Bohner, Gergő;
(2019)
Unsupervised methods for large-scale, cell-resolution neural data analysis.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
Bohner_10087752_thesis.pdf Download (31MB) | Preview |
Abstract
In order to keep up with the volume of data, as well as the complexity of experiments and models in modern neuroscience, we need scalable and principled analytic programmes that take into account the scientific goals and the challenges of biological experiments. This work focuses on algorithms that tackle problems throughout the whole data analysis process. I first investigate how to best transform two-photon calcium imaging microscopy recordings – sets of contiguous images – into an easier-to-analyse matrix containing time courses of individual neurons. For this I first estimate how the true fluorescence signal gets transformed by tissue artefacts and the microscope setup, by learning the parameters of a realistic physical model from recorded data. Next, I describe how individual neural cell bodies may be segmented from the images, based on a cost function tailored to neural characteristics. Finally, I describe an interpretable non-linear dynamical model of neural population activity, which provides immediate scientific insight into complex system behaviour, and may spawn a new way of investigating stochastic non-linear dynamical systems. I hope the algorithms described here will not only be integrated into analytic pipelines of neural recordings, but also point out that algorithmic design should be informed by communication with the broader community, understanding and tackling the challenges inherent in experimental biological science.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | Unsupervised methods for large-scale, cell-resolution neural data analysis |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2019. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Statistical Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/10087752 |
Archive Staff Only
View Item |