is assumed that

h̄ = me = e = 1), since the R-matrix theory developed from it is most often ap-

plied to electron-atom/molecule collisions. [30, 29]. This means that the reduced

mass terms which appear in diatomic physics equations are missing. In this work

they must be included explicitly.

Burke’s textbook also makes the assumption that the reaction occurs in the rest

frame of the larger reactant, in his case the atom or molecule, as opposed to the

electron. This is a reasonable assumption for the systems considered in that work.

However, since in this work the reactants are more similar in mass (in some cases
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equal in mass), a different reference frame may be needed to describe the reactions.

In this work, all reactions are considered in body-fixed coordinates. The im-

plications of using body-fixed coordinates versus using space-fixed coordinates in-

clude modifications to the kinetic operator in some Hamiltonians [107] to include

(e.g.) Coriolis coupling terms [108]. The definition of the scattering energy does

not change. In both cases it is defined relative to the centre-of-mass energy of the

reactants. It is intended in the future for the RmatReact method to be adapted to

both body-fixed and space-fixed coordinates, in order to facilitate the study of, for

instance, external magnetic fields interacting with the reactants.

2.1.1 Single Channel Scattering Theory

Before analysing the full scattering theory, where energy can be exchanged and

quantum numbers can be altered by the collision event, the theory necessary to

describe elastic scattering will be presented. This is single channel scattering.

As always, one begins with the Schrödinger equation. If no energy is ex-

changed or quantum numbers changed during the interaction, and time is not being

considered, then the equation for a pair of atoms interacting over a mutual potential

energy surface is:

ĤΨ(r) = EΨ(r), (2.1)

where E is the scattering energy in the frame one is analysing the system in mea-

sured relative to some zero of energy, Ĥ is the Hamiltonian of the system, and

Ψ(r) is the wavefunction of the scattered atom in the spherical polar coordinates

r = (r,θ ,φ).

If the atoms interact over a mutual, single-dimension potential energy surface

(known as a potential energy curve or PEC) V (r), then the Hamiltonian has the

form:

Ĥ =
−h̄2

2µ
∇

2 +V (r), (2.2)

with r representing all three coordinates, and where µ is the reduced mass of the
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system of two masses m1 and m2:

µ =
m1m2

m1 +m2
. (2.3)

In this derivation the system is effectively being treated as a featureless particle

scattering off a potential well, with no consideration for the structure of that parti-

cle or potential (assuming there are no degeneracy factors) – if it cannot exchange

quantum numbers then it may as well have none.

It is possible to separate the wavefunction into angular and radial parts through

a partial wave expansion that separates the total wavefunction into different com-

ponents with different symmetries. In the single-channel case derived here, the

symmetries are given by different total angular momentum quantum numbers, such

that:

Ψ(r) =
∞

∑
J=0

BJ(k)
ψJ(r)

r
PJ(cosθ), (2.4)

where J is the quantum number representing the total angular momentum of the two

atoms, ψJ(r) is the radial part of the total wavefunction Ψ(r), r is the internuclear

separation coordinate, BJ(k) are expansion coefficients, PJ(x) are Legendre polyno-

mials, and k is the scattering wavenumber, which is related to the scattering energy

by the equation

k =
√

2µE
h̄

, (2.5)

and when multiplied by h̄ gives the linear momentum.

This derivation assumes cylindrical symmetry such that integrating the φ vari-

able out of the r vector gives a constant 2π factor that can be incorporated into the

normalisation.

The partial wave expansion is useful because it allows a three-dimensional

problem to be reduced to a one-dimensional one, in the case where the PEC is

central. In this partial wave expansion, the angular components of the wavefunction

Ψ(r) are accounted for by the sum over different values of angular momentum –

each term in the sum is a separate partial wave.

The (reduced) radial wavefunction for a given total angular momentum J,
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ψJ(r), obeys its own radial Schrödinger equation, which has the form:

ĤJ
ψ

J = Eψ
J, (2.6)

where

ĤJ =
−h̄2

2µ

d2

dr2 +
h̄2J(J+1)

2µr2 +V (r). (2.7)

Solving the radial Schrödinger equation to obtain the scattering wavefunction

ψJ(r) will allow one to obtain the scattering observables such a the cross-sections

for given values of J. By summing over the scattering observables for a given J, one

can obtain the scattering observables for the full 3D equation. A brief discussion of

the full 3D scattering observables is given in Section 2.1.3.

In order to obtain the scattering wavefunction, one must impose two boundary

conditions. Most commonly, one chooses one boundary condition at zero distance,

and one at asymptotic distances. In the J = 0 case for the systems considered in this

work, these boundary conditions have the form

ψ
0(r = 0) = 0 (2.8)

ψ
0(r→ ∞) = sin(kr)cos(δ 0(k))+ cos(kr)sin(δ 0(k)) (2.9)

= sin(kr)+ cos(kr) tan(δ 0(k)). (2.10)

Equations 2.9 and 2.10 are equivalent – the boundary condition is the same in

both cases. The former makes it more clear that there are no physical poles in the

asymptotic form of ψ0(r), whilst the latter makes derivations of scattering quantities

more straightforward.

These boundary conditions can be interpreted as saying that it is assumed that

at zero distance, the wavefunction has no amplitude, and at infinite distance, the

wavefunction has the form of a free particle, only modified by the tan(δ 0(k)) term.

Because this manifests only as a shift in phase relative to that of a free particle, the

term δ 0(k) is known as the phase shift.
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The r = 0 boundary condition is straightforward to justify from a physics per-

spective for the problem described in this work: any realistic diatomic potential

energy curve plotted along the radial coordinate will have a large repulsive barrier

close to r = 0, caused by classical effect of Coulomb repulsion between the elec-

trons combined with the quantum effect of Pauli exchange repulsion between the

electrons.

The repulsive barrier rises indefinitely at distances close to r = 0 (ignoring the

effects of nuclei overlapping at extremely small values of r), and thus the wavefunc-

tion amplitude exponentially decreases as it approaches r = 0, making the assump-

tion that ψ0(r = 0) = 0 a robust one.

For J > 0, the r = 0 boundary condition remains the same, and the sine and

cosine terms in the asymptotic boundary condition are replaced by modified spher-

ical Bessel functions of the first and second kind (the latter of which are known as

Neumann functions) [109]:

ψ
J(r→ ∞) = sJ(kr)+ cJ(kr) tan(δ J(k)), (2.11)

where for spherical Bessel function jν(x) and spherical Neumann function nν(x),

sν(x) = x jν(x) (2.12)

cν(x) =−xnν(x). (2.13)

More sophisticated boundary conditions are also employed for certain calcula-

tions later in the project, known as asymptotic expansions. These are discussed in

Section 2.2.3.

The problem of finding the scattering wavefunctions ψJ(r) in order to obtain

the scattering observables is (indirectly) the principle issue of this thesis, for which

the R-matrix method (to be introduced in Section 2.2) will be utilised.

2.1.2 Multichannel Scattering Theory

Whilst the total energy Etot is conserved, it is possible for different energies to be

transferred in an interaction. If the interaction causes energy to be exchanged be-
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tween the atoms, or for the quantum numbers of the atoms to be changed, then

multiple coupled potential energy curves must be involved in the interaction.

If the system can transition between potential energy curves, there must be a

coupling term between the PECs. There must also be a theory describing how these

interactions occur, which must be able to produce scattering observables such as the

cross-section of the transition between levels. This theory is introduced here.

Much of this theory is analogous to the single-channel case. The full

Schrödinger equation for the system will involve a Hamiltonian which contains

every PEC and PEC coupling, and which acts on each of the 3D wavefunctions

Ψi(r) for a given channel i which is located an energy Ei above some zero in energy

(usually the lowest channel’s energy) [110]:

(
d2

dr2 + k2
i

)
Ψi(r) =

2µ

h̄2 ∑
i′

Vii′(r)Ψi′, (2.14)

where the diagonal elements of Vii′ correspond to PECs for a given set of quantum

numbers, and the off-diagonal elements represent couplings between those PECs.

ki, the scattering wavenumber (squared) associated with the ith channel, is defined

by

k2
i =

2µ

h̄2 (Etot−Ei), (2.15)

where Etot is the total energy in the frame being considered.

The scattering energy can be defined relative to any channel. There is a total

energy of a reactant, Etot, which is the sum of the scattering energy E and the energy

Ei of the channel it is scattering off. This quantity is conserved, and when one

changes which channel the scattering energy is defined relative to, one changes the

scattering energy alongside it such that the total energy is conserved. Even if the

channel which is being scattered off is high in energy, the scattering can still be

considered ‘ultracold’ if it is only a very small amount of energy higher than the

channel’s energy – the translational energy of the system is still ultracold.

J is the total angular momentum of the system, and τ is the parity. These are

the two globally conserved quantum numbers (no problems were considered in this
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work that broke either of those two symmetries), and along with the total energy

Etot they are the only conserved quantities.

The partial wave expansion which is analogous to Equation 2.4 now involves

expanding a wavefunction labelled by η as a sum over many quantum numbers.

This sum includes infinite values of total angular momentum J, two values of par-

ity τ , infinite values of orbital angular momentum ` (assuming space-fixed coordi-

nates), and Nc channels of non-conserved quantum numbers, which are described

by the functions ΦJτ
i` :

Ψη(r) =
∞

∑
J=0

∑
τ

∞

∑
`=0

Nc

∑
i=1

AJτ
iη`

ψJτ
iη`(r)

r
P̀ (cosθ)ΦJτ

i` , (2.16)

where the coefficients AJτ
iη are determined by matching to plane wave solutions of

the equation at asymptotic distances [110]. Note that if the energy level of channel i

is degenerate, then the N j degenerate channels at that energy must be summed over

too. Also note that in body-fixed coordinates, the ` quantum number is replaced

with a different angular momentum quantum number, such as j (see Chapter 6.

Each different set of quantum numbers {Jτ} corresponds to a different symme-

try, which are condensed into one label Γ for convenience henceforth. Each channel

with quantum numbers i corresponds to a different electronic state with a different

PEC.

As in the single channel case, by expanding the full 3D wave function in this

way, the angular coordinates are captured in the symmetries corresponding to the

angular momentum quantum numbers. The remaining radial wave function ψΓ
iη(r)

is the solution to a radial Schrödinger equation.

To account for the transitioning between electronic states, it is useful to repre-

sent the radial wave function as a vector, so that for a system with Nc channels,

ψψψ
Γ
η(r) =


ψΓ

1η
(r)

ψΓ
2η
(r)

...

ψΓ
Ncη

(r)

 . (2.17)
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This vector can be thought of as one column of a general matrix ψψψΓ with the

number of columns equal to the number of scattering solutions η of the full reduced

radial Schrödinger equation for a given symmetry Γ.

As such, within a given symmetry Γ there will be a Hamiltonian matrix ĤHH
Γ
,

with each element corresponding to an element of the potential matrix VVV (r) (with a

kinetic term, too). For a given scattering solution η , the Schrödinger equation for a

given symmetry is turned into a matrix eigenvalue equation of the form:

ĤHH
Γ
ψψψ

Γ
iη(r) = Etotψψψ

Γ
iη(r). (2.18)

Another way of writing this equation is in the form

(
d2

dr2 + k2
i

)
ψ

Γ
iη(r) =

2µ

h̄2 ∑
i′

V Γ

ii′(r)ψ
Γ

i′η(r), (2.19)

where V Γ

ii′(r) includes angular momentum terms such that

VΓ = V+
h̄2R
2µr2 , (2.20)

where R is the rotational angular momentum matrix expressed as the difference

between the total angular momentum J and the total internal angular momentum of

the system j such that R = J− j [86] (this is equivalent to the quantum number `

discussed above).

The multichannel case also has equivalent boundary conditions to Equa-

tions 2.8, 2.10, and 2.11. The boundary conditions are

ψ
Γ
iη(r = 0) = 0 (2.21)

ψ
Γ
iη (r→ ∞) = k

− 1
2

i

(
sin(kir)+∑

i′
KΓ

ii′ cos(ki′r)

)
, (2.22)

where KΓ

ii′ is dimensionless number, an element of a quantity known as the K-matrix,

which will be discussed more in Section 2.1.3.2 and Section 2.2.3.2, where further

discussion of the boundary conditions will also be presented.
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2.1.3 Scattering Observables

2.1.3.1 Single Channel Scattering Observables

The tan
(
δ Γ(k)

)
term in Equation 2.11 is the single-channel definition of the K-

matrix, KΓ(k), which is an important quantity in scattering theory. The argument

of the tangent function, δ Γ(k), is called the phase shift or the eigenphase, and is an

important quantity in its own right.

Loosely speaking, the K-matrix and the quantity known as the eigenphase,

which is measured in radians, can be thought of as measures of the extent to which

an otherwise free particle’s wavefunction is modified by interaction with a potential.

If the potential is zero, then the eigenphase is zero, and the asymptotic wavefunction

is that of a free particle. For non-zero potentials, the influence of that potential is

measured through its impact on the value of the eigenphase.

Although the K-matrix is not a measurable quantity itself, all scattering observ-

ables can be derived directly from it. The outputs of the R-matrix-based algorithms

described in this work will be K-matrices for various collision processes, and the

scattering observables derived from them.

In the single channel case, the eigenphase and K-matrix are simply scalar func-

tions of scattering energy. The K-matrix itself (confusingly called the reactance, or

R-matrix by some authors [110]) is defined as the term which multiplies the cosine

in Equation 2.11.

Similarly, in the single channel case the quantities known as the scattering, or

S-matrix, and the transition, or T-matrix are given in terms of the K-matrix by

SΓ(k) =
1+ iKΓ(k)
1− iKΓ(k)

(2.23)

T Γ(k) = SΓ(k)−1. (2.24)

Note that some authors define the T-matrix to be the negative of the value presented

here. In the single-channel case only, the S-matrix can also be defined as

SΓ = exp
(
2iδ Γ(k)

)
. (2.25)
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And further note that some authors define this without the 2 in the exponent, which

also changes the first definition given here.

One physical interpretation of the S-matrix stems from the fact that it can also

be defined in the r→ ∞ limit as the negative of the ratio of the coefficients of the

outgoing free particle component of the asymptotic radial wavefunction to the in-

coming free particle component [30, 111], when considering a general free particle

solution to a wave equation, as in the asymptotic boundary conditions of the scat-

tering Schrödinger equation.

This can be seen from an alternate way of expressing the boundary conditions

in Equations 2.10 and 2.11, which arises from the definition in Equation 2.23:

ψ
Γ(r→ ∞) = exp

(
−iθ Γ

)
− exp

(
iθ Γ
)
SΓ(k), (2.26)

where SΓ(k) is the S-matrix and θ Γ = kr− 1
2Jπ .

Like the eigenphase, The S-matrix and T-matrix can also be interpreted as mea-

suring the deviation of the scattering wavefunction from the case of zero potential.

Specifically, if there is no potential, then SΓ(k) = 1 and T Γ(k) = 0.

Whilst these various matrices are useful for characterising scattering events,

they are not strictly speaking observable quantities. Arguably the most important

scattering observable is the total cross-section of the interaction, which, for the

partial wave expansion outlined in this work, can be expressed entirely in terms of

the K-matrix.

The integral cross-section, measured in units of length squared, is given by

integrating the differential cross-section over all solid angle Ω = (θ ,φ):

σint =
∫∫ dσ

dΩ
sinθdΩ. (2.27)

The integral cross section can be interpreted physically as a measure of the

probability of any interaction at all occurring between the scattering atoms. It is the

effective surface area of the interaction space, and larger cross sections imply larger

probabilities of interactions occurring.
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The derivative dσ

dΩ
in the integral in Equation 2.27 is the differential cross sec-

tion, which is the cross-section per unit solid angle. This can be interpreted as a

measure of the probability of the scattering event occurring for a given solid an-

gle. The integral cross section is then simply the sum of all of the differential cross

sections at all possible solid angles. Differential and integral cross-sections are not

considered in this work.

Cross sections are a useful measure for many reasons. One reason relevant to

this work is that when plotted as a function of collision energy E, then the reso-

nances discussed in the previous chapter become easy to identify, as they impact

the cross section significantly around the energies they occur at. Indeed, one of the

main advantages of the R-matrix method to be discussed in the next chapter is that it

facilitates inexpensive, fast computations of events at multiple scattering energies,

which allows one to produce very high resolution plots of σtot(k) to easily identify

resonances.

Another reason cross sections are an important scattering observable is the rel-

ative ease with which they can be measured by experimentalists. Quoting cross

sections is standard practice for most scattering experiments, allowing for bench-

marking between these results and experimental ones.

If one wishes to remove considerations of the angular coordinates from the

calculations, then the total cross-section can be defined from the partial wave ex-

pansion. In the single-channel case, this expansion has the form:

σtot(k) =
∞

∑
J=0

4π

k2 gJ sin2 (δ J(k)), (2.28)

where gJ is the degeneracy factor for the partial wave with angular momentum J.

For a simple particle scattering off a potential, then gJ is given by (2J+1). If there

are other quantum numbers to be considered in the scattering, such as nuclear spin,

then the gJ term may include other components.

The summand of Equation 2.28 is defined as σ J(k), the partial wave cross

section for a given value of J. This can be interpreted as a measure of the probability

of the atoms interacting for a given value of J.
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Another pair of useful scattering observables can be derived from a polynomial

expansion of the eigenphase in the low energy limit. In the single channel case, at

low energy, when J = 0, one can write the following expansion:

k cot(δ 0(k)) =− 1
A
+

1
2

reffk2 +O(k4). (2.29)

The two parameters in the expansion, A and reff, are known respectively as the

scattering length and the effective range. It is possible to define a similar expansion

for non-zero values of J, but in this work only the J = 0 expansion was considered.

There are alternate ways of defining both the scattering length and the effective

range. Equation 2.29 suggests that the scattering length can also be defined as the

low energy limit

lim
k→0

k cot(δ 0(k)) =− 1
A
. (2.30)

The physical interpretation of the scattering length is as the length scale which

governs the physics of the interaction at low energy. For instance, at sufficiently

low energies, the cross section of an interaction can be given as simply the square

of the scattering length:

lim
k→0

σtot(k) = 4πA2. (2.31)

The effective range is named as such [112, 113] because it can be interpreted

as a quantity which represents the length range over which, at low energies, the

effects of the potential can be felt by the scattering atoms – the effective range of

the potential. This interpretation becomes more clear when considering another

way of defining the effective range:

If one defines the wavefunction associated with the solution of Equation 2.6 for

a PEC V at J = 0 and E = 0 to be ψ(0,V )(r), then one can also define a wavefunction

ψ(0,0)(r) to be the solution to the same equation, only with V = 0. In such a case,

then the effective range can be defined as

reff = 2
∫

∞

0

(
ψ

2
(0,0)(r)−ψ

2
(0,V )(r)

)
dr. (2.32)
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In other words, the effective range is a more sophisticated comparison between

the zero-energy scattering wavefunction when there is no potential present, versus

when there is a potential present (as compared to the interpretations of the eigen-

phase, S-matrix and T-matrix outlined above) [112, 113].

This is because the effective range takes the form of an integral over all space

of the squared difference between the two functions. The result of the integral is a

length quantity that describes how the wavefunction is changed by the presence of

the potential, when at zero scattering energy. The larger the value of reff, the more

substantial the effect of the potential is at low energy, and hence the larger its range

of effect.

In practice, in this work both the scattering length and effective range were

obtained by calculating the eigenphase at low values of k. By plotting k cotδ 0(k)

against k2, and using linear fitting features in software such as ORIGIN (OriginLab,

Northhampton, MA) to obtain the slope and intercept of the plot, the values of A

and reff could be derived directly.

The scattering length and effective range are useful as, like with the cross sec-

tion, they are quantities which experimental researchers can provide values for,

which is useful for benchmarking purposes. As mentioned in Chapter 1, one ex-

ample of this is in simulations of Bose-Einstein Condensates (BECs), where they

are the contribution from atomic physics to these simulations [32, 57].

2.1.3.2 Multichannel Scattering Observables

In the multichannel case, the relationship between the K-matrix and the eigenphase

is not as straightforward as the former simply being the tangent of the latter, and the

scattering observables take on more complex forms.

The quantity KJ(k) is replaced by a matrix KΓ(k), which has dimensions

Na×Na for a problem with Na open target states, or channels. The K-matrix does

not run over closed channels: any states which are higher in energy than the scat-

tering energy at infinite distance are not accessible for scattering off, and thus there

are no allowed transitions between open and closed channels. As in Section 2.1.2,

Γ corresponds to the list of conserved quantum numbers, which is referred to as a
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single symmetry. k is still the scattering wavenumber. The scattering observables

can still be obtained from this quantity, which is defined and discussed in Sec-

tion 2.2.3.2. Note that the K-matrix is symmetric, as are all matrices derived from

it.

The new relationship between the K-matrix and the eigenphase is as follows:

first the matrix A is introduced, which is the matrix of normalised eigenvectors of

the matrix K (where the symmetry label and dependence on k are not explicitly

stated for any of the matrices introduced in the following discussion). Thus the

diagonal matrix of eigenvalues of K can be written as

tan(∆∆∆) = ATKA, (2.33)

where AT is the transpose of A.

By writing the matrix ∆∆∆ as

tan(∆∆∆) =


tan(δ1) 0 . . . 0

0 tan(δ2) . . .
...

...
... . . .

0 0 . . . tan(δN)

 , (2.34)

it is possible to identify the arctangent of the ith element on the diagonal, δi(k), with

the eigenphase introduced previously. In this case, δi(k) is the partial eigenphase.

Another quantity, known as the eigenphase sum δ (k), is simply the sum of all

Na of these partial eigenphases:

δ
Γ(k) =

Na

∑
i=1

δ
Γ
i (k), (2.35)

where the Γ and k labels are explicitly included. This is the quantity which can

most closely be identified as the multichannel equivalent of the definition given at

the beginning of Section 2.1.3.1 [29].

Other matrices which can be derived from the K matrix include multichannel

versions of the S- and T-matrices. Defining 111 as the identity matrix, and i as the
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imaginary unit,

S = (111+ iK)(111− iK)−1 (2.36)

T = S−111, (2.37)

The matrix S can also be diagonalised by the same matrix A that diagonalises K,

such that

ATSA = exp(2i∆∆∆), (2.38)

where the ith diagonal element of the diagonal matrix exp(2i∆∆∆) is exp(2iδi).

The multichannel cross-section is dependent on the elements of the T-matrix

for a given symmetry Γ. The total cross-section for a transition from channel i to

channel i′ at scattering energy E is given by [114, 110]

σ
Tot (i→ i′

)
(E) = ∑

Γ

gΓσ
Γ
(
i→ i′

)
(E), (2.39)

where gΓ is the total degeneracy for that symmetry, and σΓ (i→ i′)(E) is the partial

cross-section for the transition from i to i′ for a given symmetry Γ. This quantity is

given by the expression

σ
Γ
(
i→ i′

)
(E) =

π

k2
i

1
gi
|T Γ

ii′ (E)|
2, (2.40)

where ki is the wavenumber of the incoming channel i as given by Equation 2.15,

gi and gi′ are the degeneracies of the channels i and i′, and T Γ

ii′ (E) is the element of

the T-matrix which couples channel i to channel i′ at energy E.

When i 6= i′, the principle of detailed balance suggests that, for a given scatter-

ing energy, [114, 110]

σ
Γ
(
i→ i′

)
=

k2
i′

k2
i

gi′

gi
σ

Γ
(
i′→ i

)
. (2.41)

If i = i′, then this is an elastic scattering cross-section. If not, then it is the

cross-section for the transition from one state to the other.
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Here the N j degenerate channels labelled j for each degenerate energy level i

from Section 2.1.2 can be re-introduced. Doing so means one must sum over these

channels to obtain the expression for σΓ (i→ i′)(E):

σ
Γ
(
i→ i′

)
(E) =

π

k2
i

1
gi

N j

∑
j=1

N j′

∑
j′=1
|T Γ

i ji′ j′(E)|
2. (2.42)

If there are any degeneracy factors arising from the additional label j then they must

also be included in the sum.

The degeneracy factors gΓ and gi depend on the specific quantum numbers

involved in the reaction. As discussed in Section 2.1.2, Γ in this work is usually

composed of two quantum numbers: total angular momentum J, and parity, τ . As

stated previously, gJ is usually given by (2J + 1), since parity adds no degeneracy

to the sum:

gΓ = (2J+1). (2.43)

2.1.4 Resonances

Resonances are features which are present in both the single- and multichannel

cases in many plots of the eigenphase and cross-section as a function of scattering

energy. It is also possible to have resonances in plots of cross-sections as a function

of other variables, too, such as electric field strength [115]. Resonances usually

have a distinct functional form in plots of the eigenphase, as seen in Figure 1.1. As

a consequence, the energy of the resonance and the inverse of its lifetime, known as

its width, can be determined by fitting a function to the eigenphase. One functional

form that resonances can be fitted to follows Breit and Wigner [35, 30, 36]:

δ
Γ(E) = A0 +A1E + arctan

Γres

E−Eres
, (2.44)

where δ Γ(E) is the eigenphase for partial wave Γ at scattering energy E, Γres is

the width of the given resonance (not to be confused with the symmetry label Γ),

and Eres is the energy of the resonance. Note that this definition of Γres follows the

convention used in, for instance, Tennyson & Noble [36], and differs by factor of
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two from the definition of the full width at half maximum (FWHM) of a function

used in other works.

For shape resonances, the quantity Γres is also the connection between the form

of the resonance and the physical properties of the associated quasibound energy

level. Γres is the width of the resonance, and also the inverse of the characteristic

lifetime of the level – the wider the resonance, the shorter-lived the associated level

is.

The non-resonant shape of the eigenphase (the ‘background’ eigenphase) is

accounted for by the two terms A0 and A1, where it is assumed that the width is

narrow enough that the background eigenphase can be approximated by a linear

function of E over its length. By fitting a generated eigenphase to a function of this

form, values for Γres and Eres can be obtained.

Another functional form that can represent resonances is the characteristic

Fano profile [37], which appears in results in Section 5, specifically Figure 5.5.

These asymmetric profiles, which can indicate resonances of any type, are the con-

sequence of interaction between the resonance and background scattering. Fano

profiles are discussed further in Section 5.

2.1.5 S-matrix Poles

The S-matrix, defined in Section 2.1.3 as the exponent of the eigenphase in Equa-

tion 2.111, has a few particularly useful physical interpretations when extended to

the complex plane. Here the discussion is restricted to the single-channel S-matrix.

For real values of k, the S-matrix has the straightforward interpretation of being

the ratio of outgoing and incoming scattering wavefunctions, but when the single-

channel S-matrix SJ(k) is plotted for complex values of k over the whole complex

plane, the poles which occur off the real-axis can be shown to correspond to a

variety of physical features (and a handful of unphysical) of the scattering system,

depending on their location within the complex plane.

This discussion is based on discussions of the properties of the S-matrix and

its poles which are found in a collection of sources [116, 117, 30, 111].

There are specific rules about where S-matrix poles can occur in the complex
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Figure 2.1: A possible distribution of S-matrix poles and zeroes for complex values of k.
The poles on the imaginary axis in the upper half plane represent bound states.
The pole in the lower half plane on the imaginary axis represents a virtual state.
The poles near to the real axis off the imaginary axis in the lower half plane
represent resonances, whilst the poles further away from the real axis and off
the imaginary axis in the lower half plane represent unphysical background
scattering poles. All these poles appear in pairs reflected about the imaginary
axis. The zeroes of the S-matrix are also represented in the upper half plane.
Each zero exactly corresponds to one pole in the lower half plane.

plane. Defining kRe and kIm such that k = kRe + ikIm, in the upper half plane, when

kIm > 0, the poles can only occur when they are on the imaginary axis: when kRe =

0. S-matrix poles in the lower half plane, when kIm < 0, can occur anywhere, with

one constraint: poles in the lower half plane occurring off the imaginary axis (such

that kRe 6= 0) always come in pairs reflected about the imaginary axis. Figure 2.1

describes which poles are possible.

Furthermore, every pole in the lower half plane that occurs off the imaginary

axis also corresponds to a zero in the upper half plane: the real coordinate of the

zero is the same as the real coordinate of the corresponding pole, and the imaginary

coordinate of the zero is the negative of the imaginary coordinate of that pole: the

zero is the pole’s reflection about the real axis.

The poles occurring in the upper half plane on the imaginary axis are the most
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straightforward to interpret: each pole corresponds to a bound state of the bound

system. If the pole occurs at the imaginary kRe = 0, kIm > 0, then the energy of the

corresponding bound state energy E is given by h̄2

2µ
k2

Im.

Since these poles correspond to bound states, plotting values of SJ(k) for imag-

inary values of k where kRe = 0 and kIm > 0 is a potential method for finding bound

states.

There is one other type of S-matrix pole that corresponds to a physical ob-

servable. Poles in the lower half plane that occur off the imaginary axis corre-

spond to resonances in the scattering process. For kIm < 0, if a pole is located at

k = kRe + ikIm, then the energy Eres and width Γres of the corresponding resonance

are given by

Eres−
1
2

iΓres =
h̄2

2µ
(kRe + ikIm)

2 , (2.45)

such that the energy of the resonance is given by

Eres =
h̄2

2µ

(
k2

Re− k2
Im
)
, (2.46)

and the width is given by

Γres =−4
h̄2

2µ
kRekIm. (2.47)

This means that an S-matrix pole-finding algorithm can also serve as a gen-

eral resonance finder [118]. This resonance finding method can be compared to a

different numerical resonance finding method outlined in Tennyson & Noble [36].

It is possible for the poles to correspond to resonances of any type, but there

is an important caveat: not all poles correspond to physical resonances. The larger

|kIm| becomes, the less likely a pole at that value of k is to correspond to a real ob-

servable, although there is no clear cut-off between physical and unphysical poles

when interpreting an S-matrix. This phenomenon is known as ‘background scatter-

ing’.

The explanation for this phenomenon is that the width of the resonances be-

come larger as |kIm| is increased. According to Nussenzveig, “as the poles get

farther away from the real axis, the corresponding resonance peaks in the scatter-
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ing cross-section become broader and broader, tending to overlap in an inextricable

way, until they merge into a slowly-varying background” [116]. This was said in

the context of square-well scattering, but the concept applies generally.

Another explanation is that the asymptotic values of the potentials become

more important at these larger |kIm| values. Again from Nussenzveig: “the asymp-

totic behaviour of the large poles depends very critically on the asymptotic be-

haviour of the potential. Physically unimportant changes in the potential may com-

pletely modify the behaviour of the large poles, so that these poles cannot have

much physical significance This ‘hypersensitiveness’ of the poles with respect to

asymptotic conditions, which had previously been noticed in the case of “spurious”

poles, is a very unwelcome feature of the S-matrix formalism” [116].

Finally, there is one more type of S-matrix pole which has implications for the

physics of the scattering problem. It is also possible for poles to exist in the lower

half plane for kr = 0: on the imaginary axis for kIm < 0. These poles do not occur

in pairs. They also do not correspond to resonances, or directly to any particular

physical observable.

Like the poles in the upper half plane on the imaginary axis, they correspond to

energy levels. However they do not correspond to bound states of the bound system.

Instead, the states they correspond to are called ‘virtual’ states, or ‘anti-levels’, and

the poles associated with them are sometimes called ‘anti-poles’. The levels are

not physically present, but the presence of a virtual state in the complex plot of the

S-matrix can have implications for the properties of the scattering system.

In particular, if a virtual state occurs very close to the origin, that can imply the

existence of an anomalously large scattering length in the scattering observables.

This in turn gives rise to a very large low-energy cross-section, too. In nuclear

physics, where the R-matrix theory has its origins, this phenomenon is well known

for neutron-proton scattering. Unlike for the poles close to the origin, the presence

of poles far from the origin on the imaginary axis does not have a corresponding

physical interpretation, and is largely meaningless.

A virtual state pole close to the origin is similar to a J = 0 bound state close
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to dissociation, which also implies the presence of a very large amplitude scattering

length: as a state goes from being bound to being unbound as the well depth of the

bound system decreases, the scattering length cycles from negative infinity through

positive infinity, meaning that any real number is a possible scattering length, and

that as the bound state’s energy approaches zero, the scattering length is large. This

is discussed further in Chapter 5.

2.2 The R-Matrix Method

Here a derivation and explanation of the R-matrix method is presented, as used to

describe atoms scattering off each other. In general, the atoms may have a non-zero

total angular momentum, J, and they may begin and end the interaction with differ-

ent quantum numbers. Much of the derivation is adapted from the aforementioned

Burke textbook [30] alongside some additional sources by Burke and Tennyson

[119, 29]. Considerations are also made in the relevant equations for the reduced

mass terms and change of reference frame.

The R-matrix method is one numerical method for calculating scattering ob-

servables arising from the scattering theory outlined above. As outlined in the pre-

vious chapter, the core principle of the R-matrix method is the partitioning of space

into two regions: an inner region and an outer region. The different regions have

different potential energy curves, usually with differing levels of numerical com-

plexity and physical accuracy.

The partition is placed at a distance a0 away from the centre of the reaction,

i.e. the 0 of the reaction coordinate. All points for which the internuclear distance

r is less than a0 are in the inner region, and all points for which r > a0 are in the

outer region. The system and its physics are treated differently in the two regions,

and information from the inner region is used to calculate scattering observables in

the outer region.

There is furthermore a third region, known as the asymptotic region, which

begins at a distance ap away from r = 0 such that ap > a0. The point ap is defined

as the point where the effects of the potential can be regarded as negligible – it is
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the numerical version of assuming infinite distance. In some R-matrix methods, the

potential is assumed to be exactly zero at this point, whereas in others it is assumed

to still have a small value, and methods known as asymptotic expansions are used

to account for this deviation from a zero value.

The explanation of the R-matrix will be divided into discussions of the three

separate regions. For each region, a derivation of the simpler, single channel case

will be presented first, followed by the extension to the multichannel version of the

same theory.

2.2.1 The Inner Region

2.2.1.1 The Single Channel Inner Region

In the inner region, the two-atom system is assumed to be a quasi-bound diatom,

and the PEC of the reaction is simply the PEC of a diatom. The reduced radial

Schrödinger equation for this diatomic system has the form

ĤJ
ψ

J
k (r) = EJ

k ψ
J
k (r), (2.48)

where the ĤJ is the Hamiltonian of the diatomic system, and the ψJ
k and EJ

k are the

eigenfunctions and eigenenergies associated with that Hamiltonian labelled by their

angular momentum quantum numbers J. In the single channel case, the Hamiltonian

and eigenfunctions are all scalars.

The core aim of the inner region calculation is to determine these eigenfunc-

tions and eigenenergies, since they form the key part of the R-matrix sum from

Equation 1.3.

The diatomic, one-dimensional Hamiltonian Ĥ of interest is defined in the fol-

lowing way:

ĤJ =
−h̄2

2µ

d2

dr2 +
h̄2J(J+1)

2µr2 +V (r), (2.49)

where r is the internuclear separation of the diatom, J is its total angular momentum,

and V (r) is an element of the matrix of potentials associated with the atomic chan-
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nels, including the off-diagonal channel coupling elements. For a given value of J,

one obtains the eigenenergies and eigenfunctions EJ
k and ψJ

k of the Hamiltonian in

Equation 2.49 using the Schrödinger equation of Equation 2.48.

The potential energy surfaces (which are just curves in this work, as there

is only one reaction coordinate in the form of the internuclear distance) and the

coupling strengths can be thought of as the inputs to the entire algorithm. They are

obtained from a variety of experimental and theoretical sources (e.g. [120, 121, 122,

123, 124]) and, besides fundamental constants, are the only source of experimental

data required to obtain the scattering observables at the end.

The implication of the inner region/outer region split is that the inner-region

Schrödinger equation is only valid over a finite, bounded region of space: outside

of the [0,a0] range, the Hamiltonian described above is not defined. This is arguably

the core principle of the R-matrix method.

In principle, the choice of where to place the R-matrix boundary a0 should

not affect the underlying physics. In practice, the choice of where to define a0

has significant computational implications in terms of accuracy and computational

expense of the calculation, which will be discussed in Chapter 3.

The R-matrix provides the link between the inner region bound state problem

of Equation 2.48 and the full scattering problem of Equation 2.6. The derivation of

the link between the two begins by defining two operators:

LJ(r) =
d2

dr2 −
2µ

h̄2 V J(r)+ k2, (2.50)

and

La0 = δ (r−a0)
d
dr

, (2.51)

where δ (r− a0) is a Dirac delta centred around a0, V J(r) is the potential term

containing the angular momentum term, LJ(r) is the operator form of Equation 2.6

divided by h̄2

2µ
such that

LJ(r)ψJ(r) = 0, (2.52)

k is the scattering wavenumber in the body-fixed reference frame, related to the scat-
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tering energy by Equation 2.5, and La0 is a quantity known as the Bloch operator

[125], such that La0ψJ
k (r) is a quantity known as the surface term.

Note that the general definition of the Bloch operator has an additional term

dependent on some constant b, but this constant can be set to zero without loss of

generality and is done so throughout this work. It can also be shown that different

values of b do not affect the numerics of the method [126]. For completeness, the

full expression for the Bloch operator is usually defined as:

La0 = δ (r−a0)

(
d
dr
−b
)
. (2.53)

The operator LJ(r) is not Hermitian when integrated over a finite region of

space, but the operator
(
LJ(r)−La0

)
is Hermitian:

∫ a0

0

(
v
(
LJ(r)−La0

)
w−w

(
LJ(r)−La0

)
v
)

dr = 0. (2.54)

This is because the surface terms left over when integrating over the operator LJ(r)

are precisely cancelled by the terms introduced by the operator La0 (assuming that

the functions are zero at r = 0, as suggested by the boundary conditions in Equa-

tion 2.8). Note that if one integrates over an infinite region of space, and assumes

that at infinite distances the functions v and w tend to zero, then LJ is Hermitian, as

one would expect. It is the combination of a finite boundary and non-zero boundary

conditions at that boundary that introduce non-Hermiticity to the problem.

The operator
(
LJ(r)−La0

)
has a complete spectrum of eigenvalues and eigen-

vectors over the range r = 0 to r = a0. This means that the Green’s function [127] of

the operator can be represented in terms of those eigenvalues and eigenvectors, due

to the completeness relation. It can be shown that the R-matrix is the spectral rep-

resentation of the Green’s function of the operator
(
LJ(r)−La0

)
. By subtracting

La0ψJ(r) from both sides of Equation 2.52, one can see that the equation

(
LJ(r)−La0

)
ψ

J(r) =−La0ψ
J(r), (2.55)
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which has the formal solution

ψ
J(r) =−

(
LJ(r)−La0

)−1
La0ψ

J(r), (2.56)

is one of the form

O(x) f (x) = g(x), (2.57)

for the operator O(x) and the functions f (x) and g(x), with associated Green’s func-

tion G(x,x′).

If the eigenvalues of
(
LJ(r)−La0

)
are defined to be 2µ

h̄2

(
E−EJ

k

)
, and the

eigenvectors are defined to be χJ
k , then the Green’s function of the operator can be

written as

GJ(r,r′) =
h̄2

2µ

∞

∑
k=1

χJ
k (r)χ

J
k (r
′)

E−EJ
k

. (2.58)

Note that the eigenvalues can be assumed to be real, since the operator is Hermitian.

The definition of the eigenvalues is related to the fact that, since the inner region is a

finite, bounded volume, the eigenenergies of the scattering wave equation can only

take on discrete values.

The definition of a Green’s function G(x,x′) [127] for an operator O(x) acting

on a function f (x) to produce a function g(x) is one such that

f (x) =
∫

G(x,x′)g(x′)dx′. (2.59)

Hence, one can obtain the formal solution ψJ(r) of Equation 2.56 via the equa-

tion

ψ
J(r) =−

∫ a0

0
GJ(r,r′)La0ψ

J(r′)dr′, (2.60)

which, due to the Dirac delta in the definition of La0 , results in the expression

ψ
J(r) =

h̄2

2µ

(
∞

∑
k=1

χJ
k (r)χ

J
k (a0)

EJ
k −E

)
dψJ

dr

∣∣∣∣
r=a0

. (2.61)

By evaluating this expression at a0, and multiplying and dividing by a0, the
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expression

RJ(E,a0) =
h̄2

2µa0

∞

∑
i=k

(
χJ

k (a0)
)2

EJ
k −E

(2.62)

can be identified with the quantity previously defined as the R-matrix itself. Thus

the R-matrix is the Green’s function of the operator
(
LJ(r)−La0

)
evaluated at the

point a0. Hence it is possible to write

ψ
J(a0) = a0RJ(E,a0)

dψJ

dr

∣∣∣∣
r=a0

. (2.63)

Clearly here the R-matrix is a scalar quantity. It will become a matrix quantity when

multiple atomic channels are introduced shortly.

Equation 2.63 shows that the R-matrix can be thought of as the log-derivative

of the scattering wavefunction ψJ(r), evaluated at the inner region boundary a0.

Furthermore, the R-matrix is constructed of the eigenvectors and eigenvalues of the

operator
(
LJ(r)−La0

)
, which suggests a clear method for calculating this quan-

tity based on a calculation of the eigenvalues and eigenvectors of the Hamiltonian

constrained to the inner region.

The computational advantages are also apparent: the computation to obtain

the eigenvalues and eigenvectors only needs to be performed once, and then the

R-matrix can be computed for a number of scattering energies E at no extra com-

putational expense.

2.2.1.2 The Multichannel Inner Region

The key difference between the single and multichannel cases is the replacement of

the PEC V (r) with a matrix of potential energy curves and couplings, V(r). The

elements of the matrix of potentials, Vii′(r), correspond to the elements of the R-

matrix itself. The possibility for the scattering event to cause the atoms to transition

between atomic channels is what defines the different elements of the R-matrix.

This is equivalent to saying their atomic quantum numbers change.

Specifically, the scattering event under consideration is one in which two atoms

with a set of quantum numbers i interact with each other, and that interaction causes

them to leave the interaction with a set of quantum numbers i′, where i and i′ may
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be different. In this work the possibility of the atoms leaving the interaction event

as a bonded diatom, or with a different electric charge, is not considered.

Depending on the choice of which quantum numbers to specify as ‘good’,

which itself depends on the system being studied, the different elements of the po-

tential matrix (and by association the R-matrix) can have different meanings. This

chapter is agnostic to the specific quantum numbers in a specific problem. Channels

will be labelled i and i′ with no consideration for what i represents. More discussion

of the specifics can be found in Chapter 6.

Much of the theory concerning the R-matrix which this discussion is derived

from is written from the perspective of electron-atom and electron-molecule scat-

tering [30, 119, 29]. In the multichannel case this leads to considerable differences

between the theory that is needed for this work and the written theory, beyond re-

duced mass terms and reference frames.

Some fundamentals remain the same across the single and multichannel def-

initions, and the different systems. There is still a time-independent Schrödinger

equation:

HΓ
ΨΨΨ

Γ
k = EΓ

k ΨΨΨ
Γ
k , (2.64)

except now the Hamiltonian HΓ is a matrix quantity, and the scattering wavefunc-

tion ΨΨΨ
Γ
k is a vector quantity, where the Nc elements of the vector ΨΨΨ

Γ
k correspond

to the Nc different channels i of the interaction. The Hamiltonian contains the po-

tential matrix, along with the matrix of kinetic operators. The specific form of the

kinetic matrix will depend on the reference frame one is in, which, as discussed in

Chapter 3, will depend on the specific inner region code being used.

Here, k labels the different eigenfunctions of the scattering Hamiltonian, and Γ

labels the symmetry of the scattering event by listing all the good quantum numbers.

In this work, Γ represents J and τ , the total angular momentum, and the parity of

the interaction respectively. Splitting the interaction by symmetry like this is a form

of partial wave expansion, which must be consolidated when measuring certain

scattering observables, as discussed in Section 2.1.3.

From here the same derivation as in the single channel case can be performed.
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The Bloch operator becomes a diagonal matrix with the surface term at a0 for each

channel on the diagonal, and again a Green’s function can be found for the operator

formed from subtracting the Bloch operator from the Hamiltonian. This Green’s

function can then be identified again with the R-matrix, such that one can form the

equation

FΓ
i (a0) =

h̄2

2µ

(
N

∑
i′=1

∞

∑
k=1

wΓ
ik(a0)wΓ

i′k(a0)

EΓ
k −E

)
dFΓ

i′

dr

∣∣∣∣
r=a0

. (2.65)

In this equation, several new quantities have been introduced. The quantity FΓ
i (r)

is the channel function for a given channel i in a given symmetry Γ – the radial

wave function in the outer region for a given channel. Equation 2.65 shows that this

quantity is, in general, dependent on contributions from other channels, and one

must sum over all the solutions of the scattering Schrödinger equation to obtain it.

The quantity wΓ
ik(a0) is called the surface amplitude for a given channel i,

solution k, and symmetry Γ, at the inner region boundary a0. It can be thought of as

the contribution from a single channel to the scattering solution k. An explanation of

how wΓ
ik(a0) and FΓ

i (r) were obtained in this work will be presented in subsequent

chapters.

Equation 2.65 suggests the following definition of an element of the R-matrix

which couples channel i to channel i′:

RΓ

ii′(E,a0) =
h̄2

2µa0

∞

∑
k=1

wΓ
ik(a0)wΓ

i′k(a0)

EΓ
k −E

, (2.66)

which suggests that Equation 2.65 can be written in the form

FΓ
i (a0) = a0

N

∑
i′=1

RΓ

ii′(E,a0)
dFΓ

i′

dr

∣∣∣∣
r=a0

. (2.67)

Equations 2.66 and 2.67 are analogous to the two R-matrix definitions intro-

duced in the last section. The former is a definition based solely on the scattering

energy and inner region quantities, and the latter suggests that the R-matrix can be

thought of as the log-derivative of the channel function, which is an outer region

quantity. This once again demonstrates the R-matrix’s role as a connection between
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the two regions. Note that the R-matrix is symmetric.

At this point in most R-matrix methods a quantity known as the Buttle correc-

tion is often introduced [128]. This is an additional term in the R-matrix sum which

accounts for the imposition of arbitrary boundary conditions at a0 which is implicit

in the R-matrix method. In this work this correction is not included. This may

be the cause of some issues concerning artificial boundary conditions which were

confronted in this work. Further discussion of the topic can be found in Chapter 3.

2.2.2 The Outer Region

Equations 2.62 and 2.63, and Equations 2.66 and 2.67 are similar to the definitions

of the R-matrix first introduced in the previous chapter. Equation 2.62 is defined in

terms of the boundary a0, the scattering energy, and inner region quantities: eigen-

values and eigenvectors of the Hamiltonian evaluated between r = 0 and r = a0 with

a Bloch term. Equation 2.63 is presented in terms of the boundary a0 and an outer

region quantity: the scattering wavefunction.

This completes the derivation of the R-matrix in the inner and outer regions. If

one wished, one could evaluate the scattering observables at the boundary a0 using

the R-matrix as an input.

However, doing this severely restricts the efficiency and accuracy of the suite

of R-matrix methods. Much of the utility of the R-matrix method comes in the

form of R-matrix propagation. This is when the R-matrix at a0, R(E,a0) that one

obtains from the inner region calculation is used to obtain a value of the R-matrix

at a further distance r ≥ a0, R(E,r). This allows one to define a third region, the

asymptotic region, at a distance further out than a0. The point at which one ends

the propagation and begins the asymptotic region is known as the propagation dis-

tance, ap, see Figure 1.2. (The derivation of the procedure by which one obtains

scattering observables from the R-matrix at any distance r ≥ a0 is presented in the

next subsection.)

The advantage of evaluating scattering observables at ap is that more accurate

asymptotic expansions – approximations to the asymptotic boundary conditions –

can be made. If it is being assumed that the potential is zero at the point the scatter-
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ing observables are being evaluated at, then this approximation gains accuracy the

further the point ap is placed, as the potential decreases in strength monotonically

with distance at long range. If the potential is not assumed to be zero, then a type

of asymptotic expansion must be used, and most types still rely on the assumption

that the potential is small at the distance being evaluated.

There is a large variety of propagator methods in use by those who use R-

matrix methods. A propagator takes as its input R(E,a0) and outputs R(E,ap). As

such, propagators are dependent on E, and a propagation must be repeated for each

separate scattering energy.

This is where the true power of the inner/outer region distinction in R-matrix

methodology is revealed. The inner region calculation can be performed once to

obtain the eigenvalues and eigenvectors, then, for a given value of E, the R-matrix

at a0, R(E,a0), can be constructed and propagated for relatively minimal compu-

tational cost. This means the value of R(E,ap) can be obtained efficiently for a

variety of E values.

R-matrix propagation methods can be compared with wavefunction propaga-

tion methods, such as the Numerov method [129]. They operate in a similar way

to R-matrix methods, and in the case of the Light-Walker and BBM propagators

discussed below, one can even derive wavefunction propagators from the R-matrix

propagator. This is useful in e.g. photoassociation calculations [130]. This can

be compared to MOLSCAT, where the log-derivative of the wavefunction, and the

wavefunction itself, can both be propagated in all circumstances.

Whilst wavefunction propagators can be used to obtain scattering observables

as a replacement for R-matrix propagators, R-matrix methods have a key advantage

in that they tend to be more stable under the propagation. Since the R-matrix is the

log-derivative of the wavefunction, any constant factors attached to the wavefunc-

tion are cancelled out, meaning that the R-matrix always has a reasonable absolute

value. This is crucial in propagation techniques, which have a tendency to amplify

small instabilities caused by constant factors [15], leading them to be generally un-

stable over large propagation distances, and in particular over closed channels.
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Two propagation methods were used in this work: Light-Walker propagation

[93, 30] and Baluja, Burke and Morgan (BBM) propagation [131, 30]. The single-

channel version of the Light-Walker propagator was implemented directly, whilst

the single and multichannel BBM propagators were used as part of the PFARM

program.

Both methods work by partitioning the outer region into smaller sub-regions.

The value of the R-matrix at the end of a sub-region closer to r = 0, R(E,as), is used

to obtain the value of the R-matrix at the farther end, R(E,as+1). Both methods

achieve this by constructing a Green’s function to construct an equation similar to

Equation 2.61 for both ends of the sub-region. These Green’s functions can then be

used to create an iteration equation to obtain R(E,as+1) from the value of R(E,as),

allowing one to ‘propagate’ the R-matrix at a0 to obtain its value at ap.

The BBM propagator obtains these Green’s functions by treating each sub-

region as a ‘mini-inner region’, and diagonalising a Hermitian operator over this

space to obtain eigenvalues and eigenvectors to obtain the Green’s function anal-

ogous to Equation 2.58 (with an adjustment to the Bloch operator to account for

the now two non-zero boundary conditions). For a given sub-region this process

is more efficient than the initial inner region calculation because it is over a much

smaller range, and so can be achieved with a much smaller matrix diagonalisation.

The Light-Walker propagator obtains the Green’s functions by assuming the

potential to be constant over the sub-region, avoiding the need for the diagonal-

isation of the BBM method. The Green’s functions then assume standard forms

depending on the value of the potential which are straightforward to implement in

the iteration equation.

The two methods have relative strengths and weaknesses [30]. For instance, as

with the aforementioned pure propagation methods, the need for diagonalisation is

avoided. In the Light-Walker case, since the potential is assumed to be unchanging

throughout the sub-region, the sub-regions must be made very small to ensure that

the propagation is accurate. By contrast, the BBM method can often achieve high

accuracy with only a handful of sub-regions.
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The BBM method also has the same advantage that the inner region method has

in that the diagonalisations need only be carried out once before being re-applied

to many scattering energies [30], which means they are partially (but not entirely)

energy-independent.

There are also some methods which allow the step size in the Light-Walker

method to be dynamically varied based on the (simple numerical) derivative of the

potential at the point as [132] to ensure that the step size is sufficiently small in

regions where the potential changes rapidly, whilst being efficient in regions where

the potential is varying slowly. This is discussed further in Chapter 3.

2.2.2.1 The Single Channel Outer Region

The Light-Walker propagator assumes a constant potential over the sub-region

as−1 < r < as. The width of this region is controlled by the numerical parame-

ter Np, the number of iterations used in the propagator. If the length between the

points ap and a0 is divided into Np sub-regions, then the size of each sub-region,

(as−as−1), will be (ap−a0) divided by Np.

For a given symmetry J, for a given sub-regon as, the quantity λs is defined

such that

λ
2
s = k2− 2µ

h̄2 V J(as), (2.68)

where k2 is the scattering wavenumber as before, V J(as) is the potential with the

angular momentum term included, and the approximation is made that V J(as−1) =

V J(as). The symmetry labels are not explicitly included in this derivation.

Using similar arguments as presented in the single-channel inner region deriva-

tion above [30], Green’s functions can be derived for the formal solution to the

scattering Schrödinger equation in this region. Unlike in the inner region, Green’s

functions must be formed at both ends of the finite region in question in order to

produce the iteration equation. Also unlike in the inner region, the Bloch operator

that must be included to construct these Green’s functions now has two terms – one

for each non-zero boundary condition at the two ends of the finite region:

Las = δ (r−as)
d
dr
−δ (r−as−1)

d
dr

. (2.69)
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A separate complication is that the possibility is now introduced that λ 2
s <

0, i.e. that the scattering energy is lower than that of the potential, implying the

system is bound (similar to the extension of the k-coordinate to complex values

when studying S-matrix poles). This is a consideration that must be made when

exploring systems with closed channels.

Thus there are four Green’s functions to consider. For λ 2
s > 0, the functions

have the following form:

Gs(r,r′) =
−1

λs sin(λsδas)
×

cos(λs(r′−as))cos(λs(r−as−1)) as−1 ≤ r ≤ r′

cos(λs(r−as))cos(λ J
s (r
′−as−1)) r′ ≤ r ≤ as

.

(2.70)

When λ 2
s < 0, then the quantity µs can be defined such that µ2

s = −λ 2
s , and the

Green’s functions have the following form:

Gs(r,r′) =
−1

µs sinh(µsδas)
×

cosh(µs(r′−as))cosh(µs(r−as−1)) as−1 ≤ r ≤ r′

cosh(µs(r−as))cosh(µJ
s (r
′−as−1)) r′ ≤ r ≤ as

.

(2.71)

In all these cases, the quantity δas is defined such that δas = as−as−1.

As in the inner region case, these Green’s functions can then be used with the

formal solution to the scattering wavefunction equation to produce an expression

for the R-matrix. Here it can be used to create an iteration equation which provides

the value of the R-matrix for a given symmetry and scattering energy at as, Rs, as

a function of the value of the R-matrix for that symmetry and scattering energy at

Rs−1 [30]:

Rs =
1
as

(
Gs(as,as)−

Gs(as,as−1)Gs(as−1,as)

(Gs(as−1,as−1)+as−1Rs−1)

)
. (2.72)

In the single-channel, J = 0 case, this equation reduces down to one iteration



2.2. The R-Matrix Method 71

equation:

Rs =
−1
asλs

(
1

tan(λsδa)
+

2
sin(2λsδa)

(as−1Rs−1λs tan(λsδa)−1)−1
)
, (2.73)

where Rs is the value of the R-matrix at each iteration step (beginning at Ra0), δa =

as−as−1, and λ 2
s is replaced with µ2

s when λ 2
s < 0.

Equation 2.72 also applies to the BBM propagator [30] – the only difference

is the value of the Green’s function that is used in it. Here the Green’s function has

the same form as in Equation 2.58, with the adjustment that the functions χJ
k (r) and

energies EJ
i are now replaced with χs

k(r) and Es
i (with the symmetry label J still

persisting, but not explicitly included in the new expressions). The s denotes that

these functions and energies only exist within a given sub-region as−1 < r < as, and

are formed by diagonalising the operator formed by subtracting the Bloch operator

defined in Equation 2.69 from the Schrödinger equation within this region.

2.2.2.2 The Multichannel Outer Region

In the multichannel case, the Light-Walker propagator is constructed (following the

derivation by Burke [30] based on the derivation by Schneider & Walker [133]) by

diagonalising the following matrix:

V (r) = VJ(r)−E+EI, (2.74)

where I is the identity matrix, E is the scattering energy, E is the diagonal matrix of

eigenenergies (not to be confused with the scattering energy), and VJ(r) is the (in

general) non-diagonal matrix of potentials for each channel, including channel cou-

pling elements (defined properly below in Equation 2.90 – note the J-dependence).

As in the single channel case, the general symmetry labels are suppressed. In

the single channel case, only the J symmetry was considered. In the multi-channel

case the general symmetry label would be Γ, which would include J, along with

parity, τ , the other conserved quantity.

The version of this matrix which has been evaluated at as and diagonalised is
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called v2
s , and the matrix which diagonalises it is called Os:

OT
s V Os = v2

s . (2.75)

From this the real, diagonal matrix λλλ s can be defined in the following way:

λλλ
2
s =

2µ

h̄2

(
EI−v2

s
)
. (2.76)

This equation is, of course, in analogy with Equation 2.68. The elements of

the matrix are λis. This suggests that the elements Gis of the diagonal matrix Gs for

when λ 2
is > 0 can be defined in the following way in analogy with Equation 2.71:

Gis(r,r′) =
−1

λis sin(λisδas)
×

cos(λis(r′−as))cos(λis(r−as−1)) as−1 ≤ r ≤ r′

cos(λis(r−as))cos(λis(r′−as−1)) r′ ≤ r ≤ as

,

(2.77)

and in the following way when λ 2
is < 0 such that µ2

is =−λ 2
is (which corresponds to

a closed channel):

Gis(r,r′) =
−1

µis sin(µisδas)
×

cos(µis(r′−as))cos(µis(r−as−1)) as−1 ≤ r ≤ r′

cos(µis(r−as))cos(µis(r′−as−1)) r′ ≤ r ≤ as

,

(2.78)

where in all cases δas = as−as−1.

Then, defining Gs(r,r′) as

Gs(r,r′) = OsG OT
s , (2.79)

one can then write down the expression for the propagation equation equivalent to
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Equation 2.72:

asRs = Gs(as,as)−Gs(as,as−1)(Gs(as−1,as−1)+as−1Rs−1)
−1 Gs(as−1,as).

(2.80)

The BBM propagator has a similar multichannel derivation – the iteration

equation is the same as Equation 2.80, but the Green’s functions are replaced with

a multichannel, analogous version of Equation 2.58.

2.2.3 The Asymptotic Region

The final step needed before the scattering observables can be obtained is the calcu-

lation of a quantity called the K-matrix. All of the scattering observables of interest

can be defined using this quantity. There are several methods for obtaining the

K-matrix, each representing a different level of approximation.

In Section 2.1.3 the K-matrix was introduced as relating to the tangent of a

quantity known as the eigenphase (in the single channel case it was precisely the

tangent of the eigenphase). Here it will be shown how the K-matrix can be ex-

pressed as a function of the R-matrix and thus how scattering observables can be

obtained from the R-matrix.

2.2.3.1 The Single Channel Asymptotic Region

In the single channel case, the K-matrix for a given symmetry J is a scalar quantity

KJ(k) which depends on the scattering energy (which can be represented either as

the energy E or the scattering wavenumber k).

The form of the K-matrix depends on the choice of asymptotic boundary con-

ditions. The simplest case is when it is assumed that beyond a certain point in space

ap the potentials are all zero. In that case, the asymptotic boundary conditions that

can be assumed are the ones in Equations 2.10 and 2.11 for J = 0 and J > 0 respec-

tively.

In this case, by assuming that the K-matrix KJ(k) is equal to the tan
(
δ J(k)

)
term in the boundary conditions, the value of the K-matrix at the asymptotic dis-
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tance ap can be shown to be

KJ(k) =
−sJ(kap)−RJ(E,ap)kaps′J(kap)

cJ(kap)−RJ(E,ap)kapc′J(kap)
, (2.81)

where sJ(x) and cJ(x) are the modified spherical Bessel and Neumann functions

defined by Equations 2.12 and 2.13 respectively, and s′J(x) and c′J(x) are their re-

spective derivatives with respect to x.

This expression can be obtained by utilising the definition of the R-matrix as

the log-derivative:

ψ
J(ap) = apRJ(E,ap)

dψJ

dr

∣∣∣∣
r=ap

. (2.82)

The derivative of the asymptotic boundary condition that ψJ(r) obeys is

dψJ

dr
= ks′J(kr)+ kc′J(kr)KJ(k). (2.83)

This suggests that

sJ(kap)+ cJ(kap)KJ(k) = kapRJ(E,ap)
(
s′J(kap)+ c′J(kap)KJ(k)

)
, (2.84)

which can be rearranged to obtain Equation 2.81.

When J = 0 this expression for the K-matrix reduces to the much simpler form:

K0(k) =−
sin(kap)−Rkap cos(kap)

cos(kap)+Rkap sin(kap)
, (2.85)

where R = R0(E,ap). This can also be written as

K0(k) =
Rkap− tankap

1+Rkap tankap
. (2.86)

A better approximation can be achieved by assuming that the potential is not

zero at ap, but some small value. This is where a so-called asymptotic expansion is

used, such as the one constructed by Burke & Schey [134].
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2.2.3.2 The Multichannel Asymptotic Region

The asymptotic boundary conditions introduced in Equations 2.10 and 2.11 are one

instance of a general trend: asymptotic boundary conditions are always composed

of a ‘sine-like’ and a ‘cosine-like’ function, or vector in the multichannel case, with

the latter term multiplied by the K-matrix.

Following on from the introduction in Section 2.1.2, when the potential is as-

sumed to be zero at asymptotic distances, the multichannel version of these sine-

and cosine-like functions are simply sines and cosines:

FΓ
iη(r→ ∞) =

1√
ki

(
sin(kir)+∑

j
KΓ

i j(k)cos
(
k jr
))

, (2.87)

where the Γ label is composed of conserved quantities total angular momentum J

and parity τ , KΓ
i j is the element of the K-matrix, FΓ

iη is the reduced radial wavefunc-

tion for channel i and scattering solution η , as introduced in Section 2.2.1.2, and ki

is given by Equation 2.15.

When performing an asymptotic expansion, it is assumed that the potential

is non-zero at asymptotic distances, and so the asymptotic boundary conditions are

modified by the presence of the potential. In general, the vector of channel functions

FΓ obeys the boundary condition

FΓ(r→ ∞) = sΓ(k,r)+KΓ(k)cΓ(k,r), (2.88)

where sΓ(k,r) and cΓ(k,r) are vectors of sine- and cosine-like functions, respec-

tively, whose forms depend on the specific asymptotic expansion being utilised.

In both the zero and non-zero potential cases, the K-matrix can be expressed as

a function of the R-matrix, ap, the sΓ(k,r) and cΓ(k,r) vectors, and their derivatives

s′
Γ
(k,r) and c′

Γ
(k,r), using the multichannel equivalent of the derivation outlined in

Section 2.2.3.1.

The potential can be introduced by considering the Schrödinger equation.

In the outer and asymptotic regions the channel function obeys the following
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Schrödinger equation:

(
d2

dr2 + k2
i

)
FΓ

i =
2µ

h̄2

Na

∑
i′=1

V Γ

ii′(r)F
Γ

i′ (r), (2.89)

where Na is the number of open channels – the number of channels with energies

lower than the scattering energy.

As mentioned previously, the K-matrix has dimensions Na×Na. However,

since closed channels are propagated, as discussed in the previous section, it is

possible for them to influence the physics of the scattering observables produced for

the open channels. This is how it is possible for one to obtain Feshbach resonances,

where the presence of a closed channel affects the cross-section of an open channel

that it is coupled to by a potential term. Closed channels are not explicitly included

in the asymptotic expansions, however.

In this work the potentials and the couplings between them are always assumed

to be either constants or central potentials composed of finite sums of powers of r−1:

V Γ

ii′(r)
λmax

∑
λ=1

aΓ

λ ii′r
−λ , (2.90)

for a given symmetry (with the angular momentum term included in V Γ

ii′(r)), and

where the coefficients aλ ii′ are obtained from literature sources. The exception to

this is the consideration of Morse potentials below and in Chapter 4. Note that in

general λmax can vary for different channels. The coefficients are utilised in the

construction of the sine- and cosine-like functions in the K-matrix.

The asymptotic expansions used in this work are the ones implemented in

PFARM [94]. Similar to the aforementioned attempt made to implement the Light-

Walker propagator, an attempt was made to directly implement the Burke-Schey

expansion [134]. The derivation of the Burke-Schey asymptotic expansion is pre-

sented below. PFARM uses the Gailitis asymptotic expansion, which is a modifica-

tion of the Burke-Schey expansion [135].

The Burke-Schey asymptotic expansion follows from a specific version of
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Equation 2.88 [134]. In the Burke-Schey expansion, the vectors sΓ and cΓ have

the following forms:

siΓ = AΓ
i · sin(kir), ciΓ = BΓ

i · cos(kir) (2.91)

where

AΓ
i =

pmax

∑
p=0

α
Γ
pir
−p, BΓ

i =
pmax

∑
p=0

β
Γ
pir
−p. (2.92)

The αΓ
pi and β Γ

pi coefficients are obtained from the following interdependent

recurrence relations:

((p− 1)(p− 2)− J(J + 1))αΓ
p−2,i + 2ki(p− 1)β Γ

p−1,i =
N

∑
i′=1

λmax

∑
λ=1

aΓ

ii′λ α
Γ

p−λ−1,′,

(2.93)

and

((p− 1)(p− 2)− J(J + 1))β Γ
p−2,i− 2ki(p− 1)αΓ

p−1,i =
N

∑
i′=1

λmax

∑
λ=1

aΓ

ii′λ β
Γ

p−λ−1,i′,

(2.94)

where Na is the number of open channels and λmax is the largest value of λ (with

larger values chosen increasing accuracy and computation time). The derivatives of

the sΓ and cΓ vectors also have related recurrence relations, which can be derived

by differentiating their power expansions.

The recurrence relations are initialised by assuming that all αΓ
pi and β Γ

pi are

zero for p < 0, and that for all i values,

α
Γ
0i = β

Γ
0i = 1. (2.95)

Finally, the coefficients obtained from the recurrence relations are used to con-

struct the asymptotic expansion. This expansion is combined with the R-matrix to

form the K-matrix. From this K-matrix the eigenphases are obtained, and from the
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eigenphases the cross-sections are obtained.

The Gailitis asymptotic expansion modifies the Burke-Schey asymptotic ex-

pansion by replacing the sine- and cosine-like functions with Coulomb functions

where needed [135], and by utilising Padé expansions. The derivation then fol-

lows from there in a similar manner to above, and a different recurrence relation is

derived to obtain the coefficients of the vectors.

One improvement the Gailitis expansion has over the Burke-Schey expansion

is that because it utilises Coulomb functions, it is better suited to handling closed

channels. Another improvement is that the Padé expansions it uses improve the

convergence of the iteration methods.

Both the Burke-Schey and Gailitis expansions allow for the possibility of ex-

plicitly including closed channels in the scattering observables. In order to include

them, one would introduce a separate matrix LΓ that has dimensions Nb×Na, where

Nb is the number of closed channels. Furthermore, instead of assuming that the

closed channels’ wavefunctions have zero amplitude, one can instead assume that

they have an exponentially decaying form, in analogy with the sine- and cosine-

like asymptotic forms for open channels. In this work, however, the exponentially

decaying asymptotic boundary conditions are not used, and the closed channels

wavefunctions are simply assumed to be zero at sufficient distance. All methods

used and results obtained were for K-matrices with Na×Na elements.

2.3 Analytic Scattering

In order to assess the accuracy of the scattering observables derived by the new al-

gorithm proposed here, it it necessary to compare the results to some benchmarks.

In Chapter 5 and Chapter 6, the results produced in this work will be compared

to published results, such as Myatt et al. and Krems & Buchachenko [136, 137].

However during the construction of the algorithm it was found to be useful to com-

pare the results to simpler, analytic results. The analytic results chosen were those

associated with the Morse potential [106].
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2.3.1 The Morse Potential

The reason the Morse potential [106] was selected was because it can be considered

the simplest model of a diatomic potential energy curve which captures all of the

features seen in realistic ones: it has a strong repulsive barrier at small distances, a

well-defined minimum, and a tail which tends to zero from below at large distances

(Figure 2.2). It is even possible to add a centrifugal barrier by adding an angular

momentum term, such as the J term seen in Equation 2.49.

Many simple models of diatoms use the Morse potential, and many more mod-

ern and accurate models use extensions to the Morse potential, such as the popular

Morse/long-range potential [138]. One key difference between the Morse poten-

tial and more realistic potential energy curves is the fact that the Morse potential

dies off exponentially at asymptotic values of the internuclear separation, whereas

more realistic curves will die off polynomially (physically, the tail of the curve is

caused by van der Waals interactions, dispersion forces, and other weaker multipole

interactions which scale as rn for n <−1).

Another useful feature of the Morse potential is that the Schrödinger equation

with a Morse potential is analytically soluble. As will be shown below, this implies

that analytic scattering observables can be constructed. This further implies that

numerical scattering results obtained from the algorithm proposed here can be com-

pared to results with no error for a given system. Unfortunately, this is only true for

J = 0 potentials, as no analytic solutions exist for the Schrödinger equation with a

Morse potential with non-zero J.

The Morse potential with no centrifugal term has the algebraic form:

V (r) = De

((
1− e−a(r−re)

)2
−1
)
, (2.96)

where De is the dissociation energy or well depth (assuming the zero of potential en-

ergy is placed at the dissociation energy), re is the equilibrium position, or position

of the well minimum, and a is a scaling parameter (the so-called Morse parameter)

affecting the shape of the well. The specific Morse potential used in much of the

testing of the main algorithm is presented in Figure 2.2.
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Figure 2.2: The Morse potential with De = 100cm−1, a = 1.451455517Å−1, re = 3.5Å,
and associated bound states.

The analytic eigenenergies EMorse
n and eigenfunctions ΨMorse

n of the Morse po-

tential are known [106]. For the radial time-independent Schrödinger equation,

(
− h̄2

2m
d2

dr2 +Dee−2aMorse(r−re)−2Dee−aMorse(r−re)

)
Ψn = EnΨn, (2.97)

the bound eigenenergies En and eigenfunctions Ψn are given by [106]:

EMorse
n =−De +2aMorse

√
Deh̄2

2µ

(
n+

1
2

)
− 1

4De

2aMorse

√
Deh̄2

2µ

(
n+

1
2

)2

,

(2.98)

and

Ψ
Morse
n = Nnz(1/(aMorser0)−n−1/2) exp

(
−z
2

)
L(2/(aMorser0)−2n−1)

n (z), (2.99)

where L(α)
n (z) is the nth associated Laguerre polynomial [109], and Nn is a normal-
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ising factor given by

Nn =


(

2
aMorser0

−2n−1
)

aMorseΓ(n+1)

Γ

(
2

aMorser0
−n
)


1
2

, (2.100)

where Γ(x) is the standard Gamma function.

Similar to Equation 2.97, for a scattering event between particles with reduced

mass µ with energy E interacting over a Morse potential, the radial wavefunction

Ψ(r) is given by the time-independent radial Schrödinger equation:

(
− h̄2

2µ

d2

dr2 +Dee−2aMorse(r−re)−2Dee−aMorse(r−re)

)
ψ = Eψ. (2.101)

ψ(r) must obey the same asymptotic boundary conditions as in Equation 2.10.

One can define

r0 =

√
h̄2

2µDe
, (2.102)

z(r) =
2

aMorser0
e−a(r−re), (2.103)

and

Φ(z) = z
1
2 ψ(z), (2.104)

and as a consequence it can be shown [139] that Equation 2.101 can be re-written

as

d2Φ

dz2 +

−1
4
+

1
aMorser0z

+

1
4 +
(

k
aMorse

)2

z2

Φ(z) = 0. (2.105)

In this form, the equation is equivalent to the well-known Whittaker equation,

whose solutions are the Whittaker functions. There are two linearly independent

solutions to Equation 2.105:

ψ±(z) = e−z/2z±ik/aMorse1F1

(
1
2
− 1

aMorser0
± ik

aMorse
,1± 2ik

aMorse
;z
)
, (2.106)



2.3. Analytic Scattering 82

where 1F1(x,y;z) is the Kummer confluent hypergeometric function of the first kind

[140], and the ψ±(z) functions represent incoming and outgoing waves.

Using the results for the analytic scattering wavefunctions of the Morse po-

tential in Equation 2.106, it is possible to construct an analytic equation for the

eigenphase δ (k) associated with scattering with the Morse potential.

The derivation below follows that of Rawitscher et al. [139] and Selg [141,

142].

The general solution ψ(r) to Equation 2.101 can be written in terms of the two

solutions to Equation 2.105, which are given by Equation 2.106, such that:

ψ(r) =C+ψ+(r)+C−ψ−(r), (2.107)

where C± are two constants.

There are two boundary conditions on ψ(r) that can be used to obtain an ex-

pression for the eigenphase, given by Equation 2.10. As r→ ∞, z→ 0. This means

that due to a property of the Kummer confluent hypergeometric functions, both hy-

pergeometric functions tend to 1 as r→ ∞.

The S-matrix is introduced in Section 2.1.3, where it is said that it can be

defined as a ratio of plane wave coefficients [30]. Here this concept becomes useful

because by defining z0 such that

z(r = 0) = z0 =
2

aMorser0
eare , (2.108)

the following expression can be obtained:

(
z
z0

)± ik
aMorse

= e∓ikr, (2.109)

which can then be combined with the boundary conditions and Equation 2.108.

Doing this, one can obtain an expression for the ratio of the coefficients of ψ± in

this limit, and hence one can obtain an analytic expression for the S-matrix:
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S(k) = lim
r→∞

C+

C−
=

1F1

(
1
2 −

1
aMorser0

+ ik
aMorse

,1+ 2ik
aMorse

;z0

)
1F1

(
1
2 −

1
aMorser0

− ik
aMorse

,1− 2ik
aMorse

;z0

) . (2.110)

Another way of defining the eigenphase is as the argument of the S-matrix, such

that:

S(k) = e2iδ (k). (2.111)

Note that, as discussed in Section 2.1.3, the factor of 2 in the exponent is arbitrary,

and other authors define it differently, depending on whether the eigenphase is de-

fined as the argument of the S-matrix (as Selg does [141]), or as the arctangent of the

K-matrix, which is equivalent to defining the eigenphase to be half of the argument

of the S-matrix (as in this work, and in the work of Rawitscher et al. [139]).

The analytic expression for the eigenphase is then given by:

δ (k) =
1
2

arg

1F1

(
1
2 −

1
aMorser0

+ ik
aMorse

,1+ 2ik
aMorse

;z0

)
1F1

(
1
2 −

1
aMorser0

− ik
aMorse

,1− 2ik
aMorse

;z0

)
 . (2.112)

This expression can then be compared to numerical results generated using the R-

matrix method.

Whilst the expression is analytically correct, and it produces values between

−π

2 and π

2 as expected for an arctangent, issues may arise when evaluating this ex-

pression computationally. This is because some of the intermediate numbers, most

notably the hypergeometric 1F1 functions, can have extremely large values when

using typical values for Morse parameters. This may be difficult for computers to

process. For instance, for the argon dimer Morse potential assessed in Chapter 4,

typical values of k lead to 1F1 values whose magnitude are approximately 101330. It

would clearly be desirable to avoid these large numbers in any numerical computa-

tion.
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As such, an alternate expression can be used, based on an identity from [109]:

ex
1F1(a;b;−x) = 1F1(b−a;b;x). (2.113)

When Equation 2.112 is re-written using this identity, it becomes

δ (k) =
1
2

arg

(
1F1(

1
2 +

1
aMorser0

+ ik
aMorse

;1+ 2ik
aMorse

;−z0)

1F1(
1
2 +

1
aMorser0

− ik
aMorse

;1− 2ik
aMorse

;−z0)

)
. (2.114)

This expression produces the same values as Equation 2.112, however the inter-

mediate values used in the calculation (specifically the 1F1 values evaulated) are

significantly smaller. For the argon Morse dimer example as above, the magni-

tudes are more typically of the order of 10−31, which is much more manageable for

libraries in various programming languages that handle hypergeometric functions.



Chapter 3

Methods

This chapter presents a description of the RmatReact method developed in this

work, several variants of which were used to produce the results presented in the

subsequent results chapters. The methods presented here are a combination of new

software written for this project, and adaptations of pre-existing software written

for use in other problems. The pre-existing softwares, specifically DUO [86] and

PFARM [94], were modified to accommodate the physical processes studied in this

work. DUO is a general-purpose diatomic nuclear motion code, originally designed

to produce high-accuracy diatomic spectra, with a particular emphasis on open-shell

systems. PFARM is an R-matrix propagation code designed to produce scattering

observables for electron-atom and electron-ion collisions, with specific applications

to the UKRmol program suite [67]. The modifications made to these codes are de-

scribed in this chapter. The program reskit [143], an S-matrix pole-finding software,

was also used without modification.

In the case of all three of these programs, code was also written to duplicate

their functionality for testing purposes, and code was written to interface between

them. The integrated development environment (IDE) used to write the C++ code

was Microsoft Visual Studio.

As described in the previous chapters, the RmatReact method is based on solv-

ing the Schrödinger equation over the finite space of the inner region, then eval-

uating the solutions of the Schrödinger equation on the boundary to obtain an R-

matrix, then propagating that R-matrix to an asymptotic distance, and matching
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certain boundary conditions at that distance, to obtain scattering observables.

In this work, DUO was used to solve the inner region Schrödinger equation,

PFARM was used to propagate the R-matrix in the outer region, and a ‘harness’

code was used to transfer the results of the former into the latter, and process the

observables produced by the latter. The code reskit was also used to construct and

study S-matrices obtained from the results produced by PFARM. The diatomic code

LEVEL [88], which has similar functionality to DUO, was also used for testing

purposes at various stages of the project.

Alongside descriptions of the codes used and created in this work, a description

is provided of the quadrature methods at the heart of DUO, as significant work was

done on researching improved quadratures for use in the modified version of DUO.

3.1 Gaussian Quadratures
One expensive step of the algorithm is the solving of the Schrödinger equation in

the inner region. In cases where no analytic solutions exist, such as this work,

solving the Schrödinger equation is, at its heart, a numerical integration problem.

In standard numerical methods, this is translated into the linear algebra problem of

a matrix diagonalisation, which has been highly optimised over the years.

There are particularities about this problem, however, which mean many stan-

dard methods are unsuitable. For instance, the fact that the Schrödinger equation is

being solved over a finite region of space is a concern for many standard methods.

The solution method employed here is a Discrete Variable Representation (DVR),

which will be defined shortly.

DVRs are usually based on Gaussian quadratures, a general name for a family

of numerical integration methods, which has been studied for many years (e.g. [144,

145, 146]). These techniques are based on the zeroes of different polynomials, such

as Chebyshev polynomials [147], and Legendre polynomials [148].

Among the first applications of DVR methods to quantum mechanical prob-

lems was a DVR method based on Hermite polynomials [149, 150, 151], which

is notable as Hermite polynomials are, of course, the analytic solutions to the
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Schrödinger equation with a harmonic oscillator potential. Analogies like these

can be exploited. For instance, the radial basis sets used in DVR3D [89] are based

on associated Laguerre polynomials [109], which is noteworthy as these polynomi-

als are the exact solutions to the Schrödinger equation with a Morse potential, as

seen in Chapter 2.

Gaussian quadratures form a key part of the algorithm as a whole, and as such

it is important to explain them in detail here. This will also help to explain how

DVR methods in quantum chemistry work. Much of the following is taken from

Approximate calculations of integrals, by V. I. Krylov [152].

In order to explain how Gaussian quadratures work, first a function, f (r), is

defined. The objective is to integrate this function over the range [a,b]. When

performing a Gaussian quadrature, a set of grid points rk and associated weights wk

are determined such that the following equation holds:

∫ b

a
f (r)dr ≈

m

∑
k=1

wk f (rk), (3.1)

where the k sums over the grid points rk which all lie in the region [a,b] (0≤ a≤ b).

The order of the quadrature is m, which is the number of grid points. The error in

this approximation is related to the value of m, with higher values corresponding

to better approximations for well-behaved functions. Indeed, if f (r) is a polyno-

mial, the approximation becomes exact if m is larger than the highest degree of the

polynomial (implying that the better a given function can be approximated by a

polynomial the lower the error will be).

Sometimes the behaviour of the quadrature method is improved by including

a weight function, p(r), in the integral, which modifies the grid points and weights

one ends up choosing. When that happens, the integral ends up looking like:

∫ b

a
p(r)g(r)dr ≈

m

∑
k=1

wkg(rk). (3.2)

Note that it is always possible to include a weight function by defining the

function g(r) such that f (r) = p(r)g(r). This can lead to numerical problems if
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dividing by p(r) introduces singularities in the [a,b] range, as is sometimes the

case.

The optimum grid points and weights for a given weight function, and for a

given accuracy (i.e. for a given value of m) are determined by defining the polyno-

mial ω(r) such that:

ω(r) = (r− r1)(r− r2) . . .(r− rm), (3.3)

and by specifying that ω(r) satisfy the conditions of being orthogonal (with respect

to p(r) over the region [a,b]) to any polynomial Q(r) with a degree less than m,

such that:

∫ b

a
p(r)ω(r)Q(r)dr = 0. (3.4)

Under this condition, and with this definition, the polynomial can be specified

up to a constant factor, and its roots can be found. A polynomial Pm(r) is defined,

which differs from ω(r) only by a constant factor. The roots of both this polynomial

and ω(r) are the grid points rk. Finding the roots of the polynomial is a relatively

trivial task. For any set of orthogonal polynomials worth considering, the roots will

have a standard form which can be easily calculated, and for any other polynomials

powerful numerical techniques exist to calculate them.

The equation for the weights wk is:

wk =
∫ b

a

p(r)Pm(r)
(r− rk)P′m(rk)

dr, (3.5)

where P′m(rk) is the derivative of the polynomial of degree m at the point rk. Note

that for a given weight function there is usually a more computationally efficient

way of defining the grid points and weights of the quadrature scheme, especially

since the associated polynomials Pm(r) are known for a large selection of weight

functions, and often it is possible to take advantage of the specific functional form

of the polynomial when constructing an algorithm for generating the points and

weights. This was the case for the weights and grid points used in this work.
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3.1.1 Discrete Variable Representations

A discrete variable representation method is a technique for solving the Schrödinger

equation based on a discretisation of space [153, 151], relying on an associated

Gaussian quadrature scheme.

Since Gaussian quadratures are approximations, a discrete variable represen-

tation is an approximation to an exact VBR, or variational basis representation (up

to truncation of the VBR operator matrices), via Equation 3.1. DVRs are equivalent

to VBRs, but only in the case of an exact quadrature [151]. Making the Gaussian

quadrature approximation is equivalent to moving to the DVR regime.

VBRs themselves, meanwhile, are approximations of the true, physical value

of the quantity in question (which, in some contrived circumstances, may happen to

be exact approximations). In variational methods in quantum mechanics, in order to

obtain the exact value of the physical quantity, an infinite number of basis functions

are almost always needed. The VBR approximation is precisely the approximation

due to truncating the basis to a finite number of functions. The DVR method is then

an additional approximation on top of this.

Importantly, in DVR methods, the basis functions are only evaluated on a spe-

cific set of grid points. These specific nodes are the ones used in Equation 3.1. That

means that many DVR methods, including the ones used here, only evaluate the

values of the basis functions at the specified nodes. This has important implications

for the project as a whole, as will be discussed in the following sections.

There are many types of DVR, besides the ones based on orthogonal polyno-

mials which are discussed here. One example is a potential-optimised DVR [154],

which uses a model potential to attempt to allocate grid points more efficiently.

Another is a family of DVR methods that are optimised to certain phase spaces

[155, 156]. There are also DVR methods that are simply based on functions other

than orthogonal polynomials, such as the sinc DVRs that DUO uses [157, 86], and

Lobatto DVRs, which this work utilises and are discussed in-depth further below.
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3.1.2 Lobatto Quadratures

One issue with the Gaussian quadratures used with orthogonal-polynomial-based

DVR methods is that the grid points the method chooses to optimise the accuracy

never includes the points a and b themselves. As Section 3.1.1 implied, when solv-

ing the Schrödinger equation with DVR methods, the wavefunctions one obtains

are only evaluated at the grid points (in this case the Gaussian quadrature points).

The R-matrix is defined as a sum over the wavefunctions at the boundary of

the inner region. As such, for the R-matrix method to work it is necessary for the

final grid point to be one of the grid points used in the quadrature scheme. Since

this cannot be done using regular Gaussian quadrature theory, it must be extended

slightly. Again Krylov’s textbook [152] shows how to do this and subsection 3.1.3

explores how to do this in more detail.

Initially in this project, the default DVR associated with Duo, the so-called sinc

DVR [157], was used to solve the inner region problem. Strictly speaking this is not

a DVR in the usual sense as it is not based on an orthogonal polynomial. Rather, it

is based on a certain trigonometric function.

For the purposes for which DUO was initially created – high-resolution rovi-

bronic spectroscopy of open-shell diatomics, the sinc DVR method comes with a

useful advantage: unlike most Gaussian quadratures, it has a uniform point distri-

bution. Given that a cheap, accurate numerical integration is all that is required of

the basis for those purposes, this was sufficient.

For the purposes of this work, however, the sinc DVR method has a key disad-

vantage: it enforces a zero amplitude boundary condition at both boundaries. Given

that the R-matrix method involves using the amplitudes of the basis functions at the

boundary to evaluate scattering observables, it would not be possible to use the sinc

DVR basis for the purposes of this work.

The next attempted solution of the inner region problem was by using Lobatto

quadrature, a specific type of Gaussian quadrature with a weight function of unity,

where the two end points of the integration are explicitly included in the scheme as

external nodes, thus addressing the issue outlined above. The internal nodes of this
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Figure 3.1: The distribution of nodes between the two end points in the Gauss-Legendre
quadrature scheme, compared to the shape of a diatomic potential energy curve.

quadrature are the roots of the derivative of the Legendre polynomial [158].

One advantage of this is that the weights associated with the internal and ex-

ternal nodes (the analytic form of which are easily accessible online [158]), can be

easily calculated by a simple piece of code, given in a paper by Manolopoulous

[148], as derived from a code snippet in Numerical Recpies [145], based on a sim-

ple Euler method. Furthermore, the weights and grid points are symmetric about

the mid-point of the range. This implies that only an even number of grid points

can be used.

In this work, the Gauss-Lobatto quadrature scheme was effective, and gave

correct inner region solutions when implemented, but two main issues were en-

countered.

The first issue concerned the distribution of grid points. It was known that the

Gauss-Lobatto quadrature would not produce a uniform distribution of quadrature

points, however as Figure 3.1 shows, this distribution is very inefficient for the

system being analysed.

The PEC being integrated over has its steepest slopes around an equilibrium

value near the middle of the integration region. Ideally, the distribution of points in

the quadrature scheme would match this by having the densest distribution of points

in this region, too. Instead, most of the points are distributed near the start and end

of the integration region. These are the two least important regions for integration

(except for the last point, which remains important), because the wave functions
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will not be varying much in these regions. Ideally, a different quadrature scheme

with a more efficient distribution of points would be preferable.

Some numerical testing demonstrated the inefficiency of this distribution. Nu-

merical tests were performed on the number of grid points used and its relation to

the accuracy of the method. These tests are presented in Rivlin et al. [104], and in

Chapter 4.

The next issue was the inclusion of the lower bound of the integration range

as a quadrature point. The Gauss-Lobatto algorithms given in the citations above

rely on the symmetry provided by using both end points in the scheme to simplify

the mathematics, making it easier to implement. The issue with this is related to the

physics of the problem being solved here.

In the problem being solved here, there is a large repulsive barrier before r = 0

(physically, this corresponds to the nuclear repulsion overwhelming the electrostatic

force at close range). This means that the wavefunctions for the nuclear motion of

the diatom will always be effectively zero at r = 0 (the nuclei will never overlap).

As such, there is no issue in the diatomic problem with including the lower

bound in the integration (provided the lower bound is placed at a lower value of

r than the repulsive barrier). However, when moving to more complex reactions,

including atom-diatom collisions, the coordinate systems will include angular co-

ordinates where there will be no repulsive barrier before zero. Furthermore, many

wavefunctions have a cusp at the zero point in many coordinates in polyatomic

problems. This means that the Lobatto method will break down at these points.

In anticipation of these issues, research was performed in this project into an

alternative Gaussian quadrature scheme where only one of the end points was in-

cluded – the point the R-matrix is defined at. Such a scheme, where only one of

the end points is included, is called a Gauss-Radau quadrature scheme [159]. In

addition, research was performed on more general fixed-node quadrature theory, to

find a scheme with a better distribution of points.
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3.1.3 Quadrature with Fixed Nodes

The objective of this section is to re-define the Gaussian quadrature method to allow

for the possibility of including arbitrary fixed points in the algorithm. To simplify

the problem, it is helpful to focus on the case where a = −1, b = 1, and the point

−1 is to be explicitly included in the quadrature as the first point.

This range can be transformed into the correct range by a trivial transformation:

∫ b

a
f (r)dr =

b−a
2

∫ 1

−1
f
(

b−a
2

r+
a+b

2

)
dr, (3.6)

which, in the context of Gaussian quadrature, translates to

∫ b

a
f (r)dr ≈ b−a

2

m+1

∑
k=1

wk f
(

b−a
2

rk +
a+b

2

)
. (3.7)

First the polynomial Ω(r) is introduced, such that

Ω(r) = (r− (−1)) . (3.8)

Clearly in the case of multiple fixed grid points this will be a product over r minus

all of the fixed points, in analogy with ω(r).

Thus the aim is to find a quadrature with m+1 grid points, where the first grid

point is −1, and the m other points are unfixed and must be determined, as before.

To do this, the polynomial ω(r), still made up of the same m grid points as

in Equation 3.3, must still be orthogonal to every polynomial Q(r) of degree lower

than m over the range [a,b], but now not with respect to p(r), but with respect to the

product of Ω(r) and p(r), which is given the name ρ(r):

ρ(r) = Ω(r)p(r), (3.9)

such that:

∫ b

a
ρ(r)ω(r)Q(r)dr = 0. (3.10)

If the polynomial πm(r) is defined to be orthogonal under these conditions but



3.1. Gaussian Quadratures 94

different from ω(r) by a constant factor (in analogy with Pm(r), as before), then

its form can be determined by comparing it to the associated Pm(r). If, for a given

weight function p(r), the form of Pm(r) can be determined or is somehow already

known, then the corresponding πm(r) for a given set of fixed points can be derived

from the following determinant:

πm(r) =
Km

Ω(r)

∣∣∣∣∣∣Pm+1(r) Pm+1(−1)

Pm(r) Pm(−1)

∣∣∣∣∣∣= Km

Ω(r)
(Pm+1(r)Pm(−1)−Pm+1(−1)Pm(r)) ,

(3.11)

where Km is a constant factor.

From this polynomial, the nodes of the quadrature can be found by determining

the roots of the polynomial. Note that πm(r) is not strictly a polynomial due to the

1/Ω(r) term. Instead it is a rational function. Also note that finding the roots of the

function is much more difficult than in the previous case, and numerical root finding

methods must be carefully employed.

The weights for the unfixed points, wk, can be determined from a formula

similar to Equation 3.5:

wk =
∫ 1

−1

p(r)ω(r)Ω(r)
(r− rk)ω ′(rk)Ω(rk)

dr. (3.12)

Note how in this expression the function ω(r) is divided by its derivative evaluated

at rk, meaning any constant terms attached to the function are eliminated, meaning

it can be replaced with Pm(r) and still be valid.

The weight for the fixed point, r = −1, can be determined from another for-

mula similar to Equation 3.5:

w1 =
1

πm(−1)

∫ 1

−1
p(r)πm(r)dr. (3.13)

Note how in this expression the value of Km can be ignored by a similar argument

to the one used in Equation 3.12: the Km which comes from the πm(r) term can be

taken outside the integral and divided by the Km from the πm(−1) term, meaning
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that the value of Km never needs to be evaluated.

With all of the nodes and weights calculated, the final expression is simply the

original definition of the Gaussian quadrature, only with the new definitions for the

nodes and weights:

∫ 1

−1
p(r) f (r)dr ≈

m+1

∑
k=1

wk f (rk). (3.14)

If the weight function is set to be unity, then this scheme, where one of the

end points is included in the quadrature scheme, is the definition of Gauss-Radau

quadrature.

3.1.4 Radau Quadratures

As with Gauss-Lobatto quadrature, analytic solutions exist for Gauss-Radau

quadrature [159]. Unfortunately the same problem with the distribution of nodes

exists, too. An ideal quadrature scheme for use in this work would include a single

end point, as Gauss-Radau quadrature does, but also have a distribution of nodes

which more closely resembles the slope of a realistic diatomic PEC.

Furthermore, as outlined above, Radau quadratures are more difficult to imple-

ment computationally due to the asymmetric nature of the grid. In this work, no

grids were discovered that met all the criteria to fulfil the requirements of the Rma-

tReact method, having an efficient numerical implementation and improving on the

efficiency of the grid point distribution. Development of an improved Radau-like

quadrature did not progress past the theoretical underpinning illustrated here.

Work on the alternative to the Lobatto method for the atom-diatom problem is

ongoing, for instance in McKemmish & Tennyson [31], but in this work, the Gauss-

Lobatto quadrature was used to produce all results seen in the results chapters.

3.2 Computational Implementation

3.2.1 Inner Region Implementation

Using the Gauss-Lobatto scheme, the inner region solutions can be calculated, start-

ing from a basis set based on Lobatto quadrature, as outlined in [148].
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The actual basis functions are Lagrange polynomial shape functions (also

known as Lagrange basis polynomials), defined in the following way for a spec-

ified grid of (m+2) grid points r j in a range:

ũi(r) =
m+1

∏
j=0

′ r− r j

ri− r j
, (3.15)

where the product is over the grid points r j, and the prime index in the product

indicates that the product skips over the i = j term. One of the key properties which

makes this basis set useful is the fact that

ũi(r j) = δi j. (3.16)

Whilst the set of points chosen is in principle arbitrary, the utility of the method

rests in a specific choice of points – the Lobatto quadrature points. In this case, that

corresponds to the lower bound of r, rmin, and the upper bound of r, a0, being

external grid points. The m internal grid points are the roots of the polynomial

P′m(r), which is the derivative of the mth Legendre polynomial [158]. Note that this

implies boundary conditions of:

ũi(rmin) =

0 i 6= 0

1 i = 0
,

ũi(a0) =

0 i 6= m+1

1 i = m+1
. (3.17)

The spacing between grid points is non-uniform in this scheme, but the average

grid spacing can be shown to be simply:

∆r =
(a0− rmin)

m
, (3.18)

where m is the number of internal grid points. Knowing this value is useful for
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diagnostics. As with most numerical integrators, the spacing between grid points is

a crucial metric for the accuracy and convergence of the method.

Anticipating the interaction with the Gauss-Lobatto quadrature scheme, one

can also re-normalise the basis by dividing each basis function by the root of the

associated quadrature weight, which will be useful for the construction of the matrix

to diagonalise:

ui(r) =
1
√

wi
ũi(r). (3.19)

The reason this choice of grid points has utility is its connection to Gaussian quadra-

ture. This is because one can use properties of the basis, and the rules of Gaussian

quadrature, to avoid doing any computationally expensive numerical integration.

For example, assuming the equality of Equation 3.1 holds, the matrix of overlaps

between basis functions can be derived analytically [148]:

SDV R
i j =

∫ a0

rmin

ui(r)u j(r)dr =
m+1

∑
k=0

wkui(rk)u j(rk) =
wkδikδ jk√wiw j

= δi j. (3.20)

Note that the fact that the overlap matrix is the identity matrix in the discrete

variable representation does not imply that the functions are orthonormal, even after

taking into account the effects of Equation 3.19. Tests using different numerical

integration methods have shown that the actual overlap matrix of the functions has

non-zero off-diagonal terms. As the number of states is increased, the off-diagonal

terms become smaller and the diagonal terms approach unity, however this is not an

exact relationship. Hence, the form of Equation 3.20 is an approximation. Testing

has shown, so far, that the off-diagonal components are small, and this appears to

be a robust approximation within the framework of this algorithm.

Suppressing the J label in the single-channel case, and defining u′i(r) to be the

first derivative of the basis, it is also possible to compute matrix elements of the

Hamiltonian plus Bloch/surface operator matrix in this basis:
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(H +L )i j =
∫ a0

rmin

(
− h̄2

2µ
ui

d2u j

dr2 +uiV (r)u j

)
dr+

h̄2

2µ
ui(a0)u′j(a0)

=
∫ a0

rmin

(
h̄2

2µ
u′iu
′
j +uiV (r)u j

)
dr− h̄2

2µ

[
uiu′j

]a0
rmin

+
h̄2

2µ
ui(a0)u′j(a0)

=
m+1

∑
k=0

wk

(
h̄2

2µ
u′i(rk)u′j(rk)+ui(rk)V (rk)u j(rk)

)
+

h̄2

2µ
ui(rmin)u′j(rmin)

=
m+1

∑
k=0

(
h̄2

2µ
wku′i(rk)u′j(rk)

)
+V (ri)δi j +

h̄2

2µ

1
√

wi
u′i(rmin)δi0. (3.21)

Note that in this derivation the surface term added at r = a0 cancels the con-

tribution to the Hamiltonian from the boundary at r = a0, but there is no equivalent

surface term at the r = rmin boundary, despite the boundary conditions being equiv-

alent, as shown in Equation 3.17.

This means there is a leftover term at the surface, U0:

U0 =
h̄2

2µ

1
√

w0
u′0(rmin), (3.22)

and this affects the first element of the matrix. However, for any realistic diatomic

PEC there is an asymptotic repulsive barrier in the potential as the distance tends

towards zero. As such, assuming the boundary is placed sufficiently far inside this

classically forbidden region, all final wavefunctions will have zero amplitude at this

boundary, and so this extraneous extra surface term should not influence the physics

of the problem in any way. The term was not included in the final version of the code

used in the results chapters of this work. The properties of the wavefunction in the

classically forbidden region are also of importance for the pure propagation-based

R-matrix methods discussed in the previous chapter.

This derivation clearly shows that the expression for the Hamiltonian matrix

depends only on the values of the potential and the first derivatives of the basis

functions at the Gauss-Lobatto abscissas, and the weights of the Gauss-Lobatto

quadrature for each basis function. Hence, once one has calculated the weights and

abscissas, the only computation left is the derivatives. The analytic form of the
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derivative is:

u′i(r) =
1
√

wi

1

∏
m+1
k=0

′
(ri− rk)

m+1

∑
j=0

′
m+1

∏
k=0

′′(r− rk), (3.23)

where the prime in the summation indicates the sum does not include the j = i term,

the two primes in the product indicates the product does not include both the k = j

and k = i terms, and the prime in the denominator means that the product does not

include the k = i term.

Since only the values of the derivatives at the abscissae are required, one can

reduce this expression to a simpler form. This also has the advantage of being less

computationally expensive [160]. The simplification is done by using Gaussian

quadrature to integrate
(
u′i(r)u j(r)+ui(r)u j′(r)

)
from 0 to a0 [160]:

u′i(r j) =
1
√

wi


1

2wi
(δi(m+1)−δi0) i = j

1
ri−r j

∏
m+1
k=0

′′
(

r j−rk
ri−rk

)
i 6= j

, (3.24)

where the double prime in the product indicates that the product does not include

both the k = j and k = i terms, as before.

The computational expense of the problem can be further reduced by consid-

eration of the symmetry of the grid points and abscissas, which imply that:

u′i(r j) =−
wi

w j
u′j(ri). (3.25)

The key reasons for the use of the Lobatto basis functions are the properties of

the basis on the boundary: notably, due to Equation 3.16, one of the basis functions

has non-zero amplitude on the boundary, which is sufficient to construct the final

unbound functions with non-zero amplitude and non-zero first derivative which are

vital for the success of the R-matrix method, all without resorting to extra additions

to the R-matrix method such as Buttle corrections [128].

Manolopoulos outlines how to construct the basis described in Equations 3.15

and 3.19 both mathematically and computationally [148]. The code outlined in

[148] was first implemented in Mathematica for testing purposes, and then imple-
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mented in DUO itself. The same was done for Equations 3.24 and 3.25 to construct

the derivatives at the grid points, which are necessary to obtain the kinetic compo-

nents of the Hamiltonian matrix elements of Equation 3.21.

DUO operates in a body-fixed frame, which means that the kinetic components

of the Hamiltonian matrix elements have Coriolis coupling terms between different

angular momentum projections. These terms are all handled internally by DUO, and

are not explicitly included in inputs, or considered separately in outputs.

With the Hamiltonian matrix elements constructed, the next step is to construct

the basis, χJ
k (r) (in the single-channel case and reintroducing the J label), which di-

agonalises this matrix. The basis function χJ
k (r) is precisely the eigenfunction of

the operator on the left hand side of Equation 2.55, which, as described in Equa-

tion 2.58, is the basis function used to construct the R-matrix at the boundary.

In the single-channel case, the basis χJ
k (r) is constructed from the Lobatto basis

ui(r), such that

χ
J
k (r) =

N

∑
i=0

ui(r)cJ
ik, (3.26)

where the cJ
ik are the elements of the matrix of coefficients, and N is the number

of basis functions used in the calculation. These coefficients are obtained through

a matrix diagonalisation routine. The diagonalisation routine also produces the en-

ergy eigenvalues, EJ
k , which are also needed for the R-matrix sum at the boundary.

In Mathematica, where the algorithm was first tested, the coefficients cJ
ik and

energies EJ
k were obtained using the default eigensolver in Mathematica. The algo-

rithm was also tested in C++, where the LAPACK routine dsyev [161] was used to

diagonalise the matrix to obtain the coefficients and energies. In the final version of

DUO used to obtain the results, the similar LAPACK routine syevr is also used to

obtain these coefficients and energies.

As with the conventional version of DUO, the diagonaliser only provides the

eigenvectors of the J = 0 problem directly. The J > 0 eigenfunctions are provided in

the form of coefficients to construct the functions from the J = 0 basis, in a similar
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manner to the basis construction presented in Equation 3.26:

χ
J
k (r) =

N

∑
i=0

χ
0
i (r)c

J
ik. (3.27)

Note also that, as Equation 2.62 shows, only the value of this function at a0

needs to be calculated and stored in order to obtain the outer region scattering re-

sults.

In the multichannel case χJ
k (r) is replaced with wΓ

ik, and EJ
k is replaced with EΓ

k

(where Γ contains the list of conserved quantum numbers), as described in Equa-

tion 2.65. The diagonalisation procedures are effectively unchanged in this case

(including the J > 0 functions being presented only as coefficients in a J = 0 basis),

and only the DUO version of the multichannel diagonaliser was used in this work.

In analogy with Equation 2.62, the single-channel R-matrix which is con-

structed from the quantities computed by DUO has the form

RJ(E) =
h̄2

2µa0

N

∑
k=1

χJ
k (a0)

2

EJ
k −E

, (3.28)

where the k counts over the N inner region functions with eigenenergies and eigen-

functions EJ
k and χJ

k (r) respectively, and E is the scattering energy in the body-fixed

frame. The difference between this and Equation 2.62 is that the sum runs over a

finite number N of basis functions, not an infinite number.

Equivalently, the multichannel version of Equation 3.28 is analogous to the R-

matrix definition featured in Equation 2.66, but with a finite sum up to N, instead of

an infinite sum.

In both the single-channel and multichannel versions of the DUO implementa-

tion of Equation 3.27, in practice the J = 0 amplitudes obtained from DUO, χ0
i (a0)

must first be divided by
√

w0, the square root of the first Lobatto weight, before

being used to construct the amplitudes. This is due to the way the derivative of the

Lobatto basis is constructed, as outlined by Manolopoulos [148].
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3.2.1.1 DUO Modifications

It is important to note that, as Equation 3.21 shows, the eigenvalues and eigenvec-

tors obtained by the diagonalisation method are not the same as the eigenvalues

and eigenvectors one would obtain from using DUO in its conventional form. The

difference is due to the presence of the Bloch operator, L . This operator subtracts

a small term from each matrix element which precisely cancels the contribution at

one of the boundaries of the integral.

Because the matrix being diagonalised is not precisely the matrix formed

from the Hamiltonian operator, the problem is technically not solving the physical

Schrödinger equation per se. However, the Bloch operator was initially introduced

in order to account for a different unphysical feature of the system being studied:

the artificial boundary conditions in space being imposed by the R-matrix method.

Indeed, as Chapter 2 showed, the Bloch term is needed to make the Hamiltonian

matrix Hermitian when evaluated over a finite region.

If the boundary a0 is placed sufficiently far away from the equilibrium bond

length of the diatom such that it can be assumed that all the physics of the problem

is contained within the inner region, then in most circumstances the term in the

integral introduced by the boundary will be negligible: all wavefunctions will have

died off. At that point, the Bloch term’s contribution is inconsequential. Of course,

for every point in space other than r = a0, the Bloch term is zero anyway. Another

way of saying this is that in the limit a0→ ∞, the matrix elements of Equation 3.21

reduces to the matrix elements of Hi j.

This must be considered if one wishes to use Lobatto functionality in DUO for a

purpose other than obtaining components of R-matrix sums for scattering purposes,

and a0 should be placed sufficiently far out to mitigate these effects.

One other important feature of the implementation of Lobatto functionality

in DUO that must be noted is that, unlike with the conventional version of DUO,

the number, N, of basis functions used in the R-matrix sum for a given symmetry

must equal the number of grid points used in the Lobatto quadrature (represented by

(m+ 2) in Equation 3.15). This is because the methods explained in Section 3.2.1
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assume that the number of grid points is equal to the number of basis functions.

DUO, by contrast features functionality to allow one to use a different number

of grid points than basis functions when using the conventional sinc DVR basis.

This functionality was not replicated for the Lobatto case.

3.2.2 The Harness

Once the components of the R-matrix sum have been obtained from DUO calcula-

tions, the R-matrix must be propagated. Since the inner region is scattering energy-

independent, the computation need only be performed once for a given system, set

of numerical parameters, and desired accuracy.

The R-matrix itself must be constructed at a given scattering energy, though, as

can be seen in Equation 3.28. Once the R-matrix at a given energy is constructed, it

must be propagated to an asymptotic distance. And once the propagated R-matrix is

obtained, scattering observables must be obtained from that. Different codes were

used for all of these purposes, and so a ‘harness’ between them was constructed.

The final version of this work contains a harness, written in C++, that reads

the outputs of DUO and constructs the J > 0 eigenfunctions from the coefficients

provided by DUO. It then passes all the eigenenergies and amplitudes at the bound-

ary of these eigenfunctions to PFARM, reads the K- and T-matrices that PFARM

produces, produces cross-sections from the T-matrices, and passes the K-matrices

to the code reskit to obtain S-matrices. Much of the functionality of DUO and

PFARM was also replicated in the single-channel case for testing purposes, in both

Mathematica and C++.

In the multichannel case, there were extra complications in the harness stage.

Firstly, the channel functions produced by DUO needed to be transformed into a

parity-adapted basis, since DUO wavefunctions are only parity-adapted when sum-

ming over all channel contributions: the individual channel contributions are not

parity-adapted by default. Secondly, there was a conversion between different

Hund’s cases which had to be performed on the amplitudes at the boundary. More

discussion of this can be found in Chapter 6, where this is explained in detail.

It is expected that for almost all scattering problems more complicated than
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elastic scattering of atoms, the RmatReact method will need to involve some kind

of conversion at the boundary. In the case where actual chemical reactions occur, it

will be necessary to perform a coordinate transformation at the boundary, such that

the asymptotic states the reactants map on to are described in different coordinates

to the ones used to describe the bound state.

Preliminary work has begun on this (see McKemmish and Tennyson [31]), and

more work is ongoing. But even in the atom-atom case where no reactions are

allowed, Chapter 6 shows one example of a general trend of a transformation being

required at the R-matrix boundary.

3.2.3 Outer Region Implementation

Many of the results in Chapter 4 and Chapter 5 were generated using an algorithm

written for this work in C++, which was described in Section 2.2. Equation 2.73 was

used to propagate a single-channel R-matrix for a given energy E from a distance

a0 to an asymptotic distance ap, and then Equation 2.81 was used to construct the

K-matrix. The arctangent of the K-matrix was then used to construct eigenphases,

and the elastic scattering cross-sections, S-matrices, scattering lengths, and effective

ranges were then produced from those eigenphases.

Some of the single-channel results in Chapter 5, and all of the multichan-

nel results in Chapter 6, were generated using the code PFARM [94]. PFARM

(or PRMAT) was originally designed to perform multichannel R-matrix propaga-

tions for electron-atom and electron-ion collisions, especially electron collisions

with open d-shell atoms, and collisions at ‘intermediate’ energies (which are much

higher than the energies considered here). The propagation method PFARM uses

is based on the BBM propagator discussed in Chapter 2, and the Gailitis expansion

introduced in the same chapter.

Whether with the custom-build C++ code or the PFARM implementation, the

propagation process was done for hundreds of scattering energies at a time. This

allowed for fine-grained plots of scattering observables as a function of energy over

small ranges. As a result, it was possible to produce plots which revealed very

narrow resonances in certain systems, as seen in, for instance, Chapter 5.
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PFARM was designed to be used in conjunction with an inner-region code, as

opposed to other R-matrix propagators which are designed to be used without an

inner region. The PFARM paper [94] cites examples of inner region codes which

can be used with it, including CIV3 [162] and SUPERSTRUCTURE [163].

In PFARM, outputs from inner region codes – channel amplitudes and eigenen-

ergies – are used as inputs for the PFARM propagator to obtain K-matrices and as-

sociated scattering observables. More inputs were also required for PFARM and

the other propagators to function, however. All the propagators used in this work,

including PFARM, relied on an assumption that the reactants interact over a long-

range potential of the form:

VLR(r) =
NLR

∑
i=2

ci r−i, (3.29)

where ci were some set of coefficients which were obtained from both ab initio

and experimental sources, and NLR was the maximum power that r−1 was raised to

for that particular long-range potential VLR(r), under the assumption that no term

contained r−1 itself. As such, another input that was provided to the propagators

was the value of these long-range coefficients ci for all of the PECs used in the

propagation. Parity-adapted Coriolis coupling terms also needed to be provided, as

discussed in Chapter 6.

One issue that arose in the development of PFARM for this work is that

electron-atom and electron-ion scattering involve significantly different sets of

quantum numbers and symmetries from atom-atom scattering. For the purposes

of this project, one of the authors of PFARM, Martin Plummer, made many modifi-

cations to the code to allow it to accept inputs from DUO to construct an R-matrix

to describe atom-atom scattering.

Most of these modifications were adapted specifically to the problem of intra-

multiplet mixing in oxygen scattering off helium, as discussed in Chapter 6, with

special consideration given to the issues arising from the Hund’s cases used. How-

ever another modification to PFARM was also made, in order to allow it to accept
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standard Morse potentials, as discussed in Chapter 2. This is in contrast to the po-

tentials described by Equation 3.29, as Morse potentials decay exponentially and do

not accommodate a form that is a polynomial expansion in r−1.

Besides being different physical systems, the energy ranges PFARM was ini-

tially designed to operate on are considerably higher than the ultracold tempera-

tures being considered here, and so considerations were also made with respect to

the validity of the PFARM results over the ultracold energy ranges which this work

focused on.

One large problem which was not addressed thoroughly in this work was the

issue of both reactants having structure. Since most R-matrix theory is focused on

electron scattering off atoms, ions, and molecules [30], it is usually assumed that

one of the reactants, the electron, has no internal quantum numbers besides a spin,

and this is assumed here, too. Future work may focus on addressing this oversight.

3.2.3.1 The Variable Step Size Propagator

One extra addition was made to the single-channel propagator constructed in C++

to test against other propagators. The Light-Walker and BBM propagators used in

this work (as discussed in Chapter 2) both use fixed step-size propagation, where

the spatial gap between adjacent iteration points is pre-determined.

However, for the single-channel Light-Walker implementation used in Chap-

ters 4 and 5, an algorithm was tested that made use of a variable step size based

on the derivative of the potential between the two adjacent points. The intention

is for the algorithm to use more propagation points in areas where the potential is

steep, and fewer in areas where the potential is more shallow. This is comparable to

the intentions behind the investigations into improved quadratures in Section 3.1.3,

where it was intended to find a quadrature for the inner region which used more

points in steeper parts of the potential, and fewer in more shallow parts.

Both of these methods were intended to improve computational efficiency,

which would be useful for multidimensional problems the RmatReact method may

be applied to in the future. Another advantage of the variable step size method is

that in the multi-channel case, channels which contribute different amounts can be
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treated differently.

Stechel, Walker, and Light [132] devised the variable step size scheme tested

in this work. In this scheme, the gap between adjacent iteration points is dependent

on the size of the last step. It obeys its own iteration equation, dependent on the

derivative of the long-range potential used, in the following way:

δas+1 = β

(
1

Nc

Nc

∑
i=1

(λi,s)
2− (λi,s−1)

2

δas

)−1/3

, (3.30)

where i counts over the channels, Nc is the number of channels and, β is a dimen-

sionless control parameter which allows one to specify how many steps should be

taken. In the single-channel case, Nc = 1 and the definition is the same as the single

channel definition of λs in Equation 2.68.

The variable step size method replaces the one numerical parameter, Np, in-

troduced in Section 2.2.2.1, with two numerical parameters. The two parameters

are β and an initial step size δa0 which is needed to seed the iteration. In the mul-

tichannel case both of these parameters can be different for different channels. In

the single-channel implementation tested in this work, β was tested with a range of

values around 0.01, and δa0 was taken to be a range of values around 0.1% of the

distance from a0 to ap in tests.

Ultimately the variable step size was not used to generate any of the results

in this work, as the testing revealed negligible improvements to computational effi-

ciency compared to the fixed step size propagator methods.

3.2.4 S-matrix Implementation

The S-matrix was defined in Equation 2.23 as a function of the K-matrix, however

one can also define it directly from the R-matrix:

SJ(k) = exp(−2ikr)
1+ iRJ(E,ap)kr
1− iRJ(E,ap)kr

, (3.31)

where RJ(E) is the R-matrix for a given scattering energy, E (with associated scat-

tering wavenumber k), propagated to an asymptotic distance ap. This allows one to
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define the S-matrix directly from the definition of the R-matrix.

In the original implementation of the harness code, the propagation was done

alongside the harness code with a custom propagator. Also in this original im-

plementation, code was written to produce single-channel S-matrices using Equa-

tion 3.31 for complex values of k. This was in order to construct an S-matrix pole

finding tool, with the intention of using it as a resonance-finder and as a bound-state-

finder, as outlined in Chapter 2. This pole finder was not especially sophisticated,

and effectively amounted to a code that printed the S-matrix over a large number

of different complex k values, which were then plotted and visually inspected for

the presence of poles. Development on this method was limited, and it was never

successfully implemented for J > 0.

Even in the single-channel, J = 0 case that was implemented, the results were

questionable, for reasons that will be discussed in Section 3.3.7. For the single-

channel, J = 0 case, the only S-matrix poles one should expect to find are located

along the imaginary axis. When the S-matrix was plotted for imaginary values of

k, poles were located in the upper half plane, and these poles were approximately

located in places where one would expect to find a bound state energy. These poles

were found to be symmetric about the origin, which is not necessarily predicted by

the theory outlined in Chapter 2. Furthermore, the poles themselves were found to

be unstable, and sensitive to changes in the numerics of the code.

Ultimately, development was stopped on the custom S-matrix pole finder, and

when reskit was released, that code was used to locate S-matrix poles instead. reskit

is a code that produces elastic scattering S-matrices, and identifies and characterises

the resulting poles. It uses Padé approximants [164] to calculate the analytic con-

tinuation of the S-matrix in the complex plane and obtain the poles of this S-matrix.

3.3 Numerical and Computational Issues

During the construction of the algorithms used to produce the results in this work,

a number of numerical and computational issues were encountered and resolved.

Furthermore, several alternate versions of parts of the method were tried and aban-
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doned for a variety of reasons. This section contains a description of some of the

alternate methods tried. It also contains descriptions of some of the issues that were

faced, and how they were overcome.

Many of the issues highlighted in this section are related to R-matrix method-

ology in general, and many of the alternate algorithms tried in this work are those

which may be useful in different circumstances. This section discusses why the al-

ternate methods were abandoned, and contains descriptions of resolutions to issues

faced in the development of the RmatReact method used here that may be pertinent

to future work on the method.

3.3.1 Lobatto Derivative Computation Issues

One small problem occurred when designing the Lobatto routine in Fortran for use

in DUO, based on the methods developed by Manolopoulos and collaborators [148,

160]. When implementing Equations 3.23, 3.24, and 3.25 in Fortran to compute

derivatives of Lobatto basis functions, it was discovered that many overflow errors

were occurring, even in double precision numbers. The cause of this problem was

difficult to identify at first, as all of the derivatives should have had values well

within acceptable boundaries, even for single precision floats. It was eventually

discovered that the problem arose due to a naive implementation of Equation 3.24.

To obtain the derivative of the basis function ui at point r j, when i 6= j, Equa-

tion 3.24 states that the product that must be computed has the form:

m+1

∏
k=0

′′
(

r j− rk

ri− rk

)
, (3.32)

where the double prime indicates that the k = i and k = j terms are excluded.

The issue arose due to the order the product was computed in. The initial

implementation simply multiplied successive terms in the product. (All the terms

are unitless ratios of distances.) The problem that created was due to the fact that

successive terms were very similar when there were a large number of grid points.

When a large number of these similar terms were multiplied together, the product

either exponentially increased or exponentially decreased (depending on whether
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the terms were larger or smaller in magnitude than unity).

If the number of grid points was small enough for the double overflow to not

occur, then once enough terms had been multiplied in the product, eventually the

product would revert back to a reasonably-sized number: there was usually enough

small terms to cancel the large ones and vice-versa, they just happened to appear at

opposite ends of the product.

To resolve this issue, the Fortran function that performed this operation was

modified to compute all of the terms of the product before multiplying them to-

gether. These terms were then sorted in size order, riffle-shuffled, and multiplied

in that order, such that the largest and smallest terms were multiplied together first,

then the second-largest, then second-smallest, and so on. This ensured that the par-

tial product was always a reasonably-sized number throughout the multiplication.

This solution did add a small computational expense due to the cost of the

sorting and shuffling routines, compared to the naive implementation, however as a

consequence much larger grids could be used to compute results, which was neces-

sary to offset the issues caused by the grid points being inefficiently distributed, as

discussed earlier in this chapter.

3.3.2 Deleting Terms from the R-Matrix Sum

The single-channel R-matrix as defined in Equation 3.28 includes a sum over sur-

face amplitudes and eigenenergies of the bound diatomic system in the inner region,

with a small modification for the multichannel equivalent. This sum is over all N

eigenstates in the inner region, which is also equal to the number of grid points used

in the quadrature scheme, as discussed in previous sections of this chapter.

This is another example of the complications caused by needing a large number

of grid points for the sake of accuracy in the inner region: the need to compute

an equally large number of eigenstates. However, it is possible that a significant

proportion of these states need not be included in the R-matrix sum itself, which

may be advantageous for efficiency purposes. The last states added to the sum are

the ones with the highest energy above dissociation. Because the energy involved

can be very large compared to the scattering energy in these cases, the R-matrix
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sum’s denominator,
(
EJ

k −E
)
, will have a very large amplitude, which means that

that term’s contribution to the sum will be very small.

One should expect, then, that a significant number of terms in the R-matrix

sum need not be added to it for a given accuracy. This is another example of a

possible efficiency increase that is not especially important in the one-dimensional

problem being studied here, but could be important for multidimensional problems

the RmatReact method may be applied to in the future.

Some estimates [165] expect that any eigenenergies with more than four times

the scattering energy can be excluded from the R-matrix sum without loss of accu-

racy. These estimates are based on problems at much higher scattering energies, so

it should not be expected that ultracold problems would exhibit the same behaviour.

When this was tested with the single-channel C++ code, it was found that it took a

smaller than expected number of excluded states to start encountering accuracy is-

sues with the R-matrix. It is possible that this is due to general boundary condition

problems, as in other works [165] it was found to be necessary to use a correction

on the diagonal of the matrix which was similar in form to the Buttle correction

[128] in order to obtain accurate results. This type of correction is discussed more

in the following sections in this chapter.

Research into this problem was not prioritised in this work, and for all the

results in the following chapters, the full R-matrix was used with all terms in the

sum included.

3.3.3 The Zero-Derivative Problem and Buttle Corrections

One considerable complication introduced by the R-matrix method’s partitioning

of space is an issue of artificial boundary conditions. The inner region calculation,

and the added Bloch term, impose an artificial boundary condition at a0, which

introduces issues when solving the inner region problem.

In DUO’s default sinc DVR method, the artificial boundary condition that is

imposed is one of zero amplitude at the boundary. As discussed earlier, this is ad-

vantageous for the problems DUO was designed to solve, but was not appropriate for

the purposes of this work. The replacement Lobatto DVR has non-zero amplitude
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at the boundary, but, as discussed in private communications with Zdeněk Mašı́n

[166] and espoused in McKemmish & Tennyson [31], it can be shown that a bound-

ary condition of some kind must be present at the a0 boundary. If the amplitude is

not zero, then instead the derivative must be (or if not zero then some fixed finite

value which can be treated as if it were zero). This is simply a consequence of the

use of the Bloch operator, combined with the fact that a second-order differential

equation is being solved.

This is, of course, a problem that all R-matrix methods face. The usual so-

lution to the problem involves a term called a Buttle correction [128], or similar

corrections. These corrections are used to improve accuracy in cases where there

is an enforced derivative on the boundary. One noteworthy work which did not use

Buttle corrections is discussed in detail in the next section.

The zero derivative boundary condition is problematic because the R-matrix’s

core theoretical definition involves an infinite sum, whereas computational imple-

mentations can only use a finite number of terms. The R-matrix has a finite deriva-

tive, but its inner region Green’s function-based definition is a sum of terms which

each have zero derivative (in this work; in cases where the amplitude is chosen to

be zero, this argument applies to the R-matrix’s amplitude instead). In the infinite

sum case it is possible to sum over infinitely many zero-valued derivatives to obtain

a finite-valued derivative, but it is difficult to converge such a sum with only a finite

number of zero-derivative terms.

The Buttle correction attempts to account for this. It is a perturbation-based

method that adds an extra term on the boundary. Because it is perturbative, the

Buttle correction makes the problem non-variational. It does, however, make the

sum converge more efficiently. Buttle corrections were not used in this work – it

was anticipated that they would not be needed, as discussed in the section below.

3.3.4 The Generalised Eigenvalue Problem

One part of the reason why it was anticipated that Buttle corrections would not be

necessary in this work was due to the initial formulation of the RmatReact method

not involving the diagonalisation method described in this chapter.
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Whereas the final version of the method presented in this work obtained the

inner region amplitudes and energies by diagonalising the matrix formed from the

addition of the H and L operators, the initial versions of the method were based

on an earlier proof-of-principle study of an R-matrix approach to reaction dynamics

by Bocchetta and Gerratt [69]. The early paper Tennyson et al. [167] outlines the

theory as it was implemented at the time which was based on this approach.

The method of Bocchetta and Gerratt used a generalised eigenvalue problem:

they diagonalised a matrix constructed from a slightly non-orthonormal basis set.

Whereas regular eigenvalue problems construct a matrix ΦΦΦ of eigenvectors φi and a

diagonal matrix of eigenvalues ΛΛΛ from the square matrix A such that

AΦΦΦ = ΦΦΦΛΛΛ, (3.33)

a generalised eigenvalue problem [168] introduces a second square matrix B of

equal size to A, such that

AΦΦΦ = BΦΦΦΛΛΛ. (3.34)

It is always possible to write Equation 3.33 in the form of Equation 3.34 by

inserting the identitiy matrix I at the beginning of the right hand side. In other

words, the generalised eigenvalue problem represents one where the eigenvectors φi

are in a non-orthonormal basis, and the extent to which B deviates from the expected

identity matrix is a measure of how different the generalised eigenvalue problem is

from the regular eigenvalue problem. B can be thought of as the overlap matrix of

the basis functions that form the vectors φi, which is the identity matrix when the

vectors are orthonormal, and has off-diagonal, non-unity elements otherwise.

(Furthermore, if B is invertible it can be moved over to the left hand side of

Equation 3.34 to construct a single matrix in the form of Equation 3.33, although

this matrix may not be Hermitian even if A and B are.)

The generalised eigenvalue problem was used in the method of Bocchetta and

Gerratt because they took the inner region boundary a0 to be within the range their

basis functions were defined over. They defined a region of space over which their



3.3. Numerical and Computational Issues 114

basis functions were orthonormal, and then placed a ‘wall’ close to, but not at the

end of, this space. This ‘wall’ was where they defined their inner region bound-

ary a0. The reason for doing this was to avoid the boundary condition problems

discussed above and to avoid needing to use a Buttle correction. They used basis

functions that had a zero-amplitude boundary condition, but crucially did not place

the R-matrix boundary at this zero-amplitude point, accepting the small amount of

non-orthonormality that resulted as a consequence of this.

One trade-off was that this introduced linear dependencies, and other associ-

ated convergence issues. Another trade-off was, of course, that this necessitated

using the generalised eigenvalue problem to integrate the basis functions over a

region they were non-orthonormal over. Generalised eigenvalue problems are typi-

cally more expensive to solve numerically than regular eigenvalue problems.

Bocchetta and Gerratt’s method was initially implemented in the RmatReact

method, with DUO being adapted to include this ‘wall’, and a harness code being

written to re-orthonormalise the basis functions to be orthonormal up to the ‘wall’

using the Löwdin symmetric orthonormaisation process [169, 170, 171], which,

like the famous Gram-Schmidt process [172], constructs an orthonormal basis from

a non-orthonormal one. The Löwdin method was chosen for its computational effi-

ciency and stability. Tests on this implementation done during the development of

this project show that, practically speaking, the method presented by Bocchetta and

Gerratt using a generalised eigenvalue equation yield identical results to methods

which re-orthonormalise and use an ordinary eigenvalue equation.

Both the generalised eigenvalue problem and the Gram-Schmidt re-

orthonormalisation versions of the method resulted in inner region eigenfunctions

that had zero amplitude at the boundary – it was not possible to construct finite

amplitude functions in this work, and it was not possible to re-create the results of

Bocchetta and Gerratt as a result.

Neither the generalised eigenvalue problem implementation of the method, nor

the Gram-Schmidt re-orthonormalisation method, were used in the final version of

the code, however their exploration and development did form a large part of the
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early stages of this work. Eventually they were replaced with the Lobatto DVR

methods described earlier in this chapter.

3.3.5 Potential Energy Curve Accuracy

Throughout this work particular attention has been paid to the accuracy of the PECs

used in the inner region. The emphasis was placed on obtaining and using high-

accuracy diatomic PECs to obtain the inner region amplitudes and energies for use

in the R-matrix sum.

An advantage of this approach is that the diatomic PECs used in this work all

had accompanying long-range coefficients, which could also be used in the propa-

gation stage of the algorithm. This meant that for values of a0 placed sufficiently

far out, there was no discontinuity in the potentials due to changing from a full,

short-range potential to a long-range potential that only consisted of a power series

in r−1. This is discussed more in the results chapters, where specific examples of

long-range PECs used are provided.

One reason it was considered to be important to obtain high-accuracy potential

energy curves was the very low scattering energies the atoms were simulated to

be scattering over. Referring to Equation 3.28, the denominator contains the term(
EJ

k −E
)
. A typical value for EJ

k for a given system might be measured in a few tens

of wavenumbers (cm−1). However, given that the scattering energy E was typically

taken to be on the order of a few tenths of a cm−1, it would be preferable for the

values of EJ
k provided by the inner region codes to be accurate to approximately that

energy, for the subtraction in the denominator of Equation 3.28 to be accurate.

Even if the accuracy is not of the order of magnitude of the scattering energy,

it is still generally advantageous for the inner region amplitudes and energies to

be as accurate as possible, as this does eliminate a significant source of error in

the eventual scattering results. This also has implications for the S-matrix and the

background scattering resonances, as discussed in Section 2.1.5.

The most apparent manifestation of this drive for higher-accuracy PECs can

be found in the discussion of the elusive ‘ninth bound state’ in Chapter 5. Here,

changes to the PEC used that are only apparent at the millikelvin scale significantly
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affect some of the scattering observables produced, highlighting the importance of

high accuracy in the PECs used in the inner region.

It is worth noting, however, that it can be shown that R-matrix methods are

flexible enough to give good results even when the potentials used in the inner

region are not highly accurate. As discussed in Chapter 1, the original R-matrix

method invented by Wigner and Eisenbud in the 1940s was created for the purpose

of nuclear scattering problems. These problems often had very poorly understood

scattering potentials [77, 78].

The inner region was almost a ‘black box’ in these early works, and heuristic

and approximate PECs were used due to limited knowledge about the short-range

properties of the interactions. More well-known were the long-range interaction

properties, and the R-matrix’s space partitioning allowed one to compensate for the

lack of knowledge about the inner region with a more accurate outer region.

(Interestingly, some of the original scattering problems the R-matrix was de-

signed for use on, such as lithium-hydrogen scattering, are similar to the problems

considered in this work, only with much more well-understood inner region PECs.

This is in contrast to the electron-atom and electron-molecule problems that R-

matrix theory has focused on in more recent years.)

Perhaps in the spirit of Wigner and Eisenbud, it may be the case that modern

quantum ultracold collision research has shifted away from attempting to obtain

higher and higher accuracy inner region PECs, with a focus more on a better under-

standing of the long-range interactions used to compensate [173, 174].

3.3.6 Capturing the Bound States

One problem related to the one discussed in the previous section, and which will

be elaborated on more in Chapter 5, was the issue of ‘capturing’ all of the bound

states. Early on in the construction of the method, it was realised that in the single-

channel version of the algorithm, the inner region boundary a0 needed to be placed

sufficiently far out such that V (a0) ≈ Emax, where Emax is the value of the bound

eigenenergy which is closest to dissociation. If this was not done, then the method

produced spurious results.
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Figure 3.2: A zoom-in of the dissociation region of a PEC used in this work, with the high-
est two bound states marked with horizontal lines. If the edge of the integration
region (represented by a black vertical line) is placed such that V (a0) is below
Emax, the state closest to dissociation may be ‘missed’ by the integration.

A loose explanation for this is that the inner region was not ‘capturing’ all of

the bound states, meaning that an incorrect number of bound states were produced

by the inner region diagonalisation due to the boundary not being placed sufficiently

far from r = 0. By cutting off the integration region before V (a0)≈ Emax, that final

state was effectively being assumed to be unbound, as seen in Figure 3.2.

This was especially noticeable when the last bound state was especially close

to dissociation, as was the case with some Ar2 PECs used in Chapter 5, because

in these cases the energies were measured in microkelvin and thus for V (a0) ≈

Emax, a0 needed to be very far out, possibly dozens of Ångström (Å), which is large

compared to the equilibrium bond length of Ar2 of 3.5 Å.

The manifestation of this was that the scattering length could potentially be

wildly inaccurate if the incorrect number of bound states were found in the inner

region diagonalisation, since the scattering length is a quantity that heavily depends

on the value of the highest bound state [30]. This is discussed further in Chapter 5.

One practical consequence of this was that very large values of a0 needed to be

used in the method, which meant that larger matrices needed to be diagonalised in

the inner region. This was a large part of what drove development of the optimised

quadrature schemes and other efficiency improving measures designed to increase

the number of states that could be used in the inner region in this work, some of
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which were discussed earlier in this chapter. These efficiency improving and inner-

region enlarging methods are, of course, also useful in the context of the higher-

dimension scattering problems this work is intended to lay the groundwork for.

3.3.7 S-matrix Precision

The S-matrix was originally introduced in this work in its single-channel form as the

exponent of the eigenphase, exp
(
2iδ J(k)

)
. As long as δ J(k) is real-valued, then the

S-matrix will only have an absolute value of 1. However, when k is allowed to be

complex-valued, then δ J(k) will also be complex-valued. In that case, the S-matrix

will have a real exponential component, and it will be possible for the S-matrix to

have any magnitude, including extremely large and extremely small values.

When implementing the custom S-matrix pole finder in the harness code, this

problem was quickly encountered. When the S-matrix was plotted over the complex

plane for complex k with both positive and negative imaginary values, the resultant

values of SJ(k) could vary over 20+ orders of magnitude. This meant that the S-

matrix poles were difficult to work with numerically, and also that it was difficult to

produce plots that could display identifiable poles.

This is part of the reason why reskit was used instead to produce the results

in Chapter 5. Even with reskit, however, a similar issue was encountered. The

default numerical settings for reskit were unable to identify poles. It was only when

the number of decimal places was changed from 100 to 200 that the pole finder

began working as intended. The extreme numerics of the problem may also be why

the reskit pole finder only succeeds in finding poles when used over a very narrow

range of k values. It is unclear whether these numerical issues imply that the poles

themselves are not trustworthy. This will be further discussed in Chapter 5.



Chapter 4

Single-Channel Analytic Scattering

In this chapter results generated using RmatReact are presented for a particle scat-

tering off a Morse potential. These results are then compared to analytic results for

this system.

4.1 Potentials Investigated
The main Morse potential used in this chapter is presented in Figure 4.1. This Morse

potential uses parameters with reduced mass of µ = 33.71525621 Da (and a value

of h̄ obtained from CODATA [175]). The value for µ was chosen for numerical

convenience when testing the algorithm, as it meant that h̄2/2µ had a value of 0.5

to seven decimal places in the units of wavenumbers, cm−1, and Ångström, Å.

These are the units used throughout this work.

The specific value used for aMorse was chosen such that the ground state

eigenenergy was 90 cm−1 to six decimal places, for ease of comparison. The values

of De and re used in this work were chosen in analogy with the Ar2 dimer, which

is discussed further in Chapter 5. The analytic eigenenergies were generated from

these parameters and Equation 2.98.

Other Morse potentials were tested, notably several obtained from Qiang &

Dong [176] for actual diatoms: LiH, H2, HCl, and CO. Figure 4.2 shows one of

these potentials: LiH. In this chapter, only results for the Morse potential shown in

Figure 4.1 are presented. Similar numerical behaviour was observed for all of the

potentials tested, however.
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Figure 4.1: A Morse oscillator potential energy curve for an Ar2-like potential with De =
100 cm−1, re = 3.5 Å, aMorse = 1.451455517 Å−1. Wavefunctions of the vi-
brational bound states are also shown at their associated eigenenergies, along
with with the continuum states between 0 and 60 cm−1. The bound and
continuum states were generated by solving the Schrödinger equation with
µ = 33.71525621 Da with an R-matrix method with a boundary of 10 Å.

2 4 6 8 10
r/Å

-20000

-15000

-10000

-5000

5000

10000

V(r)/cm-1

Figure 4.2: Morse oscillator potential and states for LiH. Parameters used are De =
20287.62581 cm−1, re = 1.5956 Å, aMorse = 1.128 Å−1. The states were gen-
erated by solving the Schrödinger equation with µ = 0.8801221 Da with an
R-matrix method with a boundary of 10 Å.
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4.2 Numerical Details
The R-matrix method was used to generate scattering results, including the eigen-

phase and the scattering length, for the single-channel, J = 0 Morse oscillator po-

tential. These results are compared with the analytic results quoted above.

In the construction of the R-matrix, the inner region bound system was solved

numerically to generate the bound eigenenergies and radial eigenfunctions of two

particles interacting over a Morse potential well. To generate the numeric re-

sults, N = 200 grid points and eigenfunctions were used to obtain the inner region

eigenenergies (and amplitudes) using the Lobatto shape functions DVR method out-

lined in Section 3.2.1. The inner region was defined to range from rmin = 0.01Å to

a0 = 10.0Å.

The R-matrix was then constructed on the boundary and propagated to an

asymptotic radius. For the results presented in the following, the propagation was

performed from a0 = 10.0 Å to ap = 25.0 Å, with Nprop = 2500 iterations of the

propagation equation over a uniform grid. The propagated R-matrix was then used

to construct the eigenphase for the J = 0 Morse scattering event.

To explore the low-energy behaviour of the numeric method, the analytic and

numeric eigenphases were used to generate the scattering length and effective range.

This was done by fitting the low-energy plot to the form given in Equation 2.29

using Mathematica’s FindFit function over the lower scattering energy range k =

0.0004 Å to k = 0.001 Å. (This is equivalent to E = 8.0×10−8 cm−1 to E = 5.0×

10−7 cm−1 for this system.)

4.3 Analytic-Numeric Comparisons
The numerical and analytic results for the eigenenergies are presented in Table 4.1.

For low-lying states whose wavefunctions are essentially completely contained in

the inner region, the agreement between the two methods is excellent. The final two

states are more diffuse, as seen in Figure 4.1, and hence they are more likely to have

significant amplitude outside the inner region. Due to this, the inner region solution

energies lies slightly below the true answer.
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Figure 4.3: The same Morse oscillator potential as in Figure 4.1. Energy levels of the con-
tinuum states generated by the R-matrix below below 60 cm−1 are coloured dif-
ferently to the vibrational bound states in order to distinguish the states close to
dissociation from the states just above dissociation. The R-matrix inner region
boundary, a0 = 10 Å, is also highlighted.

Table 4.1: Comparison of the analytic and numeric bound eigenenergies of the Morse di-
atomic system for vibrational energy levels n = 0 to 9. The relative error refers
to the difference between each level’s numeric and analytic values, divided by
the analytic value (analytic minus numeric, divided by analytic).

n Analytic / cm−1 R-matrix / cm−1 Relative error
0 −90.000000 −90.000000 1.73×10−12

1 −71.580042 −71.580042 4.59×10−11

2 −55.266807 −55.266807 1.30×10−11

3 −41.060295 −41.060295 1.82×10−11

4 −28.960506 −28.960506 5.73×10−12

5 −18.967441 −18.967441 1.33×10−12

6 −11.081099 −11.081099 3.25×10−12

7 −5.3014807 −5.3014807 −6.42×10−12

8 −1.6285853 −1.6286033 −0.000011
9 −0.062413189 −0.094633937 −0.516

Figure 4.4 compares the RmatReact numerical eigenphase to the analytic solu-

tion for the eigenphase given by Equation 2.112 over the scattering energy range of

0.001 to 0.1 cm−1 (0.00144 to 0.144 K). The root mean square difference between

them is approximately 4.6×10−5 radians, which is small.
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Table 4.2: Table of comparisons for the analytic and numeric scattering length and effec-
tive range. The relative error refers to the difference between each quantity’s
numeric and analytic values divided by the analytic value (analytic minus nu-
meric, divided by analytic).

Analytic/Å R-matrix/Å Relative error
Scattering Length 10.166078 10.166133 −5.34×10−6

Effective Range 1.6537298 1.6667562 −0.00788
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Figure 4.4: Upper plot: eigenphase (in radians) for a scattering event for the Morse poten-
tial of Figure 4.1 calculated both analytically and using R-matrix methodology.
The two lines overlap. Lower plot: difference (analytic − R-matrix) in eigen-
phase (in radians) between the two methods.

Analytic and numerical results for scattering length and effective range are

presented in Table 4.2. Again the results given by the two methods are very similar.

4.4 Numerical Parameters
To investigate the accuracy of the R-matrix method in comparison to the analytic

results, the numerical parameters used in the algorithm were varied and the resultant

error was plotted. The seven numerical parameters which the method relies on are

summarised in Table 4.3. A consideration of these parameters is relevant to all of

the results generated in this work.

To encapsulate all of the information in the lower plot of Figure 4.4 in one num-

ber, the error metric used was a variation of the root mean square deviation (RMSD)



4.4. Numerical Parameters 124

Table 4.3: Table of numerical parameters

Symbol Definition Units
N Number of inner region states and grid points Unitless
Nprop Number of propagation points Unitless
rmin Start of inner region Å
a0 End of inner region and start of propagation Å
ap End of propagation Å
∆r a0−rmin

N−1 Average inner region grid spacing Å
∆rprop

ap−a0
N−1 Average propagator grid spacing Å

between the eigenphase, δ (E) calculated using the R-matrix method (δnum(E)) and

the analytic eigenphase (δana(E)). The eigenphase was calculated for 100 equally

spaced scattering energy values between 0.001 and 0.1 cm−1. The error character-

istic was then calculated using a variation of the definition of the RMSD:

δRMSD =
100

∑
i=1

√
(δana(Ei)−δnum(Ei))

2

100
. (4.1)

A version of this error metric which involved (numerically) integrating the

squared difference over the energy range was tested, and found to give the same

results as merely sampling over 100 equally spaced points in the energy range.

Plotting δRMSD as a function of different error parameters facilitated the assessment

of the numerical stability of the method. These plots can be found in Figure 4.5.

For all of the plots in Figure 4.5, rmin was kept constant at 0.01Å.
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Figure 4.5: Top left: The log of the RMSD of the eigenphase plotted against a0 between
6.5Å and 11Å. The other parameters were held constant at N = 200, Nprop =
2500, rprop = 25Å.
Top right: The log of the RMSD of the eigenphase plotted against ap between
11Å and 26Å. The other parameters were held constant at N = 200, Nprop =
2500, a0 = 10Å.
Middle left: The log of the RMSD of the eigenphase plotted against N between
20 and 220. The other parameters were held constant at Nprop = 2500, a0 =
10Å, rprop = 25Å.
Middle right: The log of the RMSD of the eigenphase plotted against Nprop
between 500 and 2500. The other parameters were held constant at N = 200,
a0 = 10Å, rprop = 25Å.
Bottom left: The log of the RMSD of the eigenphase plotted against ∆r between
0.0445982Å and 0.156094Å. N was allowed to vary between 223 and 63 to
vary ∆r. The other parameters were held constant at a0 = 10Å, Nprop = 2500,
rprop = 25.
Bottom right: The log of the RMSD of the eigenphase plotted against ∆rprop
between 0.005Å and 0.164835Å. Nprop was allowed to vary between 3000 and
90 to vary ∆rprop. The other parameters were held constant at N = 200, a0 =
10Å, rprop = 25.

When varying a0, any a0 value above approximately 9 Å appears to produce

converged results where the error changes very little. This is likely because a value

of a0 which is too small cannot accurately ‘capture’ all of the bound states of the



4.4. Numerical Parameters 126

potential well. Since the final bound state is of the order 10−2 cm−1 in depth, V (a0)

must be approximately of that order for the state to be found by the method.

When varying ap, any value above 16 Å appears to produce converged results;

however, the error increases slightly as ap is extended beyond 16 Å. This is likely

due to ∆rprop increasing as Nprop is held constant, which decreases the accuracy of

the approximations made in the propagator method.

When varying N and ∆r (where ∆r is increased by decreasing N and vice-

versa), there is a clear point where increasing N further has no effect, but where

decreasing N even slightly significantly increases the error. This suggests that the

method is converging on a solution once the grid spacing is sufficiently small, as is

common in numerical integration techniques. This further suggests that this solu-

tion’s RMSD from the analytic solution is approximately 10−4.

Finally, when varying Nprop and ∆rprop, the method appears to produce results

with very low error for all values of Nprop and ∆rprop tested, with only slight variation

in the error recorded. This suggests that it is possible to propagate the R-matrix

using very few, very wide steps and still produce accurate results. However, this

may be a consequence of using as the test potential the Morse oscillator potential,

since it decreases exponentially with distance and thus varies very little in the outer

region. More realistic potentials are longer-range and multipolar in nature at large

r, so narrower steps may be needed in the propagation.



Chapter 5

Single-Channel Argon-Argon

Scattering

In this chapter, numerical results are presented for the elastic scattering of argon

atoms off other argon atoms at ultracold temperatures, ranging from sub-µK tem-

peratures up to approximately 1 K (= 0.695 cm−1). Several different ground state

Ar2 potential energy curves (PECs) [120, 121, 178, 179, 123, 177, 136] are exam-

ined in order to simulate this scattering. These PECs are listed in Table 5.1.

Despite having a shallow PEC formed from van der Waals forces, similar to

other noble gas dimers, and in contrast to the more deep-well systems that the

method was designed to study [167], the argon-argon system was chosen as a test

system for the algorithm. This was in order to compare against existing experi-

mental and computational results, for example the work of Barker et al. [14, 180],

Table 5.1: The five PECs studied in this work, with their minima and equilibrium distances.
The number of J = 0 bound states derived in this work is the same as in all cited
references. Note here the differing numbers of calculated bound states (Nbound)
between the methods.

Label Authors Citation Nbound Vmin / cm−1 rmin / Å
PM Patkowski et al. [120] 9 -99.269 3.7673
Az Aziz [121] 8 -99.554 3.7570
TT Tang et al. [123] 8 -99.751 3.7565
PS Patkowski et al. [177] 9 -99.351 3.7624
MD Myatt et al. [136] 8 -99.490 3.7660
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where it is used for sympathetic cooling. The large number of high-accuracy PECs

available for Ar2 make it a good candidate for testing the RmatReact method. Ex-

periments have also been performed on cold ground state argon atoms [180].

Barletta et al. [15] studied low-energy Ar-Ar collisions in support of experi-

mental studies using Ar for sympathetic cooling [14]; they assessed four PECs for

the Ar2 system. Of these four, three are also assessed in this work (PM, Az, TT, see

Table 5.1); the fourth PEC of Slavı́ček et al. [122] is not considered here, but two

additional ones are. All five PECs studied here superficially appear very similar.

However, as Table 5.1 shows, they do have slight differences which have signifi-

cant impacts on their low-energy scattering properties. The PM and PS PECs were

generated ab initio, whilst Az, TT and MD used experimental results in their fit.

The issue of the highly varying scattering lengths appears to be closely linked

to a long-standing debate over the number of vibrational (J = 0) bound states be-

longing to the Ar2 system. Some PECs appear to support only eight bound states,

while others appear to support a ninth bound state. If this state exists, it has a bind-

ing energy on the order of magnitude of 1 µK, which is approximately 0.7 µcm−1,

or 86 picoelectronVolts, and thus would be difficult to detect. Nevertheless, the

value of the scattering length of a particular system is highly dependent on the po-

sition of the highest bound state [30]. Consequently, whether or not this state exists

has important implications for the physics of argon-argon scattering.

Sahraeian et al. [181] study two Ar2 PECs; those which here have been la-

belled PM and PS. They claim to have located the ninth bound state in both cases.

This result for the PM PEC is in agreement with Barletta et al. [15].

5.1 Bound States

When performing the inner region calculations with DUO in this work, the number

of bound states was found to be in agreement with literature values [15, 181] for all

five PECs studied (see Table 5.1).

However, there were considerable complications when attempting to detect the

ninth bound state in this work for the PECs where it was predicted to exist – the



5.1. Bound States 129

PS and PM potentials. As this state is so weakly bound, it was necessary to extend

the inner region calculations out to large distances in order to detect it. This ninth

bound state has many similarities to a halo state [182], as seen in Figure 5.1, which

shows the ninth bound state as a function of r for the PM PEC when a0 = 50 Å.
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Figure 5.1: The wavefunction of the ninth bound state of the PM PEC, plotted as a function
of r, for when a0 = 50 Å.

The results in Table 5.3 of this work were obtained only by extending the inner

region boundary a0 out to distances of over 35 Å for the PM PEC and over 40 Å for

the PS PEC. As such, a very large number of points needed to be used in order to

maintain precision.

The difficulty in detecting the ninth bound state is underlined by the fact

that when the diatomic nuclear motion code LEVEL [88] was used, the ninth

bound state was never detected for any of PECs considered here, no matter how

far out or how many points the inner region was integrated over. Sahraeian et

al. [181] also cited difficulties in detecting this state, which they quote a value

of −0.86233 µcm−1 for.

Consequently the actual binding energy of the ninth bound state, for PECs in

which it was detected, varied as a function of the a0 used in the integration here, up

to 100 Å. This is seen in Figure 5.2, which shows the value of the ninth bound state,

E9, of the PM and PS PECs as a function of a0, for all values of a0 under 105 Å
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for which the state was actually bound. If the calculations are converging on fixed

values of E9, they are significantly different from the value obtained by Sahraeian

et al.
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Figure 5.2: The ninth bound state of the PM and PS PECs, plotted as a function of the a0
used in the calculation to generate them, whilst keeping rmin and the average
grid spacing used constant.

Once a threshold value of a0 was reached, every PEC that the literature claimed

had nine bound states were consistently found to do so, even if its value changed

with a0. No ninth bound state was detected in this work for any PEC for which it

was claimed that there are only eight bound states, even when using large values of

a0 over 100 Å.

5.2 Resonances
The supplementary data provided by Myatt et al. [136] (MD) includes the rovibra-

tional eigenenergies of the Ar2 system obtained using LEVEL [88]. The supple-

mentary data also quotes values for states which lie above the dissociation threshold

but below a centrifugal barrier for J > 0, known as quasibound states. The quasi-

bound states from Myatt et al. [136] which have J quantum numbers J ≤ 10 are

quoted in Table 5.2.

In this work, the quasibound states quoted for the MD potential in Myatt et al.
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Table 5.2: Positions Eres, widths Γres, and background resonance paramters A0 and A1 of
the three shape resonances produced in this work by fitting eigenphases to Equa-
tion 2.44. Standard errors are obtained by comparing these figures to those of
the three quasibound states extracted from the supplementary data of Myatt et
al. (MD). The widths extracted from Myatt et al. have been multiplied by two
to match the convention employed in this paper.

v J
Eres /cm−1

(MD)
Γres /cm−1

(MD)
Eres /cm−1

(this work)
Γres /cm−1

(this work)

6 9 0.129 0.660×10−6 0.1287 0.663×10−6

6 10 0.448 0.00330 0.4486(2) 0.00247(46)
7 5 0.071 0.00605 0.06993(5) 0.004841(5)

v J A0
A1

/(cm−1)−1

6 9 0 0
6 10 -0.107 0.757
7 5 0.00213 -0.997

[136] were characterised by analysing resonances in the scattering calculation. The

diatomic nuclear motion code used in this work, DUO, does not have the capacity

to detect quasibound eigenvalues directly (although it is possible to detect them

using a stabilisation method with continuum states). However, these quasibound

states should correspond to shape resonances, which can be detected in plots of the

eigenphase and cross-section.

In order to detect the shape resonances, the RmatReact method was used to

generate the eigenphase, and from it the partial cross-sections for all the partial

waves with J ≤ 10. The inner region was calculated using 500 Lobatto grid points

between rmin = 2.5 Å and a0 = 22.5 Å. The outer region propagation was performed

from a0 = 22.5 Å to ap = 45 Å, with over 1,000 propagation iterations.

Figure 5.4 shows the eigenphase and cross-section generated using the MD

potential for J = 0, J = 5, and J = 10. Figure 5.5 shows the eigenphase and cross-

section generated using the MD potential for J = 9, with clear Fano profiles [37]

associated with a resonance present. In all these cases, the eigenphase and cross-

section were calculated for energies between E = 0.001 cm−1 and E = 1 cm−1.

The Fano profiles seen in the results generated in this work are indicative of
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one of the strengths of the methods presented here over other methods. Because this

method facilitates a full scattering calculation, it is able to obtain much more infor-

mation about the resonances it detects, when compared to the bound state methods

that were used to generate the other results in this chapter. For instance, the re-

sults generated by Myatt et al. using LEVEL only provide resonance positions and

widths as numbers, whereas other scattering codes, such as MOLSCAT [59], are able

to produce the full line profile and facilitate more in-depth analysis of the specific

shape of the resonance. As Figure 5.5 shows, the same is possible with the methods

presented here.

The J = 0 partial wave plots are included in Figure 5.4 to indicate what a

typical eigenphase and cross-section looks like for this system when no resonances

are present: in the J = 0 cross-section plot the cross-section sharply rises at low

energies.

Myatt et al. [136] predicted (see Table 5.2) that there should be quasibound

states in the J = 5, J = 9, and J = 10 partial waves. These resonances can clearly be

seen in the calculations presented here (Figures 5.4 and 5.5) where their positions

are marked with dashed lines. These three states are the only quasibound states

given by Myatt et al. for J ≤ 10 and the only resonances detected in this work.

For the J = 5 and J = 10 resonances, the energy Eres, width Γres, and A0 and

A1 parameters were fitted to the Breit-Wigner form of Equation 2.44, using the

values quoted by Myatt et al. as the starting point of the fitting procedure. The

very narrow J = 9 resonance could not be fit in this way, and so the energy location

of the width was determined by identifying where the eigenphase suddenly went

from ≈ π

2 to ≈−π

2 and identifying the two points either side of this jump; Eres was

taken as the mid-point between them. This energy was then inserted directly into

the Breit-Wigner fit.

Figure 5.3 shows the result of this procedure for the resonance in the J = 10

partial wave. The fitting was performed using the energy range E = 0.4006 cm−1

to E = 0.499501 cm−1, using the Levenberg-Marquardt algorithm as implemented

in the software Origin (OriginLab, Northhampton, MA).
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Table 5.2 contains the results of this fitting procedure for all three resonances

studied in this work (all using the same software and algorithm with appropriate en-

ergy ranges). The narrowest resonance is for J = 9 and there is very good agreement

between the results presented here and those quoted by Myatt et al. [136]. For the

other two, broader resonances slightly different positions and widths were found.

This is consistent with the full treatment of coupling to the continuum obtained in a

scattering calculation: LEVEL, as used by Myatt et al. for their quasibound states,

is known to be less well-adapted for characterising broader resonances [88, 183].

Both the resonance position and width for J = 10 are also similar to the figures

quoted by Čı́žek et al. [184].
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Figure 5.3: Eigenphases in the region of the J = 10 resonance (solid red line) with the
Breit-Wigner fit used here (dashed black line).

As Figure 5.5 and Table 5.2 show, narrow resonances can be hard to detect.

The only resonances detected in this work were ones which had been previously

predicted and only needed to be corroborated. In the future, a more sophisticated

resonance-detecting software such as those by Tennyson and Noble [36] or Noble

et al. [185], or possibly a procedure based on the complex analysis of the S-matrix

[116] such as that of Čı́žek and Horáček [118], will be used to to detect resonances

which may otherwise be missed. A different S-matrix-pole-based resonance finding

method is presented in Section 5.4.

Finally, Figure 5.6 shows the total cross-section generated using the RmatReact
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Figure 5.4: Eigenphase (top left, bottom left) and cross-section (top right, bottom right)
plots for the J = 0, J = 5 and J = 10 partial waves, generated using the MD
potential. The dashed red lines mark the position of the resonances.

method with the MD potential. The quasibound states predicted by Myatt et al.

[136] are also pictured. This figure gives a good overview of the properties of argon-

argon scattering at low energy. It is notable for having many features. Besides

the three resonances, there is also more structure to the plot – something that is

more prevalent in heavy particle scattering than electron-atom or electron-molecule

scattering due to the greater number of partial waves contributing to the scattering

process. Furthermore, the cross-section tends to a large value at the lowest energies

on the graph. This corroborates the feature seen in Figure 5.7 towards the lowest

energies where the cross section becomes very large.

Thus far the consequences of the Pauli principle have not been considered.
40Ar is a Boson with zero nuclear spin; as a consequence collisions with odd J

are forbidden. Figure 5.6 shows the observable cross section obtained by simply
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Figure 5.5: Eigenphase (left) and cross-section (right) for the J = 9 partial wave. Although
the plot appears to be smooth on the scale in the top two plots, the bottom two
plots are on a much narrower scale, and a resonance is clearly visible (position
given by the dashed red line). Both this narrow width and its position are in
agreement with the quasibound state of Myatt et al. as described in Table 5.2.

summing partial waves with even J. As a consequence the resonances with J = 5

and J = 9 disappear and there is a pronounced Ramsauer minimum at about 0.01

cm−1.

Figure 5.6: Total cross-section when summing over the partial waves J = 0 to J = 10, using
the same numerical parameters as above. The three quasibound states of Table
5.2 are marked with dashed lines. The sum over even Js allows for the Pauli
Principle.
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5.3 Low-Energy Scattering
In order to analyse low-energy scattering behaviour, the cross-section for J = 0

was plotted for E = 10−8 cm−1 to E = 1 cm−1 on a log-log axis, see Figure 5.7.

The same numerical parameters were used as in Section 5.2. The plot shows that

the cross-section tends towards a constant at lower energies, which is predicted by

Equation 2.29.

Figure 5.7: Cross-section plot for the J = 0 partial wave generated with the MD potential.
The plot is placed on log-log axes. At low energy the plot exhibits the signature
constant scaling behaviour of low-energy scattering.

Figure 5.8 analyses the region of validity of the low-energy linear fit of Equa-

tion 2.29. It is designed to re-create a plot shared as private communications by the

authors of the paper Barletta et al. [15].

The solid, red line of Figure 5.8 represents the eigenphase calculation gen-

erated by the RmatReact method, using an R-matrix inner region ranging from

rmin = 2.5 Å to a0 = 82.5 Å, an integration over 1600 Lobatto grid points, and

an R-matrix propagation from a0 = 82.5 Å to ap = 165 Å, with 1,000 propagation

iterations. The dashed line represents Equation 2.29, with the parameters A and

reff determined by using a least-squares linear fit of the lower-energy portion of the

red line (intercept = 0.00146 Å−1, slope = 18.42 Å), again using the software Ori-

gin. As with Table 5.3, this Figure is in agreement with results provided in private

communications by Barletta et al. [15], who also computed the scattering length
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Figure 5.8: Plot of k cotδ (k) against k2 for low values of k using the Az potential.

of the Ar2 collision based on the potential due to Aziz [121]. It can be seen from

Figure 5.8 that the plot is only linear at a very low energy.

A similar low-energy fitting procedure in Origin was performed for all five

PECs studied. The values of A and reff were calculated in this work for the four

PECs where corresponding literature values could be obtained, the comparison of

which can be seen in Table 5.3.

The effective ranges featured in Table 5.3 all appear to be in broad agreement,

as expected since this quantity is not especially sensitive to fine changes to the

quantity of the potential, and is not affected significantly by the number of bound

states [30].

The values obtained for the scattering length are found to be sensitive to the

energy range used in the fitting procedure, and so whilst numbers are quoted in

Table 5.3, it should be noted that these numbers are not intended to be definitive.

When using the energy range of Figure 5.8 for the low-energy fit, it is possible to

obtain the scattering lengths quoted in Barletta et al. [15] to within a 5% relative

difference. However, when using a much lower energy range for the fit of k2 ≈

10−10 Å−2 to k2 ≈ 10−8 Å−2, the scattering lengths change significantly. (The

effective ranges also change slightly, but are still in agreement.) The values quoted

in Table 5.3 are the ones created using the lower energy range fit. As Figure 5.8
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Table 5.3: Scattering lengths (A) and effective ranges (reff) generated using four potentials
compared to previous values. For the first three potentials, the scattering lengths
and effective ranges cited are from Barletta et al. For the fourth potential, the
potential and scattering length are from the same source: Myatt et al.

Potential A/Å
(literature)

A/Å
(this work)

reff /Å
(literature)

reff /Å
(this work)

Az [121] -505.6 -647.1 35.94 35.53
PM [120] 1285 844.0 33.87 33.53
TT [123] -60.79 -62.50 50.12 49.20
MD [136] -714 -709.3 – 35.41

shows, this lower range is where the expansion of Equation 2.29 is most appropriate.

The features seen towards the right of Figure 5.7 correspond to energies where

the eigenphase pass through zero. On a log-log plot of the cross-section these cross-

ings manifest as the dips seen in the Figure.

Although the scattering length values significantly diverge from each other,

the RmatReact method was able to qualitatively corroborate each one. The PECs

in Table 5.3 which have a negative scattering length correspond to PECs for which

there are eight bound states in literature (see Table 5.1). The only PEC considered

which supports nine bound states, PM [120], has a large, positive scattering length.

This is in line with the observation that the scattering length is strongly affected

by the energy of the highest bound state. If the scattering length is plotted as a

function of Vmin, the minimum of the potential, then there is a pole at points where

the number of bound states increments by one, going up to positive infinity in one

direction and down to negative infinity in the other [30]. The consequence of this

is that either side of this pole, the scattering length can be very different: any real

number is a potentially valid scattering length.

It is known [186, 120] that relativistic and nonadiabatic effects can impact

potential parameters such as the depth of the potential. The different PECs studied

in this work all incorporate these effects to different degrees. Whilst this work

attempts to verify the scattering observables produced using these potentials, no

attempt is made to assess the quality of each potential relative to the other ones.

These effects, along with the other sources of uncertainty related to the PECs, are
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by far the biggest source of uncertainty and error in the results, and contribute much

larger error to the numbers quoted here than numerical errors in the algorithm itself.

No previous values are available for the scattering length and effective range of

the PS PEC [177]; the scattering length and effective range were calculated, using

the same lower energy range fitting as the results in Table 5.3. The scattering length

was found to be 1669 Å to four significant figures. This is noteworthy because both

this work and Sahraeian et al. [181] claim to have detected nine bound states for

this system, and so the PS PEC continues the pattern of large, positive scattering

lengths for Ar2 PECs with nine bound states, as seen in Table 5.3. Finally, the

effective range was found to be 33.82 Å, in good agreement with most of the other

effective ranges cited in the literature and this work.

5.4 S-matrix Poles

As discussed in Chapter 3, reskit [143] was used to find S-matrix poles, which have

the potential to correspond to bound states, virtual states, and scattering resonance,

and can also provide insights into the scattering length of the system. Using S-

matrix poles to identify resonances is a good way to cross-check the resonances

cited earlier in this chapter, and using S-matrix poles to detect bound states can also

help to shed light on the ‘ninth bound state’ issue discussed previously.

Because reskit reads in K-matrices using the UKRmol format, PFARM was

used to propagate all of the R-matrices in this section. reskit was successful in

finding several poles that corresponded to interesting physical phenomena, although

it must be noted that, as with other results in this chapter, a large grid was used

for the R-matrix inner region before the results were propagated to the asymptotic

region.

The J = 5, J = 9, and J = 10 resonances for the MD potential in Table 5.2,

which were successfully re-created in this work, were also found using the S-matrix

pole method in reskit, using PFARM-produced K-matrices. For each of the three

resonances, a pole was located at approximately the correct position. In this case

‘correct’ is defined as being similar to the resonance positions obtained using other
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Table 5.4: Positions Eres and widths Γres of the resonances detected from S-matrix poles
using reskit for the MD potential, compared to the results generated in this work
using Breit-Wigner fitting.

J
Eres /cm−1

(reskit)
Γres /cm−1

(reskit)
Eres /cm−1

(Breit-Wigner)
Γres /cm−1

(Breit-Wigner)

9 0.1287 0.588×10−6 0.1287 0.663×10−6

10 0.4481 0.003003 0.4486(2) 0.00247(46)
5 0.06970 0.004583 0.06993(5) 0.004841(5)

methods, and to the results of Myatt et al. [136].

It is worth noting, however, that K-matrix discontinuity and resonance posi-

tion do not necessarily have a one-to-one correspondence ([117], page 240), as the

presence of a varying background eigenphase can affect the position of the discon-

tinuity.

Table 5.4 shows the positions and widths obtained using the S-matrix pole

method. The values Eres of the resonances obtained using the S-matrix method

are systematically lower than those found using the Breit-Wigner functional form.

The resonances Γres, however, all appear to be wider. They are all of similar order

of magnitude to the values quoted in Table 5.2, but are not as close to the values

in literature as the Breit-Wigner-fitted resonances, despite coming from the same

K-matrices. The position and width of the J = 10 resonance detected by reskit is

also broadly similar to the position of the J = 10 resonance cited by Čı́žek et al.

[118, 184].

Obtaining the poles corresponding to the resonances was only possible when

the energy grid used in PFARM was very dense. For example, for the J = 5 state,

there is a resonance at approximately 0.448 cm−1 with a width of approximately

0.003 cm−1. When the K-matrix used as input for reskit was defined over an energy

range of 0.35 cm−1 (between 0.36 cm−1 and 0.71 cm−1), no pole was detected.

But when the range was 0.132 cm−1 between 0.395 cm−1 and 0.527 cm−1 with

the same number of points, then the pair of poles was detected. This is despite the

resonance looking very prominent in the plot of the K-matrix even in the wider of
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the two ranges listed here.

The only input to reskit is the K-matrix obtained from PFARM. The only other

control the user retains over the algorithm is the ability to change numerical param-

eters such as tolerance and precision. The same parameters were used in all reskit

runs here.

Chapter 3 also mentions that an original S-matrix pole-finding code was writ-

ten for this work and tested in some circumstances. The testing of this pole finder

was limited, but it did detect a pole on the imaginary axis for a real, positive energy

of approximately 1× 10−6 to 3× 10−6 cm−1 when exploring the MD potential’s

K-matrices. This would seem to suggest that there is actually a weakly bound ninth

bound state for this potential, contrary to other claims in this chapter.

With respect to ultra-low energy, J = 0 S-matrices generated by reskit in this

work, reskit was used to generate K-matrices between 1.10×10−7 cm−1 and 1.10×

10−4 cm−1 along the imaginary axis with 10,000 energy grid points for the four

potentials featured in Table 5.3.

Low-energy poles were found for all four potentials for J = 0. Three of the po-

tentials supported virtual state poles. In particular, the Az, MD, and TT potentials

all had clear virtual state poles on the negative imaginary axis. The Az potential’s

virtual state pole was located 1.911×10−6 cm−1 below the origin, the MD poten-

tial’s virtual state pole 2.791×10−6 cm−1 below the origin, and the TT potential’s

1.577× 10−6 cm−1 below the origin. These values are likely to be prone to some

numerical instability. Furthermore, since they do not correspond to physical states,

it is not guaranteed that they will have fixed positions with high precision. Notably,

the PM potential, which did not support a clear virtual state pole, also had a K-

matrix plot as a function of E at these energies that appeared qualitatively different

to the other three.

All four potentials had ultra-low-energy poles of a different type for J = 0,

though. They all had poles which, if they corresponded to a bound state, would have

binding energies ranging from 10−19 cm−1 to 10−33 cm−1 in energy (assuming their

similarly small real-k coordinates were actually zero). These poles clearly cannot
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be considered accurate representations of the true positions of poles along the imag-

inary axis. However, it is possible that they represent the presence of another pole

(or possibly many poles which are close to each other) along the imaginary axis that

reskit was unable to pinpoint precisely [187].

These poles could be either just above or just below the origin, meaning they

could represent bound or virtual state poles. Their presence does indicate the pres-

ence of a low-energy pole (or dense grouping of low-energy poles) for each po-

tential, but does not provide any more information than that. The K-matrix data

provided may have been insufficiently precise to determine any more information

about these poles. Since reskit was designed to study poles associated with reso-

nances with much larger widths – also with electron-molecule scattering in mind –

it should be expected that it would struggle to pinpoint the locations of such narrow

poles precisely [187].

A pair of poles was also located in the upper half plane close to and reflected

off the imaginary axis for the MD potential for J = 0. Taken at face value, they

imply a resonance with a negative energy, however it is more likely that, as with

the other ultra-low-energy poles, the positions of this pair was not determined with

enough precision by reskit, and they may actually represent a pair of poles in the

lower half plane. What these poles would represent physically is unclear, too.

It is notable that the only J = 0 potential which did not support a clear virtual

state pole was the PM potential, which was the only one that was tested using reskit

that was expected to support nine bound states. If it is true that virtual states only

appear in potentials that have negative scattering lengths, and do not appear in the

one potential that has both a positive scattering length and a ninth bound state, that

may be a corroboration of the idea that virtual states are states that are ‘only just’

unbound – the weakly bound ninth bound state in one potential becomes weakly un-

bound in the others. This would lead to the scattering length value passing through

positive infinity and arriving at the large, negative values implied by the results from

the Az, MD, and TT potentials.



Chapter 6

Multichannel Oxygen-Helium

Scattering

For the multichannel implementation of the RmatReact method, a test system was

chosen with nine channels: the scattering of helium atoms off oxygen atoms.

6.1 Intramultiplet Mixing in O-He Collisions
The O-He system was chosen in order to compare results produced by the RmatRe-

act method to literature results of Krems & Buchachenko [137].

In Krems & Buchachenko [137], the authors study the results of collisions

between oxygen and helium atoms at energies from 3.0 cm−1 down to under 0.1

cm−1 above the energy level of the highest state. Specifically, the authors study

transitions from the 3P0 state of the oxygen atom (where the term is defined as
2S+1L j =

3P0 for atomic spin S = 1, atomic orbital angular momentum L = P = 1,

and atomic total angular momentum j = 0) to both its 3P1 and 3P2 states (which

both lie below 3P0 in energy [188]), due to collisions with helium in its 1S0 state.

The process by which an atom changes quantum states within a multiplet is

known as intramultiplet mixing. Krems & Buchachenko observed structure in the

cross-section at these energies, which this work attempts to re-create to prove the

effectiveness of the RmatReact method. The spin-orbit couplings used in their work

originate in an earlier work by the same authors [108], and the potential energy

curves are drawn from the earlier work by Aquilanti et al. [124].
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Oxygen is an open-shell atom and hence has spin-orbit couplings. The isotopes

of oxygen and hydrogen being considered here, 16O and 4He, do not have hyperfine

structure, which is the other possible source of spin-orbit couplings in atoms. As

mentioned in Chapter 3, DUO was designed to study open-shell systems such as this

one.

6.2 Hund’s Cases
The potential energy curves presented in Krems & Buchachenko [108] (based on

curves initially presented in [124]) are given in Hund’s case (c), where it is assumed

that the orbital and spin angular momenta L and S of the diatom are strongly cou-

pled to produce a resultant vector j, with quantum numbers L, S and j respectively.

Hund’s case (c) is used when L is more strongly coupled to S than it is to the inter-

nuclear axis [189].

Hund’s case (c) is illustrated in Figure 6.1, based on a similar diagram in Brown

& Carrington [189]. j is the total internal angular momentum of the diatoms with

quantum number j, R is the angular momentum due to the rotation of the nuclei

around each other, J is the total angular momentum of the diatom, which combines

L, S and R such that

J = R+ j. (6.1)

The quantum number associated with J is J. The quantum number Ω̃ is the projec-

tion of j onto the internuclear axis. Since it is assumed that R is perpendicular to

the internuclear axis, Ω̃ is also the projection of J onto the internuclear axis. The

definition of R here is consistent with Brown & Carrington [189], and the associated

quantum number R is equivalent to the quantum number ` introduced in Chapter 2

in the space-fixed case.

Note that in the general case the j vector has contributions from both atoms

in the diatom. However, in the case studied in this chapter (see Section 6.4), it is

assumed that j = 0 for one of the two atoms – helium – meaning that j effectively

represents the total spin + orbital angular momentum of one atom – oxygen – in

the diatomic system, making the definition of the quantum number j here consis-
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Figure 6.1: Schematic of Hund’s Case (c) for a diatomic molecule, based on a similar dia-
gram in Brown & Carrington.

tent with its definition in Figure 6.3. In the general diatomic case, there would be

three quantum numbers representing the two total angular momenta of the individ-

ual atoms and their sum.

Hund’s case (c) is the case where a state can be represented in a basis of the

quantum numbers j, Ω̃, J, and η , where η is a symbol representing all other quan-

tum numbers (e.g. vibrational numbers, electronic state etc.). J and τ , the parity

quantum number, are the only truly good quantum numbers in this case, though the

others may be assumed to be good in some circumstances (parity will be discussed

separately shortly). The different Hund’s cases can be distinguished by which quan-

tum numbers are better approximations to good quantum numbers than others. A

ket in Hund’s case (c) may have the form |J, j,Ω̃,η〉 [189, 190]. Note that this is not

a formal combination of rotational wavefunctions, but merely a label of states. An

accurate combination would actually have the form |JΩ̃M〉 |ηΩ̃〉 [189, 190] (M is

the magnetic quantum number – the projection of J onto the space-fixed z-axis – but
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magnetic fields and space-fixed coordinates are not considered in this work). One

key difference here is that j is not explicitly included in the kets – indeed Brown &

Carrington [189] imply that j is not as good a quantum number as J and Ω̃ in case

(c).

This problem was studied in a body-fixed frame, where the coordinates are

attached to the atoms themselves, and not fixed to some external frame. As a con-

sequence, the angular momentum due to the rotation of the nuclei about each other,

R, does not have a projection on the internuclear axis. Instead, a Coriolis effect

is present, as discussed by Krems & Buchachenko [108]. The Coriolis terms vary

with the J, j, and Ω̃ quantum numbers in Hund’s case (c). Future developments

on the RmatReact method would ideally include an option to perform the PFARM

calculations in a space-fixed regime, to make it easier to study the effects of external

magnetic fields on scattering observables.

Hund’s case (a) is the case where it is assumed that L and S are more strongly

coupled to the internuclear axis than to each other. This is illustrated in Figure 6.2,

again based on a figure in Brown & Carrington [189]. The key difference between

cases (a) and (c) is that in case (a), it is possible to define two additional quantum

numbers: Λ̃ and Σ̃, which are the projections onto the internuclear axis of L and S

respectively.

The quantities Λ̃, Σ̃, and Ω̃ are signed, and are related by the expression Λ̃+

Σ̃ = Ω̃. The absolute values of these three quantum numbers are defined as Λ,

Σ, and Ω. One reason for defining these quantities is that the sign of Ω̃ is not a

physical observable, and only the magnitude and relative signs matter. Similarly,

the magnitude of Λ is used to label the electronic states in case (a). Furthermore,

because Ω̃ is the projection of J onto the internuclear axis, it follows that Ω ≤ J,

which, for instance, implies that Ω = 2 states do not exist when J = 0 or J = 1. The

most important reason for defining the absolute values separately is presented in the

next section.

Hund’s case (a) is the case where a state can be represented in a basis of the

good quantum numbers Λ̃, S, Σ̃, Ω̃, J, and η . A ket in this basis may have the
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Figure 6.2: Schematic of Hund’s Case (a) for a diatomic molecule, based on a similar dia-
gram in Brown & Carrington.

form |J, Λ̃,S, Σ̃,Ω̃,η〉 [189, 190]. Again this is an informal labelling of states. The

more formally correct combination of kets would have the form |JΩ̃M〉 |nΛ̃〉 |SΣ̃〉

[189, 190].

Hund’s case (a) is the case used by DUO in the inner region problem, whereas

the outer region calculations were all performed in Hund’s case (c). As such, in

order to use the potentials in [137], it was necessary to convert them from case (c)

to case (a). Furthermore, in order to use the results from DUO in PFARM, it was

then necessary to convert the problem back into case (c).

Intuitively speaking, Hund’s case (a) and Hund’s case (c) are well-suited to

treatments of the inner- and outer-regions of the method respectively. This is be-

cause in case (a), the individual components of each atom’s angular momenta couple

more strongly to each other than to other components of their atom’s angular mo-

mentum – in other words, they act more like a single diatom than as a combination

of two separate atoms, and are thus more amenable to being studied using DUO.
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By contrast, Hund’s case (c) represents the case where it is more sensible to refer

to the total angular momentum of an individual atom that is also coupled to another

individual atom. This makes it the more sensible choice for representing channel

functions and asymptotic states of separate atoms in a scattering problem [191]. Of

course, both cases are simply making different approximations. If a full basis is

being used, problems solved in the two cases should converge on the same answers.

Fortunately, the conversion between cases (a) and (c) is the simplest of the

conversions between the five Hund’s cases, since cases (c) and (a) are the only cases

where it is possible to separate the electronic and nuclear motions unambiguously

in the Born-Oppenheimer approximation [189]. The transformation of a potential

matrix in case (a), V(a), to one in case (c), V(c), can be achieved by performing the

operation

V(c) = UV(a)U†, (6.2)

where U is the unitary matrix composed of the normalised eigenvectors of the matrix

of spin-orbit terms in case (a), and U† is its Hermitian conjugate. The harness code

discussed in Chapter 3 performs this transformation. The inverse transformation

from case (c) to case (a) can be performed by left-multiplying the case (c) matrix

by U† and right-multiplying by U. An example of the form the matrix U can take is

given in Section 6.4.

The unitary matrix and its Hermitian conjugate can also be used to transform

the individual channel amplitudes evaluated at a0 of the R-matrix sum from case

(a) to case (c) and back. If a vector of channel amplitudes in case (a), ψψψ(a), is

constructed, the equivalent vector in case (c) is given by

ψψψ(c)(a0) = Uψψψ(a)(a0), (6.3)

and the inverse transformation is performed using the Hermitian conjugate matrix.
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6.3 Parity Adapting the Basis

In DUO, only the complete wavefunctions are eigenfunctions of the parity opera-

tor. The amplitudes of individual channel functions that DUO sums over to obtain

these wavefunctions are not. Because in this work the channel amplitudes them-

selves are required, parity is not a good quantum number in the DUO outputs. This

is why in the kets quoted in the previous section, the parity quantum number, τ ,

is not included. Kato [192] does describe how to construct eigenfunctions of the

parity operator in Hund’s case (a) from the ket |J, Λ̃,S, Σ̃,Ω̃,η〉, and this can also

be combined with other sources [193, 194, 190, 195] to infer how to transform the

ket |J, j,Ω̃,η〉. This is because Kato (and indeed DUO itself [86]) describes how

the parity operator acts on these kets. In Hund’s case (a), the parity operator σv(xz)

(abbreviated to σv henceforth) has the effect:

σv |J, Λ̃,S, Σ̃,Ω̃,η〉= (−1)s−Λ+S−Σ+J−Ω |J,−Λ̃,S,−Σ̃,−Ω̃,η〉 , (6.4)

where s is a quantum number that is only non-zero for Σ− symmetry electronic

states, none of which are featured in this problem. Furthermore, because S = 1

always in this problem, and because Λ̃+ Σ̃ = Ω̃, in this work the equation can be

reduced to

σv |J, Λ̃,S, Σ̃,Ω̃,η〉= (−1)J+1 |J,−Λ̃,S,−Σ̃,−Ω̃,η〉 . (6.5)

The parity operator σv has the effect of a reflection through the molecule-fixed

xz plane, which, when applied to rotational eigenfunctions in the molecule-fixed

frame, is equivalent to the general parity inversion operator E which simply inverts

all three Cartesian coordinates [192, 195].

Equation 6.5 allows one to construct parity eigenstates. Again following Kato

[192], and suppressing the S and η labels for simplicity,

|J, p,Λ,Σ,Ω〉= 1√
2

(
|J, Λ̃, Σ̃,Ω̃〉+(−1)p |J,−Λ̃,−Σ̃,−Ω̃〉

)
. (6.6)
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In other words, normalised linear combinations of +Ω̃ and −Ω̃ states are in

one parity block when one is added to the other, and in the other parity block when

one is subtracted from the other.

Note that the implication of this is that in the ket |J, p,Λ,Σ,Ω〉, the signs of

the projections are no longer necessary – the basis functions are no longer eigen-

functions of the operator which distinguishes these signs. These observables do not

have absolute signs anyway – only relative ones. This equation also defines the par-

ity quantum number τ , which can be either 0 or 1. In order to assign these kets to a

parity eigenstate, the eigenvalue of the parity operator σv, τ , can be defined in case

(a) as

τ(a) = (−1)J+1+p, (6.7)

which can take values of ±1 for the two different values of p, and is dependent on

the total angular momentum J.

There is one additional parity eigenstate which must be separately noted. Equa-

tion 6.6 is only valid for the case where both Λ and Σ are non-zero. If both are zero

(making Ω equal to zero, too), then the parity eigenstate only has one term in it,

specifically

|J, p,Λ = 0,Σ = 0,Ω = 0〉= |J,Λ = 0,Σ = 0,Ω = 0〉 . (6.8)

The Hund’s case (a) parity conversion procedure is well-established. It can also

be used to deduce the equivalent parity conversion in Hund’s case (c). In Hund’s

case (c), the parity-adapted basis is given by [193, 194, 195, 190]

|J, p, j,Ω〉= 1√
2

(
|J, j,Ω̃〉+(−1) j+p |J, j,−Ω̃〉

)
. (6.9)

The key difference between Equation 6.6 and Equation 6.9 is that the former

raises −1 to the power of p whereas the latter raises it to j+ p. As in 6.6, in Equa-

tion 6.9 only the absolute value of the Ω projection is required in the parity-adapted

basis. The Hund’s case (c) parity eigenvalue assignment when J is an integer is
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given by

τ(c) = (−1)J+p. (6.10)

Similar to case (a), there is also an s value in the exponent in Equation 6.10

which is not included explicitly here, as it is only non-zero for a Hund’s case (c)

ground state electronic wavefunction, 0−, that is equivalent to the Σ− state in case

(a), which is not used in this work [190, 196].

As with case (a), there is an additional parity eigenstate which must be con-

sidered separately. In case (a), only the state with Λ = 0, Σ = 0, and Ω = 0 must

be considered separately. However in case (c), it is all states with Ω = 0 that must

be considered separately. Hund’s case (c) wavefunctions with Ω = 0 in the parity-

adapted basis are given by [190]:

|J, p, j,Ω = 0〉= |J, j,Ω = 0〉 . (6.11)

Using Equation 6.6, it is possible to construct parity-adapted amplitudes from

the amplitudes produced by DUO for the inner region, which can then be passed to

the R-matrix sum. There are still as many channels as before, but they have different

quantum numbers. The equation also describes how to assign the quantum numbers

to the new states.

The choices of which states to subtract from which in Equation 6.6 and Equa-

tion 6.9 are arbitrary, as long as consistency is maintained. In this work, states with

negative Ω̃ values were subtracted from states with positive Ω̃ values in both Hund’s

cases, and the Hund’s case (a) state with Λ̃ = 1 and Σ̃ =−1 was subtracted from the

state with Λ̃ =−1 and Σ̃ = 1.

The transformation from Hund’s case (a) to Hund’s case (c), which was im-

plemented in the harness code as described in Equation 6.2, actually took place in

the parity-adapted bases of the two cases: the Hund’s case (a) spin-orbit matrix

was transformed into the parity-adapted basis in the harness code, and then it was

diagonalised to obtain the transformation matrix. This transformation matrix was

then applied to the potential matrix in Hund’s case (a) to obtain the parity-adapted
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Figure 6.3: Term diagram for the 3P state of oxygen, and its splitting into fine structure lev-
els by the spin-orbit interaction. The spin transition values are from Berrington,
where the energy of the 3P level is taken to be 0 cm−1. C is the constant matrix
element of the spin-orbit matrix operator in Hund’s case (a).

Hund’s case (c) matrix. It was also shown to be possible to perform the transfor-

mations in the opposite order – to transform the un-parity-adapted Hund’s case (a)

amplitudes to Hund’s case (c), and then perform the parity adaptation on those am-

plitudes. With an appropriate choice of parity considerations as discussed above,

the parity-adapted Hund’s case (c) amplitudes obtained were the same either way.

6.4 The O-He System
The scattering problem under consideration here is one where the spin-orbit interac-

tion splits the 3P state of the oxygen atom into three components, each with different

values of j. In decreasing order of energy, these are 3P0, 3P1, and 3P2, as seen in

Figure 6.3. When oxygen in this state forms a diatom with helium in the 1S0 state

(such that S = 0, L = 0 for helium), then the total spin and orbital angular momenta

of the diatom, L and S, are both 1.
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This means that the projections in Hund’s case (a), Λ̃, and Σ̃, can have the

values −1, 0, or +1, with their sum, Ω̃, having possible values of −2,−1,0,1, or

2. As a result, there are nine possible sets of quantum numbers Λ̃, Σ̃, and Ω̃ that the

resulting diatom can have (see Table 6.2).

In the parity-adapted basis of Hund’s case (a), the nine channels divide into

two parity sub-blocks, one with five channels and one with four channels. The

p = 0 block is the larger block and the p = 1 block is the smaller block (the larger

and smaller blocks are called the e-block and f -block respectively by some authors

[190]).

The electronic Hamiltonian for the system in case (a) in body-fixed coordinates

[107] contains only electronic potential energy curves in the Born-Oppenheimer

approximation, and spin-orbit coupling terms.

Since there are nine channels, the Hamiltonian is given by a 9×9 matrix made

of a kinetic operator TΓ

(a), a diagonal matrix of electronic PECs VΓ

el(a), a matrix

of spin-orbit couplings VΓ

SO(a), and, because this Hamiltonian is being defined in

a body-fixed frame, there is also a matrix of Coriolis Force coupling terms FΓ

Co(a)

which forms part of the kinetic operator:

HΓ

(a) = TΓ

(a)+VΓ

el(a)+VΓ

SO(a)+FΓ

Co(a). (6.12)

Γ in this case refers to a given combination of the conserved quantum numbers J

and p, and so this equation is valid for a given symmetry. Unlike the potential and

spin-orbit matrices, the Coriolis matrix will only be expressed in Hund’s case (c)

in this chapter, since in Hund’s case (a) it is handled internally by DUO as part of

the kinetic operator, not the potential operator, and it is not derived explicitly in this

work.

It is only possible to access all nine channels when J ≥ 2, due to the Ω≤ J rule

discussed above. As such, when J = 0, the 9× 9 matrix is reduced to a 3× 3 one

where only states with Ω = 0 are allowed, and when J = 1, the matrix is reduced to

a 7×7 one where only states with Ω = 0 and Ω = 1 are allowed. And, as discussed

above, even in the J ≥ 2 case, the matrix is divided by parity into two sub-matrices,
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one of which is 4×4 and the other of which is 5×5. This also implies that in the

J = 1 case, the 7×7 matrix is divided into a 4×4 matrix and a 3×3 matrix, and in

the J = 0 case the matrix is divided into a 2×2 matrix and a 1×1 matrix.

In Hund’s case (a), the matrix of electronic PECs, VΓ

el(a), is diagonal, and has

only two distinct elements. All diagonal elements for which Λ = 0 are given by VΣ,

and all diagonal elements for which Λ = 1 are given by VΠ.

The two PECs which are labelled by their Λ values, VΣ and VΠ, are defined in

terms of two other PECs, labelled V0 and V2. They are given by [124]

V0(r) = ε


fMorse r ≤ r1

fSpline r1 < r < r2

fvdW r2 ≤ r

(6.13)

V2(r) = A2e−α2r−C2

r6 , (6.14)

where

fMorse = e−2 β

rm (r−rm)−2e−
β

rm (r−rm) (6.15)

fSpline = b1 +
1
rm

(r− r1)

(
b2 +

1
rm

(r− r2)

(
b3 +

1
rm

(r− r1)b4

))
(6.16)

fvdW =− C0

εr6 . (6.17)

The values of the parameters ε , r1, r2, A2, α2, C2, β , rm, b1, b2, b3, b4, and C0

are all provided in Aquilanti et al. [124], and displayed in Table 6.1 (note that Rm

here is expressed as rm, and r1 = x1rm and r2 = x2rm).

VΣ and VΠ themselves are given by [124]

VΣ(r) =V0(r)+
2
5

V2(r) (6.18)

VΠ(r) =V0(r)−
1
5

V2(r). (6.19)

Note that the long-range forms of the V0 and V2 potentials are both van der

Waals r−6 potentials. The coefficients are C0 and C2, respectively. As such, the
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Parameter Value
ε/cm−1 16.938
r1/Å 3.597
r2/Å 4.6434
A2/cm−1 274460
α2/Å−1 3.4865

C2/
(

cm−1Å6
)

6177.4
β 6.5
rm/Å 3.27
b1 -0.7716
b2 1.8949
b3 -4.2150
b4 1.4838

C0/
(

cm−1Å6
)

28084

Table 6.1: The parameters from Aquilanti et al. used to define V0(r) and V2(r) in Equa-
tions 6.13 and 6.14, with a value of 8.0655445769 used to convert from milli-
electronVolts to wavenumbers. Where units are not provided, the parameter is
dimensionless.

long-range forms of VΣ and VΠ (and any linear combinations of them) are given by

the linear combinations of these coefficients implied by eq. (6.18) and eq. (6.19).

The spin-orbit matrix in Hund’s case (a) is entirely defined through one con-

stant, C. Its value can be determined by averaging the experimental values for

the fine structure splittings of the 3P state of oxygen. In Krems & Buchachenko

[108], the two values are quoted as ∆1 = 158.1 cm−1 and ∆0 = 226.6 cm−1 for the
3P2→ 3P1 and 3P2→ 3P0 transitions, respectively. By taking (the negative of) the

average of half of ∆1 and a third of ∆0, one obtains a value of C = −77.29 cm−1.

This is the value used in this work. Note that the values used in [108] are slightly

different to those quoted in Figure 6.3. Taking (the negative of) an average of those

values produces C =−77.38 cm−1.

C and−C are the values of the matrix elements of the spin-orbit operator. This

is explained by Kato [192], where it is also explained how to determine which off-

diagonal matrix elements are C, and which are zero, and which diagonal elements

are +C term, which are −C term, and which are zero.

The full potential energy matrix for the potential in Hund’s case (a) is given by
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(0,-1,-1) (0,0,0) (0,1,1) (-1,-1,-2) (-1,0,-1) (-1,1,0) (1,-1,0) (1,0,1) (1,1,2)
(0,-1,-1) VΣ C
(0,0,0) VΣ C C
(0,1,1) VΣ C
(-1,-1,-2) VΠ +C
(-1,0,-1) C VΠ

(-1,1,0) C VΠ−C
(1,-1,0) C VΠ−C
(1,0,1) C VΠ

(1,1,2) VΠ +C

Table 6.2: The potential matrix in Hund’s case (a). The quantum numbers in brackets are(
Λ̃, Σ̃,Ω̃

)
. C = −77.29 cm−1. VΣ and VΠ are defined by Equation (6.18) and

Equation (6.19) respectively.

(0,0,1,1) (0,0,0,0) (0,1,1,0) (0,1,0,1) (0,1,1,2)
(0,0,1,1) VΣ C
(0,0,0,0) VΣ

√
2C

(0,1,1,0)
√

2C VΠ−C
(0,1,0,1) C VΠ

(0,1,1,2) VΠ +C

Table 6.3: The upper parity block of the parity-adapted potential matrix in Hund’s case (a).
The quantum numbers in brackets are (p,Λ,Σ,Ω). C = −77.29 cm−1. VΣ and
VΠ are defined by Equation (6.18) and Equation (6.19) respectively.

Table 6.2. The functionality required to generate the matrix in Table 6.2 is provided

by DUO. When DUO is provided with one off-diagonal, and one on-diagonal spin-

orbit curve (here all spin-orbit curves are constant with values either C or−C), it can

use the rules provided by Kato [192] to determine all the spin-orbit matrix elements

[86], making the conversion from Hund’s case (c) to Hund’s case (a) much simpler.

When transforming the Hund’s case (a) basis functions into the parity-adapted

basis, Equations 6.6 and 6.8 also describe how to transform the elements of the

(1,0,1,1) (1,1,1,0) (1,1,0,1) (1,1,1,2)
(1,0,1,1) VΣ C
(1,1,1,0) VΠ−C
(1,1,0,1) C VΠ

(1,1,1,2) VΠ +C

Table 6.4: The lower parity block of the parity-adapted potential matrix in Hund’s case (a).
The quantum numbers in brackets are (p,Λ,Σ,Ω). C = −77.29 cm−1. VΣ and
VΠ are defined by Equation (6.18) and Equation (6.19) respectively.
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potential matrix and the spin-orbit matrix. This transformed matrix is given by the

two Tables 6.3 and 6.4.

The reason there are two tables is that the parity-adapted matrix can be divided

into two blocks, each containing states with a different parity quantum number τ .

Whether the τ =±1 parity block corresponds to p = 0 or p = 1 depends on whether

J is even or odd. If J is even, then p = 1 corresponds to τ = +1 and p = 0 corre-

sponds to τ =−1. The inverse is true when J is odd.

In Hund’s case (c) in body-fixed coordinates, the full potential energy matrix

in the Hamiltonian again has two components: electronic and spin-orbit, and the

kinetic matrix has a set of Coriolis coupling elements, such that:

HΓ

(c) = TΓ

(c)+VΓ

el(c)+VΓ

SO(c)+FΓ

Co(c). (6.20)

As with Hund’s case (a), some channels are inaccessible when J = 0 and J = 1 due

to the Ω ≤ J rule, and the matrix sub-divides into parity blocks when transformed

into the parity-adapted basis.

Unlike in case (a), the elements of the electronic matrix VΓ

el(c) cannot be simply

assigned by their Λ value, as this is no longer a good quantum number. Instead,

every diagonal element is a linear combination of VΛ and VΣ functions, and can be

determined from the transformation in Equation 6.2.

Furthermore, the electronic matrix now has off-diagonal components, which

are also linear combinations of these two functions. Specifically, they depend on

the difference between VΣ and VΠ. Because the two potentials are solely composed

of r−6 terms at long distance that tend towards zero as r tends to infinity, at asymp-

totic distances there are no couplings between channels. This is what one would

expect for two separated atoms which cannot exchange angular momentum. This

is why Hund’s case (c) is preferable for calculating asymptotic region scattering

observables – the atoms can be regarded as separate at asymptotic distances.

In Hund’s case (c), the spin-orbit terms are confined to the diagonal. There

are three possible values the spin-orbit matrix’s elements can have: −2C, −C, or C.

These are the eigenvalues of the matrix of spin-orbit terms in Hund’s case (a).
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These eigenvalues are determined using Equation 6.2. In this problem, it is

possible to uniquely determine the quantum numbers associated with each state in

the transformed matrix: for a given Γ, each eigenvector that U is composed of has

a unique
(

j,Ω̃
)

assignment. The j value can be determined from the associated

eigenvalue, and the Ω̃ values can be determined from properties and symmetries

of the components of the matrix in both the parity-adapted and non-parity adapted

cases. This means that each amplitude in the eventual R-matrix sum will have a

unique quantum number assignment, too.

All channels for which j = 0 have the spin-orbit term −2C, all channels for

which j = 1 have the term −C, and the state which has j = 2 has the term C. There

is five-fold degeneracy in the j = 2 term, and three-fold degeneracy in the j = 1

term, as one would expect given the number of distinct Ω̃ projections each j value

has. The same is true in the parity-adapted basis due to parity considerations.

When J = 0, the eigenvalues of the spin-orbit coupling matrix are −2C, −C,

and −C, due to the fact that the Ω ≥ 1 states are inaccessible. This suggests that

the allowed quantum numbers are ( j = 0,Ω = 0), (1,0), and (2,0). When J = 1,

the eigenvalues are −2C,−C,−C,−C,C,C,C, with quantum numbers (0,0), (1,0),

(1,−1), (1,1), (2,0), (2,−1), (2,1). When J ≥ 2, all nine eigenvalues are allowed:

−2C,−C,−C,−C,C,C,C,C,C, and all nine quantum number combinations are al-

lowed: (0,0), (1,0), (1,−1), (1,1), (2,0), (2,−1), (2,−2), (2,2), (2,1). In the

parity-adapted basis, the states cannot be distinguished by the sign of Ω, but instead

each state also has a parity label, thus making unique assignments still possible by

assigning states with non-zero +Ω̃ to the opposite block to states with −Ω̃.

The nine channels with three distinct energy values define the target states of

the scattering problem. The three energy levels correspond to 3P0, 3P1, and 3P2, as

seen in Figure 6.3. Because VΣ(r) and VΠ(r) are zero in the asymptotic limit of

r, the potential matrix has no VΣ or VΠ terms at asymptotic distances, meaning the

only terms left are the constant spin-orbit terms on the diagonal.

In the Hund’s case (c) representation, it was decided that the experimental

values of the target states’ energies should be used, instead of the C value obtained
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from averaging them. As such, in the full potential matrix table in both the non-

parity-adapted and parity-adapted bases, Table 6.5, the spin-orbit matrix’s elements

are not given in terms of C, but in terms of ∆ j, which is defined as the difference in

energy between the 3Pj and 3P2 states (meaning that ∆2 = 0). Berrington [188] cites

values for ∆1 and ∆0 of 158.47 and 226.58, respectively, and [108] cites the similar

values quoted above. The ∆ j values are the ones used on the diagonal of the Hund’s

case (c) spin-orbit matrix in Table 6.5.

To illustrate how these transformations work in practice, the transformation

matrix U that transforms the non-parity-adapted case (a) wavefunctions into non-

parity-adapted case (c) wavefunctions is presented here. The exact form of the

matrix is dependent on the order the channels are listed in, and whether the value of

J is less than 2. Choosing an arbitrary order for the case (a) wavefunctions ψ(Λ̃,Σ̃,Ω̃)

and the case (c) wavefunctions ψ( j,Ω̃), the J ≥ 2 form of Equation 6.3 is



ψ(0,0)

ψ(1,0)

ψ(1,−1)

ψ(1,1)

ψ(2,0)

ψ(2,−1)

ψ(2,−2)

ψ(2,2)

ψ(2,1)



=



0 − 1√
3

0 1√
3

0 0 0 0 1√
3

0 0 0 1√
2

0 0 0 0 − 1√
2

1√
2

0 0 0 0 0 0 − 1√
2

0

0 0 − 1√
2

0 1√
2

0 0 0 0

0
√

2
3 0 1√

6
0 0 0 0 1√

6
1√
2

0 0 0 0 0 0 1√
2

0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0

0 0 1√
2

0 1√
2

0 0 0 0





ψ(0,−1,−1)

ψ(0,0,0)

ψ(0,1,1)

ψ(1,−1,0)

ψ(1,0,1)

ψ(1,1,2)

ψ(−1,−1,−2)

ψ(−1,0,−1)

ψ(−1,1,0)



.

(6.21)

In Equation 6.21, for the states with j = 1, there is a possible phase difference

that can arise depending on the overall sign assigned to the individual eigenvectors.

For example, the state ψ( j=1,Ω̃=−1) can be constructed by either subtracting the

state ψ(Λ̃=0,Σ̃=−1,Ω̃=−1) from the state ψ(−1,0,−1), or vice-versa.

As with the parity adaptation sums, there is a certain arbitrariness to this

choice. Once the overall sign of the ψ( j=1,Ω̃=−1) state is determined, ladder op-
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erators can be used to derive what the appropriate signs of the ψ(1,0) and ψ(1,1)

states should be, since the j+ ladder operator can be written as a sum of the L+ and

S+ operators [196]. The convention used here is based on the convention used with

the Clebsch-Gordan coefficients that arise from adding the ladder operators [196].

These signs have implications for the overall signs of the off-diagonal spin-orbit

coupling terms in Table 6.5. The convention used here results in the same signs as

in the table produced by Krems & Buchachenko [108].

For comparison, the unitary matrices that transform the parity-adapted case (a)

wavefunctions into the parity-adapted case (c) wavefunctions can also be presented.

Again the exact form of the matrix is dependent on the order the channels are listed

in. For J ≥ 2, the 5× 5 and 4× 4 matrices that transform the parity-adapted case

(a) wavefunctions ψ(p,Λ,Σ,Ω) into the parity-adapted case (c) wavefunctions ψ(p, j,Ω)

are given by



ψ(0,0,0)

ψ(0,1,1)

ψ(0,2,2)

ψ(0,2,1)

ψ(0,2,0)


=



0 − 1√
3

√
2
3 0 0

1√
2

0 0 − 1√
2

0

0 0 0 0 1
1√
2

0 0 1√
2

0

0
√

2
3

1√
3

0 0





ψ(0,0,1,1)

ψ(0,0,0,0)

ψ(0,1,1,0)

ψ(0,1,0,1)

ψ(0,1,1,2)


(6.22)

and 
ψ(1,1,1)

ψ(1,1,0)

ψ(1,2,2)

ψ(1,2,1)

=


− 1√

2
0 1√

2
0

0 1 0 0

0 0 0 1
1√
2

0 1√
2

0




ψ(1,0,1,1)

ψ(1,1,1,0)

ψ(1,1,0,1)

ψ(1,1,1,2)

 . (6.23)

The same parity considerations apply here, too. Since the ψ(p=1, j=1,Ω=1) state

exists in the same parity block as the ψ(1,1,0) state, it is assumed that the ψ(1,1,1)

state has the same sign convention as the ψ( j=1,Ω̃=1) state of Equation 6.21, and the

ψ(p=0, j=1,Ω=1) state has the same sign convention as the ψ( j=1,Ω̃=−1) state. Again,

this has implications for the signs of the off-diagonal elements of Table 6.6 and

Table 6.7.
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The final set of elements which are included in the potential matrix are the

Coriolis coupling terms. These elements couple different Ω states, and arise due to

the body-fixed reference frame this derivation is performed in. In the non-parity-

adapted basis, a matrix element of the centrifugal Coriolis operator can be written

as

〈J, j,Ω′|CF |J, j,Ω〉= FJ jΩΩ′(r), (6.24)

since the Coriolis operator does not couple different j states.

The values of these matrix elements depend on J and j, and the expression is

given by:

FJ jΩΩ′(r) =


h̄2

2µr2

(
J(J+1)+ j( j+1)−2Ω2) Ω = Ω′.

− h̄2

2µr2

√
J(J+1)−ΩΩ′

√
j( j+1)−ΩΩ′ Ω′ = Ω±1.

0 otherwise.

(6.25)

Note that Equation 6.25, which is derived from Krems & Buchachenko [108],

implies that for all values of Ω and Ω′, FJΩΩ′ is the same if a signed version of Ω

is used, and both Ω values are replaced with their negatives, so only the absolute

value of Ω is required. Furthermore, the equation is symmetric to the exchanging

of Ω with Ω′, meaning that FJ jΩΩ′ = FJ jΩ′Ω.

The potential matrix and the amplitudes in Hund’s case (c) can also be parity-

adapted. As with case (a), the parity-adapted matrix can be split into blocks, and

the τ assignment of the blocks is dependent on whether J is odd or even.

In the parity-adapted Hund’s case (c) basis, the Coriolis coupling elements can

be assigned a p label. It can be shown that states in different p-blocks do not have

any non-zero Coriolis coupling matrix elements, such that

〈J, p, j,Ω′|CF |J, p, j,Ω〉= FJp jΩΩ′(r). (6.26)

The elements have new forms which can be expressed in terms of the old forms.
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(2,-2) (2,-1) (2,0) (2,1) (2,2) (1,-1) (1,0) (1,1) (0,0)

(2,-2)
VΠ

+FJ222
FJ221

(2,-1) FJ212

1
2 (VΣ +VΠ)
+FJ211

FJ210
1
2 (VΣ−VΠ)

(2,0) FJ201

1
3 (VΠ +2VΣ)
+FJ200

FJ201

√
2

3 (VΠ−VΣ)

(2,1) FJ210

1
2 (VΣ +VΠ)
+FJ211

FJ212
1
2 (VΠ−VΣ)

(2,2) FJ221
VΠ

+FJ222

(1,-1) 1
2 (VΣ−VΠ)

1
2 (VΣ +VΠ)
+∆1 +FJ111

FJ110

(1,0) FJ101

VΠ

+∆1
+FJ100

FJ101

(1,1) 1
2 (VΠ−VΣ) FJ110

1
2 (VΣ +VΠ)
+∆1 +FJ111

(0,0)
√

2
3 (VΠ−VΣ)

1
3 (2VΠ +VΣ)
+∆0 +FJ000

Table 6.5: The full potential matrix in Hund’s case (c) for when J ≥ 2, with the Coriolis
coupling terms featured too, based on the matrix in Krems & Buchachenko. The
quantum numbers in brackets are ( j,Ω). VΣ and VΠ are the same as in Table (6.2).
FJ jΩΩ′ is given by Equation 6.25.

There are still no Coriolis couplings between different values of j.

For the off-diagonal elements, the symmetry of Equation 6.25 suggests that the

acts of swapping Ω and Ω′, or of changing the sign of both Ω and Ω′ simultaneously

has no effect on the form of FJpΩ′Ω. If either one of Ω or Ω′ is zero, then changing

the sign of the other has no effect either. These facts have implications for the effect

of the parity transformation on the matrix elements. Because in the non-parity-

adapted case only off-diagonal elements where Ω and Ω′ differ by 1 are non-zero,

the expressions for the parity-adapted Coriolis terms are:

FJp jΩ′Ω(r) =



FJ jΩ′Ω Ω = Ω′.

√
2FJ jΩ′Ω Ω′ = Ω±1, (Ω or Ω′) = 0, p = 0.

FJ jΩ′Ω Ω′ = Ω±1, (Ω and Ω′) 6= 0.

0 otherwise.

The full potential matrix in the parity-adapted Hund’s case (c) is given by the
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(0,0,0) (0,1,1) (0,2,2) (0,2,1) (0,2,0)

(0,0,0)
1
3 (2VΠ +VΣ)
+∆0 +FJ000

√
2

3 (VΣ−VΠ)

(0,1,1)
1
2 (VΣ +VΠ)
+∆1 +FJ111

1
2 (VΣ−VΠ)

(0,2,2)
VΠ

+FJ222
FJ221

(0,2,1) 1
2 (VΣ−VΠ) FJ212

1
2 (VΣ +VΠ)
+FJ211

√
2FJ210

(0,2,0)
√

2
3 (VΣ−VΠ)

√
2FJ201

1
3 (VΠ +2VΣ)
+FJ200

Table 6.6: The potential matrix in Hund’s case (c), based on the matrix in Krems &
Buchachenko, in the parity-adapted basis. The states are labelled by (p, j,Ω).
This is the upper portion of the matrix for when J ≥ 2 and J is odd.

(1,1,1) (1,1,0) (1,2,2) (1,2,1)

(1,1,1)
1
2 (VΣ +VΠ)
+∆1 +FJ111

√
2FJ110

1
2 (VΠ−VΣ)

(1,1,0)
√

2FJ101
VΠ

+∆1 +FJ100

(1,2,2)
VΠ

+FJ222
FJ221

(1,2,1) 1
2 (VΠ−VΣ) FJ212

1
2 (VΣ +VΠ)
+FJ211

Table 6.7: The parity-adapted potential matrix in Hund’s case (c). This is the lower portion
of the matrix for when J ≥ 2 and J is odd.

Tables 6.6 and 6.7. These two matrices represent the upper and lower parts of the

matrix. Note that there are fewer Coriolis coupling terms overall than in the full

matrix without parity-adjustment. It was these potential matrices that were input

into PFARM.

6.5 Results for O-He Scattering
PFARM produces T-matrices as a function of energy E with elements T Jτ

( j,Ω)→( j′,Ω′)(E),

for transitions for a given set of conserved quantum numbers J and τ between chan-

nels with quantum numbers ( j,Ω) and ( j′,Ω′). Using Equation 2.40, these T-matrix

elements can then be used to construct partial cross-sections for a given symmetry

{Jτ}, which can then be summed using Equation 2.39 to give a total cross-section.

Substituting the generic channel label i featured in Equation 2.40 and Equation 2.39

with the specific quantum numbers used in this chapter, an expression for the partial
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cross-section for a given channel can be produced:

σ
Jτ
(

j→ j′
)
(E) =

π

k2
j

1
(2 j+1)∑

Ω

|T Jτ

( j,Ω)→( j′,Ω′)(E)|
2. (6.27)

The sum in Equation 6.27 is over all of the transitions ( j,Ω)→ ( j′,Ω′) from chan-

nels with j to channels with j′ which are allowed by parity.

In Equation 6.27, k j is the scattering wavenumber associated with channel j,

and it is defined in terms of the scattering energy Etot and the channel energy E j by:

k2
j =

2µ

h̄2 (Etot−E j). (6.28)

The total cross-section can be constructed by summing over the partial cross

sections up to some maximum J value Jmax and including the degeneracy factor:

σ
Tot ( j→ j′

)
(E) =

Jmax

∑
J=0

∑
τ

(2J+1)σ Jτ
(

j→ j′
)
(E). (6.29)

Some eigenphase sums were also produced for testing purposes. As discussed

in Section 2.1.3.2, these were obtained by diagonalising the K-matrix for a given

symmetry at a given energy, and summing the arctangents of the eigenvalues of that

K-matrix.

6.5.1 Numerical Testing

Tests were performed on the inner region diagonalisation and outer region propaga-

tion portions of the method to ensure stability and convergence in the results. To test

convergence, cross-sections were generated using a specific set of numerical param-

eters, and these cross-sections were compared to each other. When a cross-section

was found to be negligibly different upon the altering of a numerical parameter, that

parameter was said to be converged.

In the inner region, the number of grid points used, N, which equals the number

of functions used in the diagonalisation, was tested, as was the size of the grid and

the position of rmin and a0. In the multichannel case, the number of eigenfunctions

must be equal to the number of grid points used for each potential. It was found
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that the results were converged when N = 100 for a sufficiently large grid, meaning

that 100 grid points and 100 basis functions were used per potential. The value of

rmin was not tested, and kept constant at 2.0 Å, but the value of a0 was varied. It

was found to be convergent at a0 = 8.0 Å and above.

In the outer region, there were four variables to consider, including a0, which,

as the boundary between the regions, also counts as an outer region variable. One

other variable, ap, can be comfortably identified with the ap defined in previous

chapters as the propagation distance in other propagation methods such as the Light-

Walker method. However, the BBM propagator employed by PFARM has two vari-

ables instead of the single ∆rprop variable discussed in Chapter 4. Because the BBM

propagator works by dividing the outer region into smaller sections and diagonal-

ising each of those individually, the two variables that must be considered are the

number of sectors, called Nsect, and the number of basis functions used in the diago-

nalisation in each sector, called N` due to the fact that the basis set used in PFARM

is a Legendre polynomial basis.

In order to converge Nsect, it was found that the size of each section, (ap−a0)

divided by Nsect, was important to keep low. In particular, if (ap−a0)
Nsect

was equal to

approximately 5.0 Å, this was insufficiently converged. Sectors of 3.0 Å or lower

were required to converge the results. It was found that N` was converged for values

of 30 or above.

The value of ap, and the difference between ap and a0, were both found to

be important factors. The difference between ap and a0 was important because it

affected the size of the propagation grid, and therefore the size of individual sectors.

For this reason, despite the fact that a0 was converged for 8.0 Å, a value of a0 which

was almost double that was used in the actual calculations. But the value of ap was

important in itself. If it was placed insufficiently far out, then the results were not

converged.

A large value of ap was found to be needed. Results were not converged until

ap was approximately 150 Å, and a value of ap close to 250 Å was ultimately used

to generate the results in this section. This is not entirely unexpected, given the



6.5. Results for O-He Scattering 166

low energies being considered. Indeed there is precedent for up to 105 atomic units

being needed to converge ultracold results for certain systems with very long-range

potentials [197].

Finally, the number of partial waves needed to converge the results was also

explored, and so the maximum value of J used, Jmax was tested. A larger number of

partial waves was needed to generate the results here than in the previous chapters,

because the results being studied here, whilst technically ‘ultracold’ relative to the

j = 0 threshold, are still hundreds of cm−1 above the j = 2 threshold, and so a large

number of partial waves are non-zero for non-trivial portions of the energy ranges

tested. Different numbers of partial waves were used at different energies, after they

were tested for convergence.

6.5.2 Comparisons with Literature

The results presented here were constructed to be compared with results by Krems

& Buchachenko [137], and by Monteiro & Flower [198]. These authors studied

the intramultiplet mixing of oxygen due to collisions with helium to test a selection

rule that dramatically alters the amplitude of the cross-section of the j = 0→ j =

1 transition relative to the amplitude of the cross-section of the j = 0 → j = 2

transition. One reason why the fine structure of oxygen is important is because

fine-structure transitions within the 3P level of oxygen are relevant to the study of

interstellar clouds, and oxygen-helium collisions are likely to be common in these

systems [199].

The selection rule states that the 0→ 1 transition in collisions is forbidden to

a first order approximation [198]. Unlike transitions between the j = 0 and j = 2

states, which are permitted by electrostatic couplings in the system, the only matrix

elements which permit transitions between the j = 0 and j = 1 states in the body-

fixed frame are the Coriolis couplings discussed above [137], and so one would

expect the cross-section of these transitions to be smaller.

The older Monteiro & Flower paper only provided a few numbers which are

relevant to the temperatures being considered here. Table 6.8 provides some of the

numbers from that paper, alongside the equivalent numbers produced here. The
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Table 6.8: Cross-sections for various transitions produced by Monteiro & Flower, and pro-
duced in this work. Here, E is measured relative to the energy of the j = 2
state.

E /cm−1 j j′
σTot ( j→ j′) /Å2

(Literature)
σTot ( j→ j′) /Å2

(This work)

200 1 2 3.64 3.65
240 0 1 0.025 2.02
240 0 2 5.60 63.7
240 1 2 4.17 8.32

results presented in this table were produced using partial waves from J = 0 to J =

15, with 100 inner region eigenfunctions and grid points, rmin = 2.0 Å, a0 = 15.0 Å,

ap = 264.6 Å, 96 outer region diagonalisation sectors with 30 Laguerre functions

each, and 32 partial waves for two values of τ and 16 values of J.

Monteiro & Flower claim that their calculations converged rapidly with respect

to J, although they do not explicitly state how many partial waves they used. Fur-

thermore, the potential energy curves and energy positions of the j sublevels used

in their paper are different to the ones used in this work ( j = 1 is located at 158.5

cm−1 and j = 0 is at 226.5 cm−1 in their work), and so exact agreement should not

be expected. This does not explain the discrepancy between the results produced in

this work and most of the numbers in Table 6.8, which remains unresolved.

The other authors whose results were compared against the results produced

here were Krems & Buchachenko. Two cross-section plots were produced by them,

showing the 0→ 2 and 0→ 1 transitions at low temperatures. Their plots are be-

tween 0 cm−1 and 3 cm−1, although it is unclear how far above zero they computed

down to to produce the lower end of their plots. The energies were measured relative

to the threshold energy of the j = 0 state: 226.6 cm−1, as they report it. Those plots

were re-created here. Note that the threshold values used in this work were 158.47

cm−1 for j = 1 and 226.58 cm−1 for j = 2, after Berrington [188]. However, test-

ing using the 158.1 cm−1 and 226.6 cm−1 values used by Krems & Buchachenko

showed no difference in the final results. The same potential energy curves that
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were used to produce their cross-sections [124, 108] were also used in this work.

Figure 6.4 shows the 0→ 1 cross-section produced in this work, and Figure 6.5

shows the 0→ 2 cross-section. 21 partial waves from J = 0 to J = 20 were used

to generate these figures from 0.001 cm−1 above the threshold energy of the j = 0

state to 3 cm−1 above it. The numerical parameters used were 100 inner region

eigenfunctions and grid points, rmin = 2.0 Å, a0 = 15.0 Å, ap = 264.6 Å, 96 outer

region diagonalisation sectors with 30 Laguerre functions each, and 42 partial waves

for two values of τ and 21 values of J.
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Figure 6.4: The total j = 0 to j = 1 cross-section as a function of energy relative to the
j = 0 threshold at 226.58 cm−1.

The value of Jmax that was used to generate these results was chosen after

testing for convergence. Figures 6.6 and 6.7 show the partial waves used in the

sum. For each value of J, only one of the two parity states contributed to the sum.

This is because the larger parity block contains the j = 0 state and the smaller one

does not, as Tables 6.6 and 6.7 show. This means that the contributions to the 0→ 1

and 0→ 2 transitions only come from the partial wave with the larger parity block,

and so these partial waves are the ones represented in Figures 6.6 and 6.7.

It is clear that the largest values of J used had negligible contributions to the

magnitude of the cross-section. This is even more visible in Figures 6.8 and 6.9,

which show how the total cross-section for the transitions changes as more partial
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Figure 6.5: The total j = 0 to j = 2 cross-section as a function of energy relative to the
j = 0 threshold at 226.58 cm−1.

waves are added, and which is clearly converged by the time the last few partial

waves are included. It is also clear that resonances exist in the J = 9 and J =

16 partial waves for both transitions, which significantly affects the shape of the

converged total cross-sections.
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Figure 6.6: The partial waves for J = 0 to J = 17 for the j = 0 to j = 2 transition over the
energy range studied.

There are two resonances that are visible in Krems & Buchachenko’s plots

(which both have the same overall structure), both of which are not visible in the

plots produced here. Instead, the two resonances due to the J = 9 and J = 16 partial

waves are visible in the two cross-section plots produced here, as demonstrated by
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Figure 6.7: The partial waves for J = 0 to J = 17 for the j = 0 to j = 1 transition over the
energy range studied.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

20

40

60

80

E / cm-1

σ
T
ot
(j=
0→
j'=
2)
/
Å
2

0→2 Cross-Section Plot

J=0 to J=2

J=0 to J=8

J=0 to J=11

J=0 to J=14

J=0 to J=17

J=0 to J=20

Figure 6.8: The total cross-sections for Jmax = 2 to Jmax = 17 for the j = 0 to j = 2 transition
over the energy range studied. The final two lines overlap, proving that the sum
is converged.
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Figure 6.9: The total cross-sections for Jmax = 2 to Jmax = 17 for the j = 0 to j = 1 transition
over the energy range studied. The final two lines overlap, proving that the sum
is converged.
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Figure 6.10: The total eigenphase sums for the J = 3 and J = 4 partial waves, for both
parity values, over the same energy range as the cross-section plots above.

Figures 6.6, 6.7, 6.8, and 6.9.

This is difficult to compare directly with the plots in the paper, as they display

their partial waves in space-fixed coordinates, labelled by the ` quantum number,

(equivalent to the ` and R numbers defined in this work). Since J = `̀̀+ j, the par-

tial cross-sections labelled by J in this work can be compared, if only indirectly, to

the partial cross-sections labelled by ` in their paper. They claim to see resonance

structure in the ` = 3 and ` = 4 partial waves for the 0→ 2 and 0→ 1 transitions,

meaning the J = 3 and J = 4 eigenphases produced in this work should have reso-

nant structure for the appropriate parity value.

Figure 6.10 shows the total eigenphase for J = 3 and J = 4 (modulo π), for

the two parity blocks. Only the larger parity block contributes structure to the

cross-sections involving the j = 0 state, and this effect is clearly seen in Fig-

ure 6.10, with different-shaped eigenphases and more low-energy structure in the

larger parity block partial wave. However, these plots do not show any signs of res-

onances, as one would expect for results that corroborate those produced by Krems

& Buchachenko.

Figure 6.11 shows the J = 9 and J = 16 eigenphases (which have been adjusted

by π where appropriate to remove discontinuities). These are the partial waves

which do appear to contain resonance structure in the cross-section plots. Of these

two partial wave eigenphases, only J = 9 appears to have any resonance structure.

The width of this resonance was estimated to be approximately 0.77 cm−1, and its
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Figure 6.11: The eigenphases for the J = 9 and J = 16 partial waves, where resonance
structure is expected.

position was estimated to be approximately 1.95 cm−1 above the j = 0 threshold.

Figure 6.11 also displays clear numerical instability in the low-to-ultralow-

energy portions of the plots. This suggests that these figures are not entirely correct

and that there are processes occurring at low energy which interfere with the normal

functioning of the method.

As such, the results in this section are preliminary. Whilst some of the

numbers agree with literature sources, others do not. Although the forms of the

plots presented in Figures 6.4 and 6.5 do not match those presented by Krems &

Buchachenko, the most important result – the disparity in magnitude between the

0→ 2 and 0→ 1 cross-sections due to the selection rule – is accurately reproduced

in the results presented here.

There are several possible explanations for the discrepancy. Whilst testing

has showed convergence in the numerical parameters, it cannot be ruled out that

simple programming errors are to blame. At the time of submission, there are a

handful of known outstanding issues with the results that could hint at solutions to

these concerns. Firstly, even when converged and propagated to 500 Å, there are

small oscillations in the partial cross-sections that follow the overall shape of the

cross-sections but reduce in size as ap is increased. This suggests that, even though

the overall shape of the cross-section is unchanged at the high values of ap used

to generate the results in this section, the actual numbers being generated are still

slightly noisy. This is shown in Figure 6.12 for one partial wave, using the same
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numerical parameters as those used to generate Figures 6.4 and 6.5.
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Figure 6.12: The j = 0 to j = 2 cross-section for the J = 2 partial wave as a function
of energy relative to the j = 0 threshold at 226.58 cm−1. The unphysical
oscillations can clearly be seen.

Finally, one other observed inconsistency in the results is that some of the

eigenphases generated seem to be unstable at low-energy, especially those for higher

values of J, as seen in Figure 6.11. The fact that some of these eigenphases were

unphysical and unstable at low energy suggests that some of the low-energy results

generated here are not to be considered final. It is for this reason that the beginning

of Figure 6.5 was not plotted for values of E closer to the j = 0 threshold, which

would likely have revealed a much larger peak in the cross-section as the energy

tended to the threshold.



Chapter 7

Conclusions

7.1 This Work

At its core this thesis was a work of method development: a new method was con-

structed to simulate ultracold heavy particle scattering, specifically the scattering of

atoms off other atoms at sub-kelvin temperatures.

The project did, however rely extensively on some pre-existing codes. As such,

it contains both original code projects, and modifications to existing code structures,

with, for instance, the outputs of DUO adapted to be used as inputs for PFARM. In

the case of DUO, these modifications have been made available on GitHub. In the

case of PFARM, the unmodified version of PFARM is available on GitLab, and the

modifications made to it will be released in time.

Whilst the final version of the RmatReact method presented here heavily

utilises DUO and PFARM (and to a lesser extent reskit), this work did involve a large

amount of construction of new code to replicate the functionality of DUO, PFARM,

and reskit. This was primarily in order to test the outputs of these codes, but some

results were also generated using purely original codes, especially in Chapter 4.

Alongside the codes that were developed, the project also involved theoretical

work. A significant amount of new methodology and algorithms needed to be de-

veloped to adapt the pre-existing codes to the new physical problems which they

were not originally designed to accommodate.

The simplest instance of this was the need to add reduced mass terms to all
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of the theoretical work which had been written with electron-atom and electron-

molecule problems in mind, and the subsequent need to modify PFARM to account

for these reduced mass terms.

The more involved instance of this was the need to change the basis sets used

by DUO to account for the boundary condition problems caused by the default set-

tings of DUO when applied to this new problem. This involved extensive work to

research different Gaussian quadratures and their associated basis functions.

In solving the assorted numerical and computational issues that arose in this

project, a number of interesting insights were obtained into the nature of the R-

matrix method in general and RmatReact in particular. Some examples include

the extreme dependence on the specific form of the potential energy curves that

arise in certain scattering results, the often poorly understood artificial boundary

conditions that are intrinsic to the R-matrix, and the wide implications of the choice

of quadrature polynomial in the numerics of the methods they are used in.

The results obtained for analytic scattering off Morse potentials in Chapter 4

were the first successful examples of the implementation of the methods presented

here. Most importantly, the results proved that the method was at all viable – some-

thing that was not guaranteed before the project began.

But another important insight obtained from the analytic Morse results was

the quantification of the limits of the numerics of the method, as summarised in

Figure 4.5. These insights were useful as the project moved onto more realistic

potential energy curves. For instance, it was shown that the results from the method

were only valid if the inner region average grid spacing was sufficiently small, and

that the error did not decrease when the grid spacing was lowered after a certain

threshold spacing was reached. This is in contrast to the grid spacing in the outer

region when using the Light-Walker propagator, where there was a clear monotonic

decrease in error was the grid spacing was lowered.

Similarly, when the R-matrix boundary a0 and the asymptotic distance ap were

allowed to vary, the error decreased as the boundary was moved further out, but the

effect was not as dramatic as the equivalent effect in the grid spacing. There was still
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a ‘cutoff’ value of a0 after which the error did not vary as much, which is related to

the ‘capturing the bound states’ problem discussed in Section 3.3.6.

The argon-argon elastic scattering results in Chapter 5 were the first accurate

results obtained which were applicable to a real physical system. The resonance

positions and the scattering length cited in the paper of Myatt et al. [136] had their

values confirmed by the methods used in this work, as were most of the resonance

widths. By corroborating the results obtained in other simulations of this system, it

was shown that the methods developed here could potentially be used to obtain new

results of physical significance in the future.

Additionally, by using two different resonance finding methods – the Breit-

Wigner form and the S-matrix poles – to probe the resonances of the argon-argon

system, a better understanding of the utility of the methods themselves was ob-

tained. The limits of the S-matrix-pole-finding code reskit were also tested with the

search for the narrow, low-energy poles thought to exist for the different potentials

of the Ar2 system.

Furthermore, additional insights were provided into some long-standing un-

resolved questions concerning the qualitative features of this particular system by

confirming features found by other authors. In particular, the highly divergent scat-

tering lengths and the ‘ninth bound state’ problem were studied, and results pre-

sented here were found to agree with those of other authors such as Barletta et al.

[15].

It was found that the scattering observables obtained in the calculations were

extremely sensitive to the specific potentials being used. This is consistent with

a generally observed trend in ultracold physics and chemistry [44], and with

low-temperature calculations performed for other deep-well systems such as the

previously-mentioned RbCs [39].

The ninth state problem was also an example of another possible use for the

RmatReact methods: as a bound state finding method. As with the resonances, by

using several different methods, a better understanding of their limits was obtained.

In Chapter 6, the theory was developed to facilitate Hund’s case conversions
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at the boundary between the inner and outer regions, and to parity-adapt results ob-

tained from inner-region codes. This is important in its own right, but can also serve

as a preliminary theoretical result on the path to a developed theory for changing

scattering coordinates at the boundary. Preliminary results were also obtained for

the intramultiplet mixing of oxygen due to collisions with helium. These results

show that the methods produced in this work are applicable to multichannel sys-

tems, which greatly increases the potential applicability of the diatomic RmatReact

code and method.

7.2 Future Work

The physical problems that the RmatReact method is being designed to simulate

are in some cases close to the cutting edge of experimental physics. As discussed

in Chapter 5, the argon-argon simulations were perfomed with a specific recent

experimental result in mind [180].

Also as discussed in that chapter, there are still a large number of unanswered

questions concerning that physical system. It is hoped that experimental physicists

may be inspired by the theoretical work being done here to perform experiments on

some of these systems. In particular, it would be insightful to see what experimental

measurements of the argon-argon collision’s scattering length would yield. Novel

experimental techniques such as those by Beyer & Merkt [200] may help to resolve

the dispute over the Ar2 scattering length and the alleged ninth bound state.

On the computational side, the S-matrix pole results presented here were only

preliminary explorations of the possibilities of that method. Seeing what could be

yielded by further exploration of S-matrix pole methodology for the Ar2 system

would be a worthwhile endeavour. For instance, the convergence of the S-matrix

pole positions was not considered in this work. In future work, it may be worthwhile

to test how the position of the pole varies when the numerical parameters are varied.

reskit also struggled to pinpoint the locations of low-energy poles along the imagi-

nary axis that could correspond to bound and virtual states. Further explorations of

the application of reskit to these ultracold systems may prove worthwhile.
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With respect to the multichannel scattering methods derived in this work, one

important extension will be to include the possibility of performing the calculations

in space-fixed coordinates, and introducing the ability to transform between the two

coordinates. This will be important for comparing the oxygen-helium scattering

results with literature sources.

Interestingly, the oxygen-helium scattering problem also lends itself to a com-

parable atom-diatom extension. One of the reasons that oxygen-helium scattering

was studied by some authors [198] was due to its similarity to the scattering of oxy-

gen off of H2. Unlike atomic hydrogen, both helium and molecular hydrogen are

spin-zero, and they have similar electronic structure. This makes them fairly com-

parable, and also simplifies the problem of studying their scattering properties, as

there are no hyperfine effects. A study of O-H2 scattering may serve as a good test

case of the atom-diatom version of RmatReact to compare against the atom-atom

results of O-He scattering.

The RmatReact method itself is only just beginning with this work. With re-

spect to the atom-atom scattering studied here, there are a number of additions that

could be made to the methods developed here to accommodate more systems.

For instance, it is hoped that the RmatReact method may be used as a general

bound state finder in the future. If it is ever used for this, then the problem of cap-

turing the bound states, as discussed in Section 3.3.6 will be particularly pressing.

How it interacts with the other bound state finding method, the S-matrix poles, is a

potential avenue for future exploration of the method. Other successful bound state

finding methods, such as Hutson’s BOUND software which uses a coupled channel

approach [201, 202] already exist in competition to this. Furthermore, diffuse bound

states whose wavefunctions extend significantly beyond a0 can be found rather ef-

ficiently within an R-matrix formalism by performing scattering calculations with

negative energies [203, 204].

The choice of oxygen-helium scattering for the test case for multichannel scat-

tering in this work was done to simplify the problem by making this same assump-

tion: helium was assumed to have no internal structure, effectively. Future work
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on RmatReact may include PFARM being more extensively modified to accom-

modate collisions between a generic pair of atoms (and eventually generic pairs of

molecules) which both have internal structure, which can be scattered off each other,

and which can both enter and leave the interaction with arbitrary quantum numbers.

This would also involve more theoretical work to adapt the relevant R-matrix theory

presented here and in other sources to accommodate both reactants having structure

– an issue that does not arise at all in electron-molecule interactions.

It could also be useful to modify the methods to account for collisions involv-

ing charged reactants and Coulomb potentials (notably one of the few pieces of

classical physics that will be considered in this methodology). If both reactants are

charged then asymptotic boundary conditions involving r−1 terms must be used,

which can cause complications in the theory as many derivations assume that the

highest power of r involved in the potentials is greater than −1.

Collisions involving external magnetic fields would also be a useful exten-

sion to the method, especially considering the connections between magnetic fields

and Feshbach resonances discussed in Chapter 1. Adding this functionality would

ideally involve modifying the theory and methods to work in the aforementioned

space-fixed coordinates to simplify the matrix elements, and to allow for the to-

tal angular momentum to not be conserved, as an external, non-isotropic source of

angular momentum would now be present.

Modifications to accommodate space-fixed coordinates could involve adding

an option to PFARM to choose the frame one wishes to perform the calculations in.

It would involve different sets of quantum numbers being considered, especially if

external magnetic fields are also used, as these would require the magnetic quantum

number M to be explicitly included and considered, as discussed in Section 6.2.

Another useful extension would be to include photoassociation reactions,

which can also interact with Feshbach resonances [38]. These were discussed in

Chapter 2 in relation to their relevance to propagator techniques. As mentioned

in that chapter, simulating photoassociation reactions with propagator methods re-

quires the wavefunction itself to be propagated. The theory required to extend the
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Light-Walker and BBM R-matrix propagators to include wavefunction propagation

does exist [30]. Like with R-matrix propagation, the theory of wavefunction propa-

gation which has been developed for electron-atom and electron-molecule collisions

would need to be adapted to the atom-atom case. As discussed in Section 2.2.2, this

could then be compared to the well-established Numerov propagation technique

[129].

Hyperfine effects were only briefly mentioned in this work, despite the fact

that they are an important part of ultracold physics [59]. This is because nuclear

hyperfine splitting of energy levels, whilst usually a small effect, is actually a sig-

nificant effect when compared to ultracold energy scales. Hyperfine structures can

be resolved far more clearly in ultracold systems [1]. In this work, systems that had

no hyperfine splitting of energy levels were chosen. It would, of course, be advan-

tageous for future work to examine systems where hyperfine splittings are present,

and to optimise the effectiveness of the RmatReact methods for such systems.

As discussed in Section 3.1.3, several different quadrature schemes were con-

sidered for the inner region, for the purpose of finding a quadrature that had a more

efficient distribution of points for integrating over a diatomic potential energy curve.

Although no improvement was found to the Lobatto quadrature that fulfilled all of

the requirements of the method, it is still hoped that a more efficient quadrature

scheme, such as the Radau quadrature discussed in Section 3.1.4, will eventually be

found if work on this problem persists.

Such a method would need to have an efficient numerical scheme for generat-

ing the grid points and weights, it would need to have at least one boundary point

explicitly included in the quadrature, and it would need to be more efficiently dis-

tributed such that it had more points where the potential energy curve was steepest.

Although DUO and PFARM were used extensively in this work, they are not

the only codes available that perform the tasks they were built for. The diatomic

code LEVEL, which has similar but less general functionality to DUO, was also

tested at various points, and other R-matrix propagation codes exist and can be

modified for heavy-particle scattering, such as the ones used in UKRmol [67, 205].
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Modifying LEVEL and UKRmol, and creating a new harness to interface between

them, could be a worthwhile avenue of exploration for future work on atom-atom

scattering.

Similarly, different outer region and asymptotic region methods were tested in

this work that were not ultimately used in the ‘final’ version of RmatReact. These

methods include different propagators and different asymptotic expansions. The

Light-Walker propagator, for instance, was used to generate some of the results

presented here as part of the development of the code, but was ultimately replaced

with the BBM propagator implemented in PFARM. It is still possible that the Light-

Walker propagator could be of use, even if only for comparison purposes, in future

iterations of the RmatReact method. By contrast, the Burke-Schey asymptotic ex-

pansion – which was never properly implemented, and was ultimately replaced with

the Gailitis expansion used in PFARM – would not be suitable for use in future ver-

sions of RmatReact. This is because it is already known that the Gailitis expansion

is an improvement on it for the methods being considered here [94]. Instead, other

propagators and asymptotic expansions that were not considered in this work could

be included in future versions of RmatReact.

When closed channels are considered, they have exponentially decaying

asymptotic boundary conditions (technically speaking closed channels are consid-

ered to have zero boundary conditions in this work), and an associated set of asymp-

totic expansions. The consequence is that the K-matrix must be replaced to account

for these channels. Specifically, one must use a larger matrix that accounts for all

open and closed channels, with the K-matrix as one sub-matrix, and another ma-

trix being introduced to account for the closed channels. This affects the theory

of the asymptotic region, and it affects the physics of the scattering observables by

allowing the closed channels to influence the open ones somewhat. In order to be

included in RmatReact, the established theory would then have to be adapted to the

atom-atom case in order to be used.

This project was intended to lay the numerical groundwork for the applica-

tion of RmatReact to more complicated physical systems. The atom-atom problem
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is simple because it only involves one reaction coordinate. A higher dimensional

scattering problem is atom-diatom scattering.

This has three spatial dimensions, but also has an additional complication in

addition to the reactants having more internal structure: it is the simplest system

where chemical reactions can occur. As Equation 1.1 describes, the diatom BC can

collide with the atom A to form the diatom AB, leaving the atom C. The additional

complication is that now the coordinates before and after the collision are different.

Previous codes which perform heavy-particle scattering, such as Hutson’s

MOLSCAT [59], do not allow for reactions to occur, meaning that implementing

reactions into atom-diatom scattering codes represents truly novel work. One col-

laborator, Dr. Eryn Spinlove, is currently researching this problem, expanding on

work done by Dr. Laura McKemmish [31]. The triatomic code DVR3D [89] is

being modified in a similar manner to the way DUO was modified in this work, with

the intention of adding Lobatto functionality, and the ability to transform coordi-

nates at the boundary.

Some examples of reactions that could be studied by future atom-diatom Rma-

tReact methods are being explored by Dr. Spinlove and by Dr. Brianna Heazle-

wood: ultracold collisions between neutral species and ions, such as N+
2 colliding

with H, and both C+ colliding with H2 and CH+ colliding with H [206]. It is hoped

that the groundwork laid in this work will prove useful in the study of these systems.

The efficiency problems encountered in this work will be much more pressing

in the multidimensional case. For instance, whilst the DVR methods discussed in

Section 3.1.1 may offer some slight improvements in one-dimensional problems

such as the one in this work, in multidimensional problems they potentially offer

significant advantages to calculations [151].

As with much of the research conducted in this work, the use of DVRs was in-

tended to lay the groundwork for efficiency improvements in future work in higher-

dimensional systems. Another example was this was the brief study of variable step

size propagators, as discussed in Section 3.2.3.1. It is still anticipated that in a mul-

tidimensional problem, where one must be more conservative with the number of
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iterations one uses in the propagation, the variable step size may introduce consid-

erable efficiency boosts for a given accuracy, and so this side project may be revived

at some stage.

A further example of efficiency improvements studied here that were not found

to affect the one-dimensional problem, but may have a significant impact on the

multidimensional problem, is the issue of removing states from the R-matrix sum

[165]. In this work, only a few tests were performed on multichannel R-matrices

with states removed from the sum, and they found non-trivial differences when

states were removed. Removing states could be especially useful in multidimen-

sional problems, however, and so would merit more experimentation.

If a precise relationship between the number of states excluded from the sum

and the loss of accuracy as a result is known, then it may be possible to vary the

number of states excluded on a channel-by-channel basis, and on a coordinate-by-

coordinate basis. This would allow one to focus computational resources on the

coordinates and channels where the most terms in the sum are needed for accuracy,

at the expense of the less important ones.

On the other hand, the solution to the issues discussed in Section 3.3.1 required

the addition of a function that slightly decreased the efficiency of the method; this

was not a problem for the one-dimensional problem, but can be significant in the

multidimensional case. Here, Dr. Spinlove has been working on resolving this issue

in a way that does not decrease the efficiency as much.

One efficiency improvement that was not studied here was the Buttle correc-

tion. However, numerical issues such as the inability to delete terms from the R-

matrix suggest that eventually it may be advantageous to add a Buttle-like correction

to the RmatReact method. Further work on RmatReact will also include more so-

phisticated study of the nature of the boundary condition problems that the Buttle

correction is often used to address. These boundary conditions are not especially

well understood, but they will be important to understand to apply RmatReact to

reactive collisions.

The ultimate goal of the next stage of the project is to be able to produce
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scattering observables such as the cross-section for atom-diatom reactions. But even

in the non-reactive case, there is interesting physics that can be probed that is not

present in the atom-atom case. Two examples include Feshbach resonances, which

can be formed in many more ways in the atom-diatom case, and Efimov trimers,

which do not exist at all in the atom-atom case.

After the method has been shown to work in multidimensional, reactive cases,

it it possible that the RmatReact method could eventually be extended to obtain scat-

tering observables for generic polyatom-polyatom collisions. The ExoMol project

generates high-resolution molecular spectra [207] for different sized molecular sys-

tems using different codes: DUO [86] and LEVEL [88] are used for two-atom prob-

lems (such as the spectrum of sodium hydride [208]), DVR3D [89] is used for

three-atom problems, and WAVR4 [90] and TROVE [91, 92] are used for larger

systems. In analogy with the evolution of the ExoMol project, the adaptation of

DUO to the scattering problems presented here could lead to these other codes also

being adapted for scattering problems involving larger systems.

The possibility of studying chemical reactions at the state-to-state level is one

of the most exciting implications of the RmatReact method: it can be considered

the very foundation of chemistry itself. To the extent that a border between physics

and chemistry exists, this is truly right on that edge.

Being able to control chemical reactions at this level in ultracold conditions is

a tantalising prospect for future research in theoretical, computational, and experi-

mental physics. The atom-diatom collisions are only the beginning. As the method

is developed, it may become possible to simulate arbitrary polyatom-polyatom col-

lisions at the same, fine-grained, state-to-state level of control presented here.

This thesis proved it was possible to combine the field of high-precision molec-

ular spectroscopy with the field of electron-heavy particle collisions to produce a

novel method that incorporates the strengths of each. Hopefully, future work will

build on the successes presented here, learn from the failures, and change the way

that the hazy borders between physics and chemistry are explored.
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Lange, K Pilch, A Jaakkola, H-C Nägerl, et al. Evidence for Efimov quantum

states in an ultracold gas of caesium atoms. Nature, 440:315–318, 2006.

[52] S Knoop, F Ferlaino, M Mark, M Berninger, H Schöbel, H-C Nägerl, and
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[83] A. G. Császár, E. Mátyus, T Szidarovszky, L. Lodi, N. F. Zobov, S. V. Shirin,

O. L. Polyansky, and J. Tennyson. Ab initio prediction and partial char-

acterization of the vibrational states of water up to dissociation. J. Quant.

Spectrosc. Radiat. Transf., 111:1043–1064, 2010.

[84] N. F. Zobov, S. V. Shirin, L. Lodi, B. C. Silva, J. Tennyson, A. G. Császár,

and O. L. Polyansky. First-principles rotation-vibration spectrum of water

above dissociation. Chem. Phys. Lett., 507:48–51, 2011.

[85] Tamás Szidarovszky and Attila G Császár. Low-lying quasibound rovibra-

tional states of H2 16O. Mol. Phys., 111:2131–2146, 2013.

[86] S. N. Yurchenko, L. Lodi, J. Tennyson, and A. V. Stolyarov. Duo: a gen-

eral program for calculating spectra of diatomic molecules. Comput. Phys.

Commun., 202:262–275, 2016.



Bibliography 194

[87] Jonathan Tennyson, Lorenzo Lodi, Laura K McKemmish, and Sergei N

Yurchenko. The ab initio calculation of spectra of open shell diatomic

molecules. J. Phys. B: At. Mol. Opt. Phys., 49:102001, 2016.

[88] Robert J Le Roy. LEVEL: A computer program for solving the radial

Schrödinger equation for bound and quasibound levels. J. Quant. Spectrosc.

Radiat. Transf., 186:167–178, 2017.

[89] J. Tennyson, M. A. Kostin, P. Barletta, G. J. Harris, O. L. Polyansky, J. Ra-

manlal, and N. F. Zobov. DVR3D: a program suite for the calculation of

rotation-vibration spectra of triatomic molecules. Comput. Phys. Commun.,

163:85–116, 2004.

[90] I. N. Kozin, M. M. Law, J. Tennyson, and J. M. Hutson. New vibration-

rotation code for tetraatomic molecules WAVR4. Comput. Phys. Commun.,

163:117–131, 2004.

[91] Sergei N Yurchenko, Walter Thiel, and Per Jensen. Theoretical ROVi-

brational Energies (TROVE): A robust numerical approach to the calcula-

tion of rovibrational energies for polyatomic molecules. J. Mol. Spectrosc.,

245:126–140, 2007.

[92] Andrey Yachmenev and Sergei N Yurchenko. Automatic differentiation

method for numerical construction of the rotational-vibrational Hamiltonian

as a power series in the curvilinear internal coordinates using the Eckart

frame. J. Chem. Phys., 143:014105, 2015.

[93] Robert B Walker and John C Light. Reactive molecular collisions. Ann. Rev.

Phys. Chem., 31:401–433, 1980.

[94] A G Sunderland, C J Noble, V M Burke, and P G Burke. A parallel R-matrix

program PRMAT for electron–atom and electron–ion scattering calculations.

Comput. Phys. Commun., 145:311–340, 2002.



Bibliography 195

[95] V M Burke and C J Noble. FarmA flexible asymptotic R-matrix package.

Comput. Phys. Commun., 85:471–500, 1995.

[96] John C Light and Robert B Walker. An R matrix approach to the solution

of coupled equations for atom–molecule reactive scattering. J. Chem. Phys.,

65:4272–4282, 1976.

[97] Hong Zhang, Sean C Smith, Shinkoh Nanbu, and Hiroki Nakamura. Quan-

tum mechanical study of atomic hydrogen interaction with a fluorinated

boron-substituted coronene radical. J. Phys.: Condensed Matter, 21:144209,

2009.
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