
Unsupervised methods for large-scale
cell-resolution neural data analysis
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Abstract

In order to keep up with the volume of data, as well as the complexity of experiments and models in

modern neuroscience, we need scalable and principled analytic programmes that take into account

the scientific goals and the challenges of biological experiments.

This work focuses on algorithms that tackle problems throughout the whole data analysis pro-

cess. I first investigate how to best transform two-photon calcium imaging microscopy recordings

– sets of contiguous images – into an easier-to-analyse matrix containing time courses of individual

neurons. For this I first estimate how the true fluorescence signal gets transformed by tissue artefacts

and the microscope setup, by learning the parameters of a realistic physical model from recorded

data. Next, I describe how individual neural cell bodies may be segmented from the images, based

on a cost function tailored to neural characteristics. Finally, I describe an interpretable non-linear

dynamical model of neural population activity, which provides immediate scientific insight into com-

plex system behaviour, and may spawn a new way of investigating stochastic non-linear dynamical

systems.

I hope the algorithms described here will not only be integrated into analytic pipelines of neural

recordings, but also point out that algorithmic design should be informed by communication with the

broader community, understanding and tackling the challenges inherent in experimental biological

science.





Impact statement

The problems discussed in this thesis are expected to be of interest first and foremost for experimen-

tal and computational neuroscientists, who are concerned with recording and analysis of neural data.

The proposed algorithmic solutions are tailored towards neural characteristics, and evaluated on neu-

ral data. I aimed to make my implementations generally applicable, and all code is publicly available

for direct application to novel data, incorporation into data analysis pipelines, or for extending the

ideas.

Although not tested, the models and algorithms may well be applicable outside the neural set-

ting. Firstly, the inverse model of the two-photon microscope is directly applicable to any kind of

recording; furthermore, the ideas of non-uniform spatial gain and modelling the discrete nature of

optical signal for low photon counts should be of interest for any type of microscopic application.

Secondly, I discuss the presence and reconstruction of higher order joint cumulants in multi-

variate time series data, in which the measurements have a spatial structure. Although in my imaging

application this spatial structure is a multidimensional grid of pixels, this idea can be generalised, as

shown during the derivation. Financial time series analyses are often concerned with the presence of

higher order cumulants, associated with risk. I believe the proposed reconstruction algorithm could

be applied to a low-dimensional embedding of stocks, in which the spatial distance would reflect

the similarities of the stocks, whereas the joint variations of time series could be summarised by the

higher order cumulants.

Finally, I describe algorithms that learn interpretable models of non-linear stochastic dynamical

systems. These could be of interest to a large number of academic and engineering fields, as they can

be used to provide immediate insight into qualitative changes of the behaviour of arbitrary systems,

regardless of transition or observation noise. Applicable systems range from engineering control

through chemical reactions to weather modelling.

Ultimately, I believe this thesis demonstrates the application of unsupervised machine learning

as an effective tool to bridge complex theoretical models and limited experimental measurements,

and thus will drive the advancement of more detailed models of the world, as well as more informed

experiments to constrain those models, leading to faster scientific progress.
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Kozma Richárd, and Suhajda Balázs – we have known each other for nearly two decades, and I

am grateful for the knowledge that I will be able to rely on them, and call them friends for the

decades to come. Throughout the years since, I am thankful for having met many excellent people

and communities. I remember especially fondly my time at the Pázmány Péter Catholic University,
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Thesis overview

Chapter 1 - Introduction

In this chapter I provide a brief overview of the history of extracting cell-resolution data from animal

brains in vivo, and how the advances in experimental methods lead to novel data analysis algorithms,

both for extracting signal from the raw data, and analysing the joint activity of increasing numbers

of neurons. I then discuss the increasing role of machine learning in analysing biological data, and

how it can be utilised to create physically inspired generative models, and estimate model parameters

from the recorded data.

Chapter 2 - Spatial background equalisation of two-photon calcium imaging videos of neural

tissue

In this chapter I describe an interpretable generative model of two-photon microscopy recordings of

fluorescent calcium indicators expressed in neural tissue. I then propose and apply a scalable ap-

proximate algorithm, which fits the model parameters, and inverts the model in order to standardise

both the data within a single field of view, as well as recordings of different brain areas from multiple

animals, produced via various microscopes and settings.

Chapter 3 - Segmentation of neural cell bodies via Convolutional Higher Order Matching Pur-

suit (CHOMP)

In this chapter I show an extended generative model of calcium imaging, which describes the data

as a superposition of signals from multiple sources with small spatial support. These stereotypically

shaped sources are thought to be neural cell bodies, and I propose and apply an approximate algo-

rithm, which identifies single cell bodies and activities via utilising neurally-inspired features and

constraints.

Chapter 4 - Learning interpretable models of latent stochastic dynamical systems

In this chapter I propose two algorithms that can learn an interpretable non-linear stochastic dy-

namical picture from a large number of jointly observed time series - such as recordings of neural

population activity. Non-linear models may be difficult to interpret directly; they are often analysed

in terms of the number and stability of their fixed points. The two proposed algorithms – one for
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data evenly sampled in time, such as image frames; the other for unevenly recorded events, such as

neural spiking – incorporate this type of analysis, and learn dynamical models that are conditioned

on fixed points and local linearisations around them. This conditioning enables the fitting process

to estimate its own uncertainty of the number and locations of the fixed points, and importantly it

provides direct scientific insight into the qualitative behaviour of a recorded system.

Chapter 5 - Conclusions

In this chapter I summarise the models and algorithms desribed in this thesis, discuss their role in

the analysis of cell-resolution neural data, and elaborate on potential promising avenues for future

work.
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Introduction

Not always, dear Licinius, is it wise

On the main sea to ply the daring oar;

Nor is it safe, in dread of angry skies,

To keep too near to the perfidious shore.

To no excess discerning spirits lean;

They feel the blessings of the golden mean.

– Horace, To Licinius Murena

In this chapter I provide a brief history of extracting cell-resolution data from animal brains in

vivo, and how the advances in experimental methods lead to novel data analysis algorithms, both

for extracting signal from the raw data, and analysing the joint activity of increasing numbers of

neurons. I then discuss the increasing role of machine learning in analysing biological data, and how

it can be utilised to create physically inspired generative models, and estimate model parameters

from the recorded data.

This chapter solely presents a generic overview of my understanding, aiming to pinpoint open

questions and motivate the need for the models and algorithms described in this thesis. The further

chapters each contain a more technical introduction of the particular problems and related fields,

providing references to previous work.

1.1 Measuring and analysing neural data

Ever since Cajal, Waldeyer and others introduced the neuron doctrine – establishing neurons as dis-

crete, functional units of the nervous system – neuroscientists have been attempting to glean insight

into the information processing of multicellular organisms by measuring the electrical activity of

single neurons. Starting by recording from single, easily accessible cells – such as the squid giant

axon investigated by Hodgkin and Huxley in their pioneering work – experimental methodologies

advanced a great deal, thanks to the contribution of many dedicated scientists and engineers. Ma-
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jor improvements include decrease in invasiveness – now enabling recordings in vivo, from awake,

behaving animals, while not affecting the cellular behaviour – and increase in the number of simul-

taneously recorded cells.

Intracellular recording. One way of gaining access to single neurons’ activity is via intracellu-

lar recordings. Widely used techniques, called voltage clamp and current clamp, require a micro-

electrode penetrating the cell membrane, as well as disturbing the natural changes of membrane

potential, or flow of ionic currents. Sharp electrode recordings affect the ionic constitution of the

intracellular fluid less; whereas whole-cell patch clamp – developed by Neher and Sakmann – now

enables precise recordings of single neuron activity without penetrating the cell membrane. Intra-

cellular recordings provide a detailed picture of single neurons’ electrical state, but they perturb the

observed cell, and are also very difficult to scale to a large number of neurons.

Extracellular recording. These issues may be fixed by extracellular recordings, in which elec-

trodes do not approach the cellular membrane, but record only spiking activity from a distance,

without perturbing the cell. Since spiking activity of cells is thought to represent a major part of

cell-to-cell communication, and for certain cells has also been proven to contain information about

external stimuli or behaviour, recording it indeed provides valuable insight into neural information

processing; for example, it was used by Hubel and Wiesel to investigate the cat visual system. Un-

like intracellular recordings, however, the data recorded on an extracellular electrode may contain

electrical information from multiple cells, called multi-unit activity. The identification of single-unit

activities – spikes from a single neuron – given the extracellularly recorded data is non-trivial, and

resulted in a major data analysis challenge. The problem of ‘spike sorting’ involves understanding

how a cell’s spike appears in the recording, and describing the recorded signal as the superposition of

apparent electrical activities from multiple sources – each with their own distinct characteristics. The

sorting procedure results in data that contains the spike event times from multiple neurons. Initially,

with single – or spatially distant – electrodes, the sorting problem was not robustly solvable, and

multi-unit activities were manually identified and rejected. With the development of microelectrode

arrays (and recently polytrodes), spike sorting of multi-unit activities became a feasible inverse prob-

lem, as single spikes appeared on multiple electrodes, providing more information about the location

and spike shape of individual neurons. However, the increasing amounts of data made it more diffi-

cult for humans to manage, and led to advance of several algorithmic solutions; first human-assisted

ones, with now completely automated methods available. The size and electrode density of micro-

electrode arrays, as well as the reliability of spike sorting algorithms is constantly increasing, and

nowadays it is possible to simultaneously record spiking activity from hundreds or even thousands

of neurons.
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Optical imaging. An alternative approach to accessing neural activity is based on optical imaging.

Of course, electrical activity of cells does not result in an imageable optical signal, and thus imaging

methods involve a proxy: a molecule or protein that changes its optical properties depending on the

electrical state of the cell. Cells naturally express proteins that change their optical absorption cross

section depending on local ionic environment (for example NADH / NADPH), but those proved to

be a weak proxy of the neuron’s overall membrane potential changes. To enable more reliable imag-

ing, electrically sensitive dyes or fluorescent sensor proteins may be introduced to the cells. This,

of course, perturbs them, but the perturbation is thought to be much less severe than intracellular

recordings. This is exemplified by the existence of transgenic animals – behaviourally indistinguish-

able from wild-type in many ways – living with neurons constantly expressing such sensor proteins1.

The most widespread imaging technique is based on the concentration of calcium ions as the proxy

of neural spiking, recognising the opening of calcium channels associated with firing, and the subse-

quent influx of calcium ions. The sensor is a heavily engineered fusion of green fluorescent protein

and calmodulin, with the former providing the optical reporting, and latter changing the optical ab-

sorption when binding calcium. This construct is excited by a tightly focused illuminating beam

(with diameter less than a single cell body), and the emitted fluorescent photons are collected by a

microscope. The resulting data is correlated with the electrical activity of the recorded neuron. To

measure the activity of multiple neurons, the focus of the illuminating beam is changed repeatedly,

resulting in time-shifted, near-simultaneous recording of potentially millions of locations. We, how-

ever, face an issue similar to spike sorting before – the locations and spatial extents of the neurons

are unknown, and must be estimated from the data itself. Recognising this problem - as well as

due to physical constraints – the focus is scanned through physical space, and data is recorded on

an evenly spaced grid, similar to an image or a video frame2; the whole process is called ‘in vivo

scanning two-photon microscopy of neural tissue via fluorescent calcium sensors’, often referred to

as ‘calcium imaging’. Again, just like extracellular recordings, calcium imaging also gave rise to

significant data analysis challenges. Firstly, we are not directly measuring electrical activity, but

rather a doubly disassociated proxy of it: near-instantaneous electrical spikes first result in calcium

ion influx, which then bind to the sensor protein with slower kinetics, finally resulting in a change

in the recorded data. The problem of recovering the precise time of electrical spikes from so-called

calcium transients is ‘spike deconvolution’. The second major challenge concerns the localisation

of neural cell bodies in the recorded images, and sorting the measured signal to individual cells; this

is one of the challenges I address in this thesis, and is discussed thoroughly in chapter 3. The third

challenge is related to the imaging process. We are not directly accessing the binding state of sensor

molecules, but via illumination and collection processes, which are highly influenced by the brain

1Noting that some cortical activity in transgenic mice was shown to be aberrant recently (Steinmetz et al. 2017), question-
ing the generalisability of results.

2Noting that the values are not recorded at the same time, but rather in a time-shifted manner due to the scanning process.
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tissue and microscope elements. Although this problem is less recognised and not often thought of,

it has a significant effect on the data; thus I first present the nature of the problem, then propose a

solution to it in chapter 2.

Dimensionality reduction and dynamical modelling. Having recorded the joint activity of a

large number of neurons, the next step is to try and understand the information their activity rep-

resents. This information is often probed in the context of an experimental question: in particular,

how well does the neural activity represent some other piece of information we measured – for ex-

ample sensory input, or behavioural output. For individual neurons, this is relatively simple, we

only need to take into account the noise model, as informed by the recording method; as an ex-

ample, spike-triggered average reveals linear associations of extracellular single-unit activity with

an other measured signal. However, the brain is thought to store information in a distributed and

dynamic manner – that is, individual neurons may represent only part of the contained information,

and over time, the same piece of information may be represented by a different activity pattern. The

association of neural activity with some other signal is called ‘population coding’, which essentially

projects the information represented in neural activity onto the space of the measured signal. Al-

though this technique is extremely useful in understanding what elements of a signal a particular

neural measurement does not represent, it does not attempt to describe all the contained information.

To try and understand the information processing recorded in the neural activity eo ipso, on its own

account, we need to represent the system in a human-interpretable way. We have two general ways

of understanding high-dimensional, noisy, time-varying systems: Dimensionality reduction methods

aim to recover a small number of time-varying latent variables that retain most of the information in

the recorded neural time series; whereas dynamical models attempt to represent the joint temporal

changes of neural activities via a parametric description. Both are capable of providing valuable in-

sight into complex systems, and they can even be applied together – ultimately giving rise to a large

number of algorithms. In chapter 4, I propose two novel methods, which are uniquely tailored to-

wards low-dimensional modelling of noisy neural systems, while retaining their information content

and providing an easily interpretable dynamical description of their behaviour.

1.2 The role of machine learning in biological data analysis

My proposed models contain numerous unknown parameters. When faced with unknown parame-

ters, there are three broad strategies to follow: 1. If the parameters represent properties of the physi-

cal world, one can design methods and experiments to measure them, and use the measurements to

constrain the model in question. This strategy proved popular for constraining and evaluating theo-

retical models in physics – even when the experiments are extremely complicated or expensive, such

as the LIGO interferometer for gravitational waves, or the LHC particle accelerator for the standard
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model. Biological systems, however, are inherently difficult to measure due to both their adaptability

and the lack of well-understood separation of scales; we often do not know, how to design the right

experiment to measure a particular parameter. As such, biological sciences often turn to a different

strategy: 2. We may admit, that with our current techniques, some of the model parameters are

not directly accessible, and design an approximate, or different model, that is not concerned with

the un-measurable parameters. Even though we may already be aware of the shortcomings of the

simpler model3, it may not be advantageous to deal with more complicated ones, as long as they

cannot be constrained enough to provide additional insight. A neuroscientific example is the use

of single-neuron receptive fields, measured via the aforementioned spike-triggered average. Even

though it is clear that the neuron does not only represent the particular stimulus, and neither does

it represent all the animal’s knowledge about the stimulus, it is still a useful way of classifying sin-

gle neurons or even brain regions; one just need to be aware that the result may not hold under

different conditions. The last strategy involves inference: 3. Although it may be not known how

to directly measure a particular parameter, given the model, we may well estimate the influence of

the parameter on variables that we can measure. Given the data, we can then infer the maximum

likelihood setting, or even the probability distributions jointly over all unknown parameters; the re-

sulting knowledge can inform the design of future experiments and models. Unsupervised machine

learning is concerned with developing algorithms to infer unknown parameters of arbitrary models,

and as such, it allows for defining complex generative models that reflect our full understanding of

the experimental technique and the system under study. Ultimately, unsupervised learning reduces

the gap between complex theoretical models and the available measurements, and I believe it will

play a major role in the future of biological modelling and data analysis.

3To quote George Box: “Since all models are wrong the scientist must be alert to what is importantly wrong. It is
inappropriate to be concerned about mice when there are tigers abroad.” I find this especially fitting, as most of our data
indeed concerns mice; yet the problems we wish to solve are much broader.
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Spatial background equalisation

of two-photon calcium imaging videos

of neural tissue

Where the telescope ends, the microscope begins;

and who can say which has the wider vision?

– Victor Hugo, Les Misérables

In this chapter I examine the popular two-photon scanning calcium microscopy, and construct

an an algorithm to recover the signal we were setting out to measure in the first place - the changes

in calcium ion concentration, which is thought of as a proxy for the electrical activity of neurons.

Unfortunately the recovery of the absolute ion concentrations is impossible given the usual experi-

mental setup, but we can attempt to recover the true optical signal emitted by and captured from the

biological sample, by learning a model of the recording microscope, and inverting it. Furthermore,

this estimated fluorescent signal can then be used to infer the relative ion concentrations across the

field of view and on different frames, by correcting for biological and optical effects that are known

to affect fluorescence measurements of ion concentrations – for example uneven illumination or

varying expression levels of the fluorescent calcium indicator. Ultimately we aim to infer a signal

that only depends on actual changes of calcium concentration, free of all distortions caused by the

observation method. The current need for such an algorithm will hopefully become clear enough

through the detailed description of the issue, as well as illuminating example images.

In this chapter, I first describe the raw data in section 2.1, and discuss the possible causes of

how the underlying signal we wished to measure got transformed into the data through the observa-

tion process. Next, in section 2.2, I build a flexible probabilistic inference framework that is capable

of both including parametric models of the known elements in experimental procedure, and describ-

ing previously unknown or unmodeled distortions supported by the data. In section 2.3, I test the

framework on openly available experimental data. Finally, in section 2.4, I discuss the strengths and
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shortcomings of the proposed algorithm, and importantly, based on the current study of the system,

I suggest ways to render parts of the proposed algorithm unnecessary in the future, by measuring the

transformation parameters as part of the experimental data collection. This could lead to better stan-

dardisation of calcium imaging recordings, and ultimately more reproducible and robust scientific

conclusions drawn from such experiments.

2.1 Calcium imaging - from signal to data

Although my main contribution is the development of a novel preprocessing algorithm, I believe

before discussing the how, it is always important to make the what very clear. The reason for the

widespread use of scanning two-photon microscopy via fluorescent calcium sensors - which I will

often call calcium imaging in the rest of this chapter - is that it provides an estimate of neuronal

activity at the single neuron level, in alive, and often awake animals. This activity is measured via the

increase of Ca2+ ion concentration that stereotypically follows electrical spikes in neuronal somas.

The animals’ cells are reprogrammed (either genetically or via viral injections) to produce a protein

that acts as fluorescent calcium sensor. Fluorescence is the ability of the protein to absorb photons at

a certain wavelength, enter a higher energy state and later emit a photon of a different wavelength;

whereas calcium sensing means that the efficacy of this process is modulated by whether or not

the protein is bound to calcium. After decades of still ongoing optimisation of both the fluorescent

calcium sensor protein (Chen et al. 2013a; Whitaker 2010) and the active imaging process, in the

past few years the neuroscience community has largely converged on using a GCaMP6 sensor - an

ultrafast rise and decay time constant variant, based on green fluorescent protein and calmodulin.

The chosen fluorescent calcium sensor is then illuminated by a scanning two-photon micro-

scope and the emitted fluorescent signal photons are collected in the epi direction through the objec-

tive, then redirected to a photomultiplier tube via a dichroic mirror. Finally this signal is digitised,

and saved as a so-called grey value of an image pixel. The pixel location is determined by the angle

of the scanning mirrors used to deflect the illuminating beam. The set of these pixels over one cycle

of mirror movement forms an image, and repeated cycles result in a set of images - a video.

This established process has generated thousands of hours of video and correspondingly thou-

sands of terabytes of data over the past few years, many of them exhibiting similar features in the

recordings. As shown in figure 2.1, the data often exhibits strong background spatial non-uniformity,

which is mostly caused by non-uniform distribution of the calcium sensors, uneven illumination in-

tensities and collection efficiencies that depend on the position within the image. An other effect

in the collected data is more subtle, but causes substantial difficulty in interpreting the data. This

relates to what happens to the emitted fluorescence photons arriving at the photomultiplier. As

demonstrated in figure 2.2 the relationship between observed data and the signal can be non-trivial.

Modelling a realistic photomultiplier is a difficult problem; what’s worse, here we are faced with
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Figure 2.1: Neurofinder dataset 00.00. Original (left) and corrected (right) mean images, with the
correction carried out by the algorithm proposed in this chapter, demonstrating its ef-
fect on the data. See section 2.3 for more details on the data and the correction.

0 100 200 300 400

0

0.2

0.4

0.6

0.8

1
n_photon > 5
n_photon = 4
n_photon = 3
n_photon = 2
n_photon = 1
n_photon = 0

Grey level in data

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
of

ph
ot

on
co

un
t

Figure 2.2: Demonstrating the conditional probability of the number of photons that reached the
photomultiplier and generated a photoelectron; given we have observed a grey level
in the raw data. Note that although the values less than 0 on the x axis serve purely
visualisation purposes as the observations are strictly non-negative, this zero level is
indeed a modifiable property of the observation system. This figure is the zoomed in
version of figure 2.8a, see section 2.3 on how it was computed.

reverse-engineering one from data, as metadata about microscope specifications and settings are

rarely shipped alongside published datasets. In order to attempt it, we need to clearly understand the

individual parts of the system, and how they collectively result in the observed data.

http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1_figResults_SpatialOrigMean_nf0000_20191117T170752.html
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1_figResults_SpatialCorrMean_nf0000_20191117T170752.html
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/fig1-photon_cum_prob_20180823T123312.html
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Figure 2.3: Scanning two photon microscopy schematic. The red light path indicates focused
femto-second laser pulses from the illuminating laser. The green cones indicate the
collection pathway of the fluorescently emitted highly scattered signal photons.

2.1.1 Scanning two-photon microscopy

In this section I describe how the illumination and collection processes result in an observed signal,

given a latent true state of the calcium-bound fluorescent sensors. In order to record this state, one

needs to probe the sensors via illumination, then collect the emitted fluorescent photons (figure 2.3).

Here I give a brief introduction and focus on the elements that might introduce spatial distortions.

For a detailed technical description of individual optical elements see Young et al. (2015).

Illumination. First the illumination pathway. The main elements we need to consider are the il-

luminating laser, the pair of scanning mirrors, the objective, and the tissue under examination. The

infrared laser emits femtosecond pulses of long wavelength light. These light packets are deflected

from the optical axis by the scanning mirrors, then focused by a high numerical aperture objective,

ultimately creating a tight focal point that scans through the tissue as the mirrors rotate. In order

to elicit fluorescent photons, two infrared photons need to excite the same sensor molecule concur-

rently, explaining the name of two-photon microscopy. This results in a much tighter effective point

spread function around the focal spot, as the probability of evoking response scales quadratically

with the field intensity, enabling two-photon microscopes to generate very little out-of-focus fluo-

rescent signal. However, this quadratic dependence also causes small changes in the spatio-temporal
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field strength around focal spot to be much more pronounced in the evoked signal.

Here I am interested in discovering spatial patterns in the changes of total effective illumina-

tion. There are three main causes for the existence of such spatial patterns. The first is introduced by

the scanning mirrors. In order to achieve bidirectional deflection of the focal spot, two mirrors are

required, one usually implementing fast X-directional (resonant) scanning, and another the slower

orthogonal Y-directional one. As mentioned by major manufacturers (e.g. Olympus1 and Leica2),

ideally both mirrors should be in a plane conjugate to the back pupil of the objective lens, such that

the laser beam can optimally fill the back pupil at all times using a so-called ”4 f design”, including

a telescope and scan lens. For two mirrors, this is physically impossible, and compromises need to

be made, usually resulting in the conjugate plane being in-between the two scan mirrors, and caus-

ing gradual loss of intensity as the scan angle increases and the focal spot moves further from the

optical axis. If the mirrors are equidistantly placed from the conjugate plane, this type of aberration

is radially symmetric around the optical axis, sometimes called vignetting; if the distances differ,

we would notice decreasing field strength that differ about the X and the Y axes, called astigma-

tism. These effects are present in most datasets, as they are difficult to completely compensate for

experimentally.

The second major cause for spatial aberrations is introduced by the objective itself. Although

this is generally the optical element the most attention (and money) is paid towards, objective lenses

are still not perfect. The X-Y tightness of the focus often widens as the focus moves away from the

optical axis of the objective. In conventional microscopy this effect causes minor aberrations, but

due to our quadratic dependence on field intensity in two-photon microscopy, this spatial dispersion

results in an effective reduction of illumination in a radially symmetric manner about the optical

axis.

Finally, the tissue above the focal plane itself attenuates the focused laser beam in a spatially

unstructured way, due to the varying density of brain matter. Patterns of vasculature affect signals

particularly strongly, well exemplified by their routine use in identifying the same field of view

across multiple experimental sessions.

Collection. Once a small volume has been illuminated, the available fluorophores may get excited

and subsequently emit a fluorescent photon. For fluorescent calcium sensors, the probability of

such an absorption-emission event is modulated by whether or not the sensor molecule is bound to

calcium, and thus serves as a proxy of the local calcium ion concentration. The generated fluorescent

photon count therefore depends both on the number of sensors as well as calcium ions available.

The way we can distinguish between signal caused by excess sensor count as opposed to more

1URL: https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/
confocal/confocalscanningsystems/

2URL: https://www.leica-microsystems.com/products/confocal-microscopes/technology/fov-
scanner/

https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/confocal/confocalscanningsystems/
https://www.leica-microsystems.com/products/confocal-microscopes/technology/fov-scanner/
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calcium, is that calcium concentration varies rapidly in time, whereas the active sensor counts are

essentially constant throughout the imaging, especially for modern non-bleaching sensor molecules.

Nevertheless, the sensor molecule availability introduces another spatially unstructured effect, which

is exacerbated for experiments utilising viral injections with non-uniform uptakes.

The emitted fluorescent photons then need to be collected (figure 2.3, green paths). Fluo-

rophores emit photons uniformly with all directions, which are then scattered in the tissue. As we

typically only collect photons in the epi direction through the objective, most of them are lost. For-

tunately, even when a large portion of the photons is uniformly randomly lost, Poisson processes

do not change in nature, rather they become a Poisson process of correspondingly lower intensity.

This phenomenon is called thinning, and enables us to ignore the difficulties of estimating the abso-

lute photon loss, and only focus on relative spatial variations. Although these variations of thinning

during photon collection may again result from tissue density changes, this effect is much less detri-

mental for the scattered photons, than it was for the highly focused illuminating beam. Other effects

include the radially symmetric reduction of collection efficiency due to the solid angle of the ob-

jective, as well as location- and angle-dependence of both the reflectivity of various optical pipeline

elements, and the quantum efficiency of the photomultiplier, again causing non-uniform photon loss.

2.1.2 Recording the optical signal

The last stage of the data creation process is the digitisation of the signal that entered the photo-

multiplier tube (PMT)3. First, each photon may generate a photoelectron at a photocathode with

some probability, which gets accelerated by a focusing electrode onto a successive chain of dyn-

odes. Those exponentially amplify the signal via a cascade of secondary emissions. Finally, the

resulting electron avalanche hits the anode, and generates a (temporally) sharp current pulse. The

height of each pulse varies due to randomness in the amplification process, and the distribution of

this variability may depend upon the location and angle of the photon incident on the photocathode4.

There are two general ways of digitising the current that arrives at the anode. For low photon counts

(up to 107s−1, according to Hamamatsu), the individual current pulses are unlikely to overlap in

time, and therefore it is possible to extract each event that passes a threshold, and obtain an integer

number representing the number of generated photoelectrons. However, for higher photon counts

the current pulses can not be resolved, and instead they are preamplified with a given input offset that

thresholds DC components and low pulses. The resulting signal is then integrated in a time window

corresponding to photons arriving from the same location in the sample. This integration time win-

dow is coupled with the scanning movement of the focal point in the sample with appropriate delays,

3Although PMTs are the most common detectors for two-photon microscopy, several new detector types are emerging.
A different detector won’t change the algorithm conceptually, but might require a different parametrisation of the likelihood
function than the ones described in section 2.2.3 for PMTs

4For an extremely detailed description of characteristics and noise sources of photomultipliers, see the premier producer
Hamamatsu’s excellent PMT Handbook (edition 3), URL: https://www.hamamatsu.com/resources/pdf/etd/PMT_

handbook_v3aE.pdf

https://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE.pdf
https://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE.pdf
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and thus the integrated and digitised signal appears as the pixel’s grey level in the raw output data.

According to my estimated photon counts calculated later in this chapter (shown in section 2.3.2),

calcium imaging recordings are generally below the resolution limit, and could be recorded in pho-

ton counting mode. Most published datasets, however, seem to have used amplification-integration

process.

Unfortunately, the noisy amplification carried out by the photomultiplier – along with the

thresholded integration by the subsequent electronics – significantly transform the incoming Pois-

son signal. The resulting digital grey level possesses an effective photomultiplier gain, which deter-

mines the average increase in pixel intensity for each added incident photon, and can be modified via

changing the photomultiplier voltage. Furthermore, the preamplifier offset determines an arbitrary

zero level, below which signals are not collected. Both these parameters are easily accessible to

the experimenters to manually maximise the apparent signal to noise ratio, and ultimately they may

change not only from microscope to microscope, but even from recording to recording, making the

interpretation of raw data difficult.

The two stages of data generation described above in sections 2.1.1 and 2.1.2 are conceptually

different. All processes before the photo-multiplication affect the mean parameter of a Poisson

process, but do not change the nature of it, and therefore can be thought of as a purely multiplicative

gain-like effect, applied to the calcium concentration changes. Conversely, the signal transformation

carried out by the photomultiplier and subsequent electronics is a process that amplifies all entered

photons. This important difference may be best summarised by saying that the pre-photomultiplier

gain process changes the mean of the signal, but keeps the variance-mean ratio (the Fano factor) one;

whereas the recording process carried out by the photomultiplier and electronics keeps the standard

deviation-mean ratio (coefficient of variation) constant, but changes the Fano factor.

Ultimately we need to first infer the optical signal that entered the PMT by inverting the record-

ing process, then strip it of any spatial dependence that is not caused by fast timescale changes in

calcium concentration. This latter process may be called spatial signal equalisation.

2.2 Spatial signal equalisation via probabilistic inference

Having understood the underlying system, we need to translate it into a mathematical model that is

capable of capturing the known complexities, but also has a reasonable behaviour when faced with

unseen data. Furthermore, it needs to be able to incorporate the tens of millions of observations,

that are both available and required to elucidate the latent signal. As the observations are inherently

samples from an unknown probability distribution, my approach was to parametrise this probability
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distribution in a flexible way. The inferred parameters then represent measurable parameters of

the physical systems involved, and all other unknown effects are learned from the data in a semi-

parametric fashion.

The explicit goals of the inference is to recover the optical signal that generated the amplified

grey levels, and then to estimate and correct for spatial distortions introduced by the biological and

optical elements. Therefore to sketch a generative model that achieves both aims, I assume we record

repeatedly from a fixed set of locations5, each of which exhibit changes in calcium ion concentra-

tions. Those changes are then multiplied by a spatially non-uniform gain-like function, resulting

from the effects summarised in section 2.1.1. Finally, the signals are observed probabilistically

through a photomultiplier and other electronics, as described in section 2.1.2. I use the following

notation:

x Spatial location

Z (x, t ) True signal

G(x) Spatial gain

Y (x, t ) Observed pixel intensities

(2.1)

The definition of these individual elements already gives rise to structure in our probabilistic

model:
p( Y | G, Z, X , ξ ) is the Likelihood,

p( G | X , θ ) is the Prior over the gain,

p( G | Y, Z, X , ξ , θ ) is the Posterior over the gain,

(2.2)

where X is a fixed set of locations, while ξ and θ parameterise the likelihood and the prior, respec-

tively. To place it in our physical model, the parameters of the prior may represent the lengthscales

of typical distortions from off-axis lenses or chromatic aberration of objectives; whereas the param-

eters of the likelihood relate very directly to measurable or even manually changeable ones of the

PMT, such as the quantum efficiency or the high voltage.

For compactness, I will often drop the explicit conditioning on X , Z, ξ and θ . The prior, p( G ),

encodes our assumptions about the structure in the spatial gain, whereas the likelihood, p( Y | G ),

is the probabilistic model of how the photomultiplier and subsequent electronics record the spatially

distorted signal. The posterior, p( G | Y ), describes our belief about the gain function, having

incorporated the observed data as evidence via inverting our current estimate of the likelihood.

In the following I first describe the generic parametric form of a variational inference model,

then specify the forms of the prior and approximate posterior functions as an approximate Gaussian
5Throughout this thesis I make the assumption that the datasets are spatially two dimensional, as is most common in

practice. However, both the model described and the code used to implement it should work for arbitrary dimensional
datasets, with reasonable scaling.
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Process. Finally, I detail a set of options for the prior and likelihood functions that correspond to our

knowledge about the physical systems that implement them.

2.2.1 Variational inference

For models that describe a physical system in detail, the posterior is often non-conjugate and the

normaliser is intractable. This is indeed the case for the likelihoods I discuss later in this chapter, and

thus we have to turn to an approximation that we can compute for arbitrary priors and likelihoods.

Due to its established track record, along with recent developments, I chose to employ a variational

sparse approximation (Titsias 2009) to the posterior. This introduces a new parametrised distribution,

called the variational distribution, which is in a tractable model class. This distribution is then used

to construct a lower bound to the marginal log likelihood, that is called the variational lower bound:

q( G ) = q( G | ψ )≈ p( G | Y ) is the Variational distribution6, (2.3)

log p( Y ) = log
∫

p( Y | G ) p( G ) dG is the Marginal log likelihood. (2.4)

= log
∫

p( Y, G )
q( G )

q( G )
dG

= log
(
Eq

[
p( Y, G )

q( G )

])

≥ Eq

[
log

p( Y, G )

q( G )

]
due to the Jensen inequality. (2.5)

L(q) = Eq [log p( Y, G )]−Eq[log q( G )] is the Variational lower bound. (2.6)

This lower bound approaches the marginal log likelihood as the KL-divergence between the

true and the approximate posterior vanishes,

L(q) = log p( Y )−DKL [ q( G ) ‖ p( G | Y ) ] , (2.7)

therefore maximising the tractable variational lower bound is equivalent to minimising the KL

divergence between the approximating and the true posterior. This approximation thus translates

a difficult inference problem of finding an approximate posterior, into a generic optimisation one,

maximising an objective function. A further advantage of this approach, is that the marginal log

likelihood defined in equation 2.4 is in fact a function of not only the gain G, but also the parameters

of the illumination or observation models. Reintroducing the conditioning on the latent signal and

the parameters to the prior and the likelihood, shown in equation 2.2, we have

6Where ψ is the collection of so-called variational parameters.



34 2. Spatial background equalisation for calcium imaging

log p( Y | Z, ξ , θ ) = log
∫

p( Y | G, Z, ξ ) p( G | θ ) dG. (2.8)

In fact, we may treat all parameter values as uncertain, as all physical measurements and calibrations

are inherently noisy, and work with the joint distribution of the observations and parameters:

log p( Y, Z, ξ , θ ) = log
∫

p( Y | G, Z, ξ ) p( G | θ ) p(Z) p(ξ ) p(θ) dG. (2.9)

This results in an extremely flexible procedure, where knowledge about physical systems may

easily be incorporated into the prior functions of parameters. The complete model therefore defines

an objective that is a function of the latent signal, the parameters and the gain:

q( G | ψ )≈ p( G | Y, Z, ξ , θ ) (2.10)

log p( Y, Z, ξ , θ ) = log
(
Eq

[
p( Y, G, Z, ξ , θ )

q( G | ψ )

])
(2.11)

L(q) = Eq [log p( Y, G, Z, ξ , θ )]−Eq[log q( G | ψ )]

= Eq [log p( Y | G, Z, ξ )+ log p(G | θ )+ log p( Z )+ log p(ξ )+ log p(θ)]

−Eq[log q( G | ψ)]

The final objective function for our variational inference scheme is

L(q) = Eq [log p( Y | G, Z, ξ )]

−DKL [ q( G | ψ ) ‖ p( G | θ ) ]

+ log p( Z )+ log p(ξ )+ log p(θ).

(2.12)

To fully specify our variational inference model, we need to choose the prior parameter dis-

tributions p(Z), p(ξ ) and p(θ), the prior and variational distributions over the gain, p(G | θ )

and q( G | ψ ), and the likelihood p( Y | G, Z, ξ ). The prior distributions are generally either

uninformative ones over a range of physically plausible values, if no measurements are available, or

normal distributions around some measured values, with the variance arising from the reliability of

the measurement process itself. To define the gain and the observation functions, I first derive an ap-

proximate Gaussian Process model in section 2.2.2, which sets the form of the prior and variational

distributions over G. Afterwards, in section 2.2.3, I describe potential likelihood models.
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2.2.2 Scalable approximate Gaussian Processes as prior functions

A highly scalable, yet extremely flexible model for the prior and variational distributions is a recently

developed Gaussian Process approximation, that uses Structured Kernel Interpolation (Wilson and

Nickisch 2015). It exploits the Kronecker structure inherent in imaging data, and the interpolation

introduces additional smoothness structure to the modelled function. In order to describe this approx-

imation step by step, I first define a full Gaussian Process model, introduce its sparse approximation,

then choose the particular form of the approximation that is most suitable for our purposes.

A Gaussian Process over spatial locations is defined (Rasmussen and Williams 2006) by a mean

function m(x) and a positive definite covariance (or kernel) function k (x, x′ ), and

f (x) ∼ GP(m(x), k (x, x′ )) (2.13)

Given a matrix of spatial locations Xnd, these functions may be applied element- or pairwise,

resulting in the mean vector mn = m(Xnd ) and the kernel matrix Knn̊ = k(Xnd , Xnd ), respectively.

This then defines a prior normal distribution of the function values at the given locations:

fn ∼ N (mn, Knn̊ ) (2.14)

Observing function values fn = f (Xnd ) defines a posterior distribution over new locations

X∗md, such that the joint distribution of the observed and predicted values is still normal:

 fn

f∗m

 ∼ N
 mn

m(X∗md )

 ,

 Knn̊ k(Xnd , X∗md )

k(X∗md , Xnd ) k(X∗md , X∗md )

 ,

 (2.15)

This then gives rise to a predictive distribution:

p( f∗m | X∗md, Xnd, fn ) =N
(

m(X∗md ) + k(X∗md , Xnd ) [Knn̊]
−1fn ,

k(X∗md , X∗md )− k(X∗md , Xnd )[Knn̊]
−1k(Xnd , X∗md )

) (2.16)

Unfortunately due to presence of the inverse [Knn̊]
−1, this formulation is not capable of dealing

with N� 10000 locations even on modern computers, and thus we need to employ approximations

to scale to larger datasets. A popular way of doing so is the use of inducing points – a set of locations

X†
ud chosen (or optimised) in a way, such that they define an approximate kernel k̃(·, · | X†

ud)≈ k(·, ·),
where the computational complexity of the predictive distribution using k̃ is reduced to to O(U3 +

U2N) from O(N3). Popular examples are the subset of regressors (SoR) method (Silverman 1985)

and the fully independent training conditionals (FITC) approximation (Snelson and Ghahramani
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2006), where

k̃SoR(x,x′ | X†
ud ) = k(x , X†

ud )
[
k(X†

ud , X†
ud )
]−1

k(X†
ud ,x

′ ) (2.17)

k̃FITC(x,x′ | X†
ud ) = δxx′ k (x, x′ )+(1−δxx′) k̃SoR(x,x′ | X†

ud ). (2.18)

In order for these types of approximation to result in large computational gains, U � N is required,

which limits predictive performance (Wilson 2014). This limitation may partially be resolved by

exploiting existing Kronecker structure in a multidimensional kernel and by imposing Cartesian grid

structure on inducing points, which results in an efficiently invertible circulant Toeplitz kernel matrix

for stationary k covariance functions. Given product structure in the kernel and a D-dimensional grid

with U =V D grid points, these reduce the computational complexity for learning and inference from

O(U3) to O(DU1+1/D) by using fast matrix decomposition, fast matrix-vector products and linear

conjugate gradients. For further details see work by Wilson (2014), Wilson and Adams (2013), and

Wilson and Nickisch (2015).

The next issue is that for N locations these approximations still require the computation of the

cross-covariances k(Xnd , X†
ud ). That becomes the limiting step, with O(U2N) complexity. How-

ever, this matrix may also be approximated efficiently, interpolating from the covariances already

computed between inducing points; this is called Structured Kernel Interpolation (SKI, by Wilson

and Nickisch (2015)). With Wnu being a sparse interpolation weight matrix, we may approximate

the cross-covariances as

k(Xnd , X†
ud )≈Wnu k(X†

ud , X†
ud ) (2.19)

and thus

k(Xnd , Xnd )≈ k(Xnd , X†
ud )
[
k(X†

ud , X†
ud )
]−1

k(X†
ud ,Xnd )

≈Wnu k(X†
ud , X†

ud )
[
k(X†

ud , X†
ud )
]−1

k(X†
ud ,X

†
ud )
>W>

nu

= Wnu k(X†
ud , X†

ud )W
>
nu

= kSKI(Xnd , Xnd | X†
ud, Wnu ). (2.20)

To finish the approximation, we need to specify the locations of the inducing points, X†
ud,

and the interpolation scheme used to compute the sparse interpolation weights, Wnu. As discussed

above, the inducing points need to be placed in a multidimensional grid over the span of the input

data to retain scalability, thus one only needs to determine the bounds and the density of the grid.
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These parameters are also influenced by our choice of interpolation scheme. In order to inherently

impose a known lengthscale spatial smoothness on the gain function inferred, I employed an inter-

polation scheme, where the weights of the grid points are a finite-size Gaussian filter centred on the

data points, then row-wise normalised:

wraw
nu =


1√

2πσ
2
filter

exp

{
− ∑d(xnd− x†

ud )
2

2σ
2
filter

}
if dx < dmax

0 otherwise

wnu = wraw
nu / ∑

u
wraw

nu

(2.21)

The choices of dmax and σfilter set the smoothness of our interpolation scheme. Finally, setting the

grid spacing dgrid and the bounds bgrid fully defines a scalable model called Kernel Interpolation

for Scalable Structured Gaussian Processes (KISS-GP, by Wilson and Nickisch (2015)), which is

used as the parametric form of the prior on the gain function. The parameters of the prior include

the choice and parameters of the mean function m, the covariance function k, as well as the above

parameters of the approximation scheme itself. In practice this latter is not optimised.

Given this definition, the prior, the posterior, and their KL-divergence can be computed. Let

f be our modelled function, and we evaluate it at input points Xnd. The parametric prior over the

function values is

Fn = f (Xnd ) (2.22)

p( Fn | Xnd, θ ) =N
(

Fn−Wnu m(Xud | θ ), kSKI ( Xnd, Xnd | θ )

)
, (2.23)

where θ =
{

m, θm, k, θk, θ interp
}

is the collection of prior parameters. The approximate posterior

uses variational parameters ψ to define the mean and covariance structure over the inducing points,

then employs the interpolation scheme to approximate the posterior over the input locations:
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ψ =
{

ψψψ
m
u , ψψψ

cov
uů
}

(2.24)

q( Fn | Xnd, ψψψ ) =N
(

Fn−Wnuψψψ
m
u , Wnuψψψ

cov
uů W>

nů

)
(2.25)

DKL( q ‖ p ) =
1
2


−D+ log

|k(X†
ud , X†

ud )|
|ψψψcov

uů |

+Trace
{[

k(X†
ud , X†

ud )
]−1

ψψψ
cov
uů

}
+(ψψψm

u −m(Xud | θ ))
[
k(X†

ud , X†
ud )
]−1

(ψψψm
ů −m(X ůd | θ ))


. (2.26)

Although this defines the variational posterior and the KL-divergence required to computed the

objective function in our variational inference scheme equation 2.12, the particular forms of the the

mean and covariance functions are still unspecified.

Probabilistic models of spatial distortions

The next step therefore is to design mean and covariance functions of the prior that correctly encode

our assumptions. First and foremost, all interactions that lead from the true signal Z (x, t ) to the

optical signal arriving at the photomultiplier may be thought of as strictly multiplicative effects,

changing the mean parameter of a Poisson distribution via thinning; therefore only the product of G

and Z affects the likelihood of the data:

p(Y | G, Z ) = p(Y (x, t ) | G(x)Z (x, t )). (2.27)

As both G and Z are strictly positive quantities, we may model their multiplicative interaction

as a sum in logarithmic space, GZ = exp(logG+ logZ). This observation enables us to model the

numerous multiplicative interactions resulting in the product G – see section 2.1.1 – as a sum of

functions, each representing the individual contribution of an optical or biological element. These

functions then add up to logG, with the premise that our prior and approximate posterior uncertain-

ties of the gain function will now be log-normally distributed. This actually ensures the physically

constrained positivity of G, and with a slight rewrite of the variational inference scheme in equa-

tion 2.12 results in the unconstrained scheme
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F = logG

L(q) = Eq

[
log p( Y | eF+logZ , ξ )

]
−DKL [ q( F | ψ ) ‖ p( F | θ ) ]

+ log p( logZ )+ log p(ξ )+ log p(θ).

(2.28)

There are numerous ways of making assumptions about the form of the additive F , I describe

examples here that are motivated by our knowledge about the illumination, the tissue and the collec-

tion system, discussed in section 2.1.1. Each distortion effect caused by the various elements enters

additively into the final logarithmic gain: F =∑ i F i, where each F i represents the logarithmic spatial

gain distortion introduced by a single element. Having no explicit knowledge about the particular

optics and settings of a microscope system, a reasonable prior assumption is that the distortion they

introduce is unknown, and thus the prior mean function for each element is uniformly zero. How-

ever, this additive structure neatly lends itself to designing an additive covariance function, with the

individual elements generally describing two types of spatial variations. Each element introduces

one of these simple distortions, leading to a complex gain function model. One class is informed by

the symmetries about the optical axes, and the other is well described by a characteristic lengthscale

of spatial smoothness of the introduced distortion.

Symmetric distortions. In order to capture the symmetries present in the system, I introduce

two covariance function transformations. Given a covariance function kD : RD×RD → R and the

location of the focal point along the optical axis in space xo
d ∈ RD, we may define the linearly

symmetrised covariance function

kLinSymm( xd, x′d | kD, xo
d ) = kD( abs(xd−xo

d ), abs(x′d−xo
d ) ), (2.29)

where the absolute value is applied dimension-wise. Functions drawn from a Gaussian Process with

a linearly symmetrised covariance function will exhibit reflection symmetries about each cardinal

spatial axes, which are defined in scanning microscopes as a basis of the transverse plane of the

optical axis7 with the basis directions given by the scanning mirror orientations. Similarly, given

a one-dimensional base function, k1 : R×R→ R, we may define a radially symmetric covariance

function as

7It is worth mentioning here that some microscope objectives introduce a curvature as the focal point is moved off-axis,
and therefore the actually imaged manifold is not truly a transversal plane with respect to the optical axis. Therefore the point
cloud Xnd that is usually assumed coplanar may not be, and the calculated distances are slightly overestimated. Nevertheless,
the symmetries are still present, and they do not truly depend on distance from optical axis, but rather the scan angles, and
thus are not affected by objective-induced sample plane curvature.
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kRadSymm( xd, x′d | k1, xo
d ) = k1(

∥∥xd−xo
d
∥∥ , ∥∥x′d−xo

d
∥∥ ). (2.30)

Distortion lengthscales. Finally, we need to estimate the various spatial lengthscales of the dis-

tortions and capture them with the appropriate covariance functions. The Radial Basis Function

covariance (known also as Squared Exponential, Gaussian or Exponentiated Quadratic kernel) mod-

els diminishing strictly positive interactions that lead to smooth functions, and thus is an excellent

way of describing smooth distortions. It may be parametrised by a single lengthscale, in which case

the interaction decay is isotropic; or by a vector of lengthscales, one for each dimension:

kRBF( xd, x′d | l ) = exp

(
−
∥∥xd−x′d

∥∥2

2l2

)
(2.31)

kRBF( xd, x′d | ld ) = exp

(
−∑

d

(
xd− x′d

)2

2l2
d

)
. (2.32)

2.2.3 Photomultiplier likelihood models

As described in section 2.1.2, the photomultiplier and subsequent electronics translate the optical

signal into a current, then finally a digitised voltage, represented by pixel grey values. Due to

the limitations of photon counting, this digital signal usually represents an analog integration of

the variable height current pulses induced by the incoming photons in a given time window, that

corresponds to the dwell time of the optical focus on a pixel. The conversion of pulses includes

a user-controllable offset of the preamplifier, that essentially thresholds the incoming signal pulses

and thus sets the zero level for the Analog-Digital Converter (ADC), which then appears as zero

pixel intensity in the recorded data. The effective gain from photon count to pixel intensity is the

product of the user-configurable photomultiplier gain (set by the photomultiplier high voltage, and

converts photoelectrons to mean current pulse height) and the usually fixed preamplifier gain (that

converts current into voltage). The electronic components before digitisation also introduce additive

zero-mean noise into the system. These are the three most important parameters of our likelihood

function: ξ = { ξ
o,ξ g, ξ

σ
2
0 } are the offset, the gain and the electric noise variance, respectively.

These form the basis of any photomultiplier model.

Let λ be the instantaneous intensity of the thinned Poisson process that generates photoelec-

trons at the photomultiplier cathode; then we wish to parameterise the likelihood in terms of the

photon flux:

λ = eF+logZ Photon flux

p( Y | λ , ξ ) Likelihood.
(2.33)
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It is also important to consider the analog to digital conversion, which introduces lower and upper

thresholds (cut-off and saturation), and thus – given the likelihood functions defined in this section,

which describe the signal incoming to the analog digital converter – the true likelihood of the digital

signal is

p( Ydigital = 0 | λ , ξ ) =
∫ 0

−∞

p( Y | λ , ξ )dY

p( Ydigital = ADCmax | λ , ξ ) =
∫

∞

ADCmax

p( Y | λ , ξ )dY

p( Ydigital = i | λ , ξ , 0 < Ydigital < ADCmax ) =
∫ i

i−1
p( Y | λ , ξ )dY ,

(2.34)

where ADCmax is the number of channels on the ADC. This process is taken into account during

any computations, but are omitted from the following description for brevity.

In the following I introduce three models of the photomultiplier and subsequent electronics,

which best describe reality for distinct values of the light intensity λ .

Model 1 - Intensity amplification

The simplest possible model disregards the discrete nature of incoming light, and thus is only gener-

ally applicable to situations with very high incoming photon counts. Even though our data is not in

this regime, this model is frequently applied, and thus worth discussing. It approximates the Poisson

photon distribution with intensity λ as a normal distribution. The contribution of the photomulti-

plier is the gain that multiplies the random variable representing the observed intensity, whereas the

ADC cut-off shifts its mean. Often a third parameter is also considered, ξ
σ

2
0 is the variance of the

zero-mean noise introduced by the electronics after the amplification process. The whole model is

ν ∼ N ( λ , λ ) (2.35)

p( Y | ν , ξ ) = NY

(
ξ

g (ν−ξ
o), ξ

σ
2
0
)
, (2.36)

therefore

ξ1 = { ξ
o,ξ g, ξ

σ
2
0 } (2.37)

p1( Y | λ , ξ ) = NY

(
ξ

g (λ −ξ
o), ξ

g2
λ +ξ

σ
2
0
)
. (2.38)
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Model 2 - Gaussian single electron response

For the lower photon counts observed in our data, it is important to take into account the discrete

nature of the incoming signal. The photomultiplier and subsequent electronics then amplify each

photoelectron into a pixel intensity according to the single electron response (SER). This is described

by a probability distribution of the total charge generated by a single event, and is often approximated

by a normal distribution. Multiple photoelectrons result in a signal that is the sum of the independent

pulse charges generated.

ν ∼ Poisson( λ ) (2.39)

pSER( C | ν = 1, ξ ) ≈ NC

(
ξ

g, ξ
σ

2
1
)

(2.40)

p( C | ν , ξ ) = NC

(
ξ

g
ν , ξ

σ
2
1 ν

)
(2.41)

p( Y | C, ξ ) = NY

(
C−ξ

o, ξ
σ

2
0
)
, (2.42)

where ν is a discrete count and C is the charge generated by the photomultiplier. Therefore

ξ2 = { ξ
o,ξ g, ξ

σ
2
0 , ξ

σ
2
1 } (2.43)

p2( Y | λ , ξ ) =
∞

∑
ν=0

p(Y | ν) p(ν | λ )

=
∞

∑
ν=0
NY

(
ξ

g
ν−ξ

o, ξ
σ

2
1 ν +ξ

σ
2
0
)
· Poissonν( λ ). (2.44)

Ultimately this likelihood distribution is a Poisson-weighted mixture of Gaussians, where the

mixture components’ mean and variance scales with the number of observed photons. In practice the

infinite sum may be replaced by a finite sum, where the components with diminishingly low Poisson

mixture weights are omitted, and the distribution is renormalised accordingly.

Model 3 - Underamplified single electron response

Photomultipliers with low high-voltage settings may not amplify each photoelectron maximally,

and thus the single electron response probability distribution is not well-approximated by a normal

distribution anymore (Dossi et al. 2000; De Haas and Dorenbos 2010). We may describe the charge

distribution of underamplified events as an exponential distribution, with a given rate ξ
e. The single

electron response distribution is a Bernoulli mixture of fully amplified and underamplified events,

with probabilities 1− ξ
pe and ξ

pe , respectively. Fortunately, already for two photons within the

same time window, the distribution of their added charges are reasonably approximated by a normal

distribution, with the approximation proceeding similarly to the previous model. We can thus treat
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the single observed photon as a special case:

ν ∼ Poisson( λ ) (2.45)

pSER( C | ν = 1, ξ ) ≈ ξ
pe ·ExponentialC( ξ

e )+(1−ξ
pe) ·NC

(
ξ

g, ξ
σ

2
1
)

(2.46)

p( C | ν , ν ≥ 2, ξ ) = NC

(
EpSER

[C ] · ν , VarpSER
[C ] · ν

)
(2.47)

p( Y | C, ξ ) = NY

(
C−ξ

o, ξ
σ

2
0
)
. (2.48)

In order to derive the resulting probability distribution over Y , given λ , we need to be able to

describe the sum of an exponentially distributed random variable and the additive zero-mean noise

with variance ξ
σ

2
0 , which is an Exponentially Modified Gaussian (EMG) distribution, defined as

a∼ Exponential( λ )

b∼N ( µ, σ
2 )

x = a+b

EMGx( λ , µ, σ
2 ) =

λ

2
· e0.5λ (2µ+λσ

2−2x) · 2√
π

∫
∞

x
e−t2

dt.

(2.49)

Furthermore, we need to compute the mean and variance of the underamplified SER in order to

evaluate the multi-photoelectron components:

EpSER
[C ] = ξ

pe /ξ
e + (1−ξ

pe)ξ
g

VarpSER
[C ] = 2ξ

pe /ξ
e2

+ (1−ξ
pe)( ξ

g2
+ξ

σ
2
1 )− (EpSER

[C ])2
(2.50)

As a result, the complete model is

ξ3 = { ξ
o,ξ g, ξ

σ
2
0 , ξ

σ
2
1 , ξ

e, ξ
pe } (2.51)

p3( Y | λ , ξ ) = Poisson0( λ ) ·NY

(
−ξ

o, ξ
σ

2
0
)

+Poisson1( λ ) ·
(

ξ
pe EMGY

(
ξ

e, −ξ
o, ξ

σ
2
0
)
+

(1−ξ
pe) NY

(
ξ

g−ξ
o, ξ

σ
2
1 +ξ

σ
2
0
) )

(2.52)

+
∞

∑
ν=2

(
Poissonν( λ ) ·

NY

(
EpSER

[C ]−ξ
o, VarpSER

[C ]+ξ
σ

2
0
) )

.
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2.2.4 Heuristics for data subselection

Given a model of the optical signal intensity described in section 2.2.2, and a likelihood model from

section 2.2.3, we are now equipped to carry out variational inference (section 2.2.1) and estimate

the parameters of a realistic generative model of the data. There is, however, one latent variable,

that we have not yet discussed in detail; the true signal Z (x, t ). If no assumptions are made about

this latent variable, it introduces an inherent degeneracy to the spatial model, as it would be capable

of explaining any structure, which we want to represent via G, the spatial gain. Therefore the first

assumption we wish to make, is that there is no spatial structure in the signal. This assumption only

stands when looking at the background, not when we consider the whole dataset, which contains

neuronal structures generating informative signal. In order to make this assumption correct, we need

to reject locations that are thought to have spatially structured activity – essentially we wish to find

the background, and learn the model on the background pixels only.

Most neural structures have an apparent spatial extent of multiple pixels in our recordings,

and those pixels are correlated by the joint underlying source, a phenomenon I explore in detail in

chapter 3. As a result, having a low cross-correlation coefficient with its neighbours turned out to be

a robust heuristic measure of identifying background pixels. Given a small neighbourhood, and an

averaging filter f , we may estimate the local expected activity, and compute the cross-correlation of

the pixel’s signal with the local activity:

µ( x, t ) = E x̊∈Neigh(x) [ f (x̊) ·Y ( x̊, t )]

CrossCorrCoeff( x ) =
E t

[
(Y (x, t )−E t[Y (x, t ) ]) · (µ( x, t )−E t[µ( x, t ) ])

]
√

Var[Y(x, t) ]Var[µ( x, t ) ]
,

(2.53)

where µ essentially represents the result of a convolution of f with the mean of Y .

Low cross-correlation (and information loss) in the signal may also be caused by the ADC

thresholding. This means that values that are equivalent to 0 or ADCmax could have represented

any signals below or above these thresholds (see equation 2.34), and thus shift the mean and lower

the spread during computation of the cross-correlation coefficient. Pixels with a high portion of

thresholded signals were excluded due to the unreliability of these statistics.

Another significant effect of the experimental data collection process is the introduction of

missing observations. During recording of the data, the raw, digitalised observations – generated in

real time – are stored in finite-size memory buffers. These are then read and flushed by the control-

ling computer asynchronously. This process is less reliably than other operations in the microscope,

which leads to presence of missing observations. Unfortunately, these are often represented by 0 val-

ues in the dataset – the same as low, thresholded signals – rather than being marked as missing. We
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may attempt to tell apart missing observations from low signals by their different spatial structures.

Provided that the data has been recorded with recommended gain and offset settings, thresholded

signals should be very rare, unlikely to appear in neighbouring pixels. Long aligned streaks of zero

values – whose spatial alignment is due to the temporal continuity of scanning – are significantly

more likely to have been caused by missing data, than by truly observing multiple very low signals.

The detection of aligned zeros may be carried out by convolution with a set of neighbourhood filters.

For detecting any x-direction streaks of length at least k, I generate filters

f i = [ 0min(−i,0), 1k, 0min(i+1,0) ], i ∈ [−k+1,k−1], (2.54)

where the vectors of 0s and 1s are concatenated in the direction of fast scanning. If any of the filters

return a zero value, that means that there has been a streak of 0s that the current pixel is part of, and

thus it should be treated as missing data, rather than a true 0 valued observation. We may also notice

and detect similar streaks of 0s in the slow scanning direction – especially near the edges of the field

of view – which may be due to slight overlap of memory buffering and flushing. See figure 2.5 for

an example of identifying missing values in real data. Once missing observations have been flagged,

they may either be removed from the dataset, or imputed. Imputation is a common statistical opera-

tion in data preprocessing, and it means replacing the missing values with its expectation according

to some metric. As a number of algorithms cannot deal with missing observations, I will refer to the

imputed datasets that had each of its missing values successively replaced by the mean of its 3x3x3

spatio-temporal neighbourhood.

A final, computationally crucial assumption we wish to make about the selected background,

non-thresholded pixels, is that all their apparent temporal activity is purely due to noise. If this is

true, our model may be significantly simplified, as not only will Z (x, t ) lack spatial structure (by

subselecting background pixels via equation 2.53), but also temporal one. This enables us to model

the latent true signal with a single constant value, Z (x, t ) = z. Again, in some datasets this as-

sumption definitely cannot be made, as there are clear brightness changes over time, even in the

background. However, these brightness changes are often due to either a non-spatially specific gen-

eral increase in signal; or a slight movement of the whole sample relative to the microscope, as the

animal carries out certain behaviours. Lateral movement artefacts are usually corrected before pub-

lishing the data and should be done by the user before applying this method (see work by Greenberg

and Kerr (2009), Chen et al. (2012) or Pnevmatikakis and Giovannucci (2017), for examples of this

extensively studied operation), but these do not correct for the induced overall temporal changes. As

the change affects all background pixels similarly, these behaviour-elicited temporal changes may

be readily identified and removed from the data via singular value decomposition. Therefore as a

final heuristic preprocessing step, we may apply the following:
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Y(x, t ) =
K

∑
i=1

s i U i (x)V i( t ) (2.55)

Ycorr (x, t ) = Y(x, t )−
Kshared

∑
i=1

s i U i (x)V i( t ), (2.56)

where Kshared� K is the number of globally shared temporal components, and is usually set to 1 or

2, based on the singular value spectrum {s i}K
i=1.

To summarise, after applying the above defined heuristics, we may assume that the data Y

only contains background pixels. The remaining spatial distortions are purely due to the effective

spatial gain we wish to model, and any temporal variation of the observed data is only due to the

various sources of noise present in the system. As a result, we can further simplify our variational

inference scheme of equation 2.28, assuming that the temporal samples at the same location are

independent and identically distributed, and they are fully described by a single intensity value,

which only depends on the modelled spatial gain function G, and a constant latent signal z.

F (x) = logG(x)

λ (x) = eF (x)+logz

log p( Y | λ , ξ ) = ∑
t

log p( Y (x, t ) | λ (x), ξ )

L(q) = Eq [log p( Y | λ , ξ )]

−DKL [ q( F | ψ ) ‖ p( F | θ ) ]

+ log p( logz )+ log p(ξ )+ log p(θ)

(2.57)

Equipped with this objective function, using the spatial gain function model described in sec-

tion 2.2.2 and a likelihood model from section 2.2.3, we may optimise all parameters ( ψ, ξ , θ , z )

for a typical dataset of 512x512 spatial extent and hundreds of temporal frames within hours on

modern computer GPU.

2.3 Results

In this section I fit the proposed model to real calcium imaging recordings, and show that it is capable

of recovering gain variations within the field of view, and standardising the observation process

across different fields of view, by estimating the parameters of the microscopy-inspired observation

model.
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2.3.1 Datasets and model initialisation

In order to show the general applicability of the method, as well as to produce easily verifiable

and reproducible results, I chose to use the dataset openly published as part of the Neurofinder8

project. As part of an effort for establishing a set of calcium imaging related data analysis challenges,

recordings were submitted from a number of established labs. They used two-photon microscopy

with undisclosed settings to image various areas of the mouse brain in vivo during a behavioural

task9. In all instances the mice were awake and head-fixed, and the fluorescent calcium sensor has

been a variant of GCaMP6. See table 2.1 for further details of the individual datasets.

Code Contributors Brain
region

Data Size
(XxYxT)

Pixel
size

Frame
frequency

00.00 Simon Peron
(Svoboda Lab) vS1 512x512x3024 0.87µm 7 Hz

01.00
Adam Packer,
Lloyd Russell
(Hausser Lab)

V1 512x512x2250 1.25µm 7.5 Hz

02.00
Nicholas
Sofroniew
(Svoboda Lab)

vS1 512x512x8000 0.87µm 8 Hz

03.00 Jeff Zaremba
(Losonczy Lab)

dHPC
CA1 512x512x3024 0.59µm 7.5 Hz

04.00
Matthias
Minderer
(Harvey Lab)

Hindlimb
S1 512x512x3000 0.87µm 6.75 Hz

Table 2.1: Basic characterisation of Neurofinder datasets

Before describing the model fits, I first carry out a more extensive characterisation of dataset

00.00, that explains the statistics I compute for each dataset, summarised in table 2.2. These statistics

are part of the heuristic data exclusion step, and are used to initialise the model for fitting. I only

used the first 500 frames of each dataset to fit the model; this both demonstrates data efficiency and

reduces run times. The statistics computed here will be reflective of only those frames as well. The

remainder of the frames were held out, and served as a validation set for investigating the generality

of results.

Figure 2.4 shows the distribution of observed intensities over the whole imaging area and

recording time. The distinct characteristics include the presence of a pedestal peak, which repre-

sents time windows with no photoelectrons observed. The minor fluctuations around the pedestal

are solely due to the electronic noise on, and after the photomultiplier anode. The photoelectric

8URL: https://github.com/codeneuro/neurofinder
9Although a small note of the task types is provided, the associated stimuli, or behavioural data is not published alongside

the calcium imaging recordings.

https://github.com/codeneuro/neurofinder
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Figure 2.4: Pixel intensity histogram for the first 500 frames of dataset 00.00. The insets provide
different visualisations of the same data. The separation of pedestal and signal pixels
are clearly visible in the main figure. Inset 1 points out the separation of threshold and
pedestal, whereas inset 2 shows the presence of high intensity observations. The col-
ors of the individual bars were set to match those of image visualisations and to draw
attention to the changes in axis ranges, but do not convey additional information.

signal peak is much wider due to the large noise in the amplification process itself, as well as the

fact that it includes additive signals from multiple photons within the same gating time window. The

third characteristic is the peak exactly at 0, which is caused by the ADC cutoff – every signal below a

certain threshold results in a 0 value. The excessive presence of 0s in most datasets is not only caused

by thresholded real signals, however, these zeros also contain missing data. In figure 2.5 I display

typical examples of zero observations, and discuss results from my proposed method for identifying

missing data (described in equation 2.54). In some other recordings, one may need to worry about

saturated pixels as well, that appear as an overpopulation of the histogram’s maximum-valued bin.

The next step is to select the locations of background pixels in the dataset, that are expected to

act as time-homogeneous Poisson source of photons, whose intensity depends only on their location.

As described in section 2.2.4, we may identify neural structures via the shared signal in their multi-

pixel extent, as evidenced by the local cross-correlation measure (figure 2.6). Rejecting pixels with

high local cross-correlation results in the identification of the desired background pixels. As the

time courses of individual Poisson sources recorded via extremely noisy machinery is impossible to

identify without a model, the assumption of homogeneity can only be examined after the fact, once

the model has been fit, which is why I call this background selection a heuristic procedure. In some

other datasets, the presence of temporally structured low-dimensional signal is clear, which violates

http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1-histogram_explained_nf0000_20180912T215008-raster.html
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Figure 2.5: Identifying missing values and true observations.
(a-b) showcase the raw data over space and time, (c-d) provide examples and motivate the missing
data identification described in equation 2.54. (e-f) demonstrate the efficacy of the identification

and the effects of flagging the missing data.
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pixel, over 500 frames. Note the high
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(c) Typical example frame, chosen as the
one with the median number of zero ob-
servations (frame 44, 7959 zeros). Note
the completely missing line-scans, as well
as the missing values in the first and last
columns.
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(d) Example pixel, chosen as the one with the
highest number of true zero observations (pixel
307x-61y, 55 total zeros). Without neighbour-
hood information, it would be impossible to tell
apart true 0s from missing data.
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at each pixel,after removing all zeros
flagged as missing data.
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(f) Number of true zero and missing data obser-
vations on each frame. Note, that the number of
true zeros per frame has much smaller fluctua-
tion, more consistent with sampling variance.

http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1_figMissing_a_zeros_space_nf0000_20180913T003902.html
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1_figMissing_b_zeros_time_nf0000_20180913T003902.html
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1_figMissing_c_example_frame_nf0000_20180913T003902.html
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1_figMissing_d_example_pixel_nf0000_20180913T003902.html
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1_figMissing_e_totalzeros_nf0000_20180913T003934.html
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1_figMissing_f_missing_v_true_nf0000_20180913T003902.html
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Figure 2.6: (Left) Local cross-correlation computed according to equation 2.53.
This measure is robustly high for active neural structures∗, and thus
may be used as a means to identify background pixels.
(Right) Thresholded absolute signal – at 0.014 as the threshold, chosen
as the 0.15 quantile of absolute local cross-correlations over all pixels.
The black pixels constitute our accepted background locations, tiling
the entire field of view.
∗High values can also result from increased spatial correlation in illumination at
the left and right edges, caused by the resonant scanning mirror being in the less
linear regime of its sinusoidal curve. Further, our imputation process with local
spatiotemporal mean also increases this measure, meaning we are more likely
to reject locations with missing data. Lastly, neural structures with high mean
activity may contain pixels with low cross-correlation, due to saturation – these
are rejected by detecting this saturation.

the temporal homogeneity assumption. This is often a behaviour-induced side-effect, sometimes an

undesired one of physical brain movement relative to the microscope, or a desired one of increased

brain activity at certain experimental triggers, which affects the background due to the imperfect

optical sectioning and the presence of fine neuropil. As described earlier, such strong global signals

should be checked for, and removed via SVD – or other matrix decomposition methods – before

background selection or model fitting takes place; neither of those variations is what we model, or

want to correct the data for.

Finally, we wish to get simple estimates of certain model parameters, that we may use to ini-

tialise the model fits. A common method of gain estimation, given Poisson inputs is to chart the

variance against the mean for each observation. This Fano factor should be 1 for the input Poisson

process, therefore any other slope must be caused by the photomultiplier and subsequent electronics.

Fit results for dataset 00.00 are shown in figure 2.7 and reported for each dataset in table 2.2.

2.3.2 Model fits and dataset correction

After carrying out the model fits, we need to examine how well it solved the two somewhat distinct

problems: Firstly, we need to ensure that we estimated the parametric model of the photomultiplier

well. Inverting the model enables us to transform the recorded data into estimates of the fluorescent

http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1_figCrossCorr_a_crossCorr000_20180913T003902.html
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1_figCrossCorr_b_trainPix000_20180913T003902.html
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Figure 2.7: Estimation of the photomultiplier and electronics gain and offset using an affine least
squares fit to observed variance against mean of each background pixel, excluding
missing data. On the scatter plot, only a random subset of the background pixel statis-
tics are shown to reduce figure size, but the affine fit was carried out using all 39322
selected pixels.

Code Missing% # Training
locations

Pedestal
Peak±width

Linear
offset

Linear
gain

00.00 1.346% 39322 7.59±8.27 16.19 155.46

01.00 1.036% 39322 135.11±207.78 1137.17 1524.11

02.00 32.15% 39322 0.63±12.84 35.27 331.94

03.00 0.112% 36603 34.20±223.27 -246.82 1024.69

04.00 6.48% 39322 2.12±9.06 19.29 27.89

Table 2.2: Derived statistics of the datasets used

optical signal, which change linearly with respect to the calcium reporter signal, as desired. Sec-

ondly, we aimed to learn a useful description of the spatial gain non-uniformity, which can then be

applied as as a divisive correction to the optical signal. The resulting corrected dataset should then

have a spatially uniform background signal level. Importantly, this correction should remove dif-

ferences not only within a single field of view, but even across datasets from different microscopes,

brain regions, or animals; ultimately making subsequent data analysis methods more standardised,

ubiquitously applicable, and the scientific conclusions drawn more robust.

To show the extent to which these two goals are achieved by the proposed model – as well as

the necessary fitting process – I fitted the model to the first 500 frames of each dataset, and evaluated

the correction on frames 1001-2000, to minimise the effects of temporal noise correlation. First,

I describe the resulting model fit, and the following correction process in detail for dataset 00.00.

Afterwards, in table 2.3, I show the fitted likelihood parameter values for all datasets, as well as the

http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1_figResults_GainEstmation_Orig_nf0000_20191117T170752.html
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effect of the corresponding inversion of the photomultiplier likelihood in table 2.4. Finally, I show a

set of figures for each dataset, that showcase the effects of the grey level to photon flux conversion,

display the learned spatial gain function, apply the correction and discuss its results in figures 2.8

to 2.12.

The correction itself ends up being relatively simple due to using maximum a posteriori esti-

mates of both the likelihood and the the spatial gain non-uniformity, but keep in mind that during

learning we propagate the full noise distributions through the whole model, leading to a robust fitting

procedure. To illustrate this, figure 2.8a shows that the conditional probability p(ν |Y (x, t)) over the

number of photons incident at the photomultiplier, as a function of the grey level (see equation 2.45

for details of the likelihood model). Given this discrete distribution over photon numbers, we find

the maximum a posteriori estimate of the rate of the Poisson distribution that generated the photons,

ν ∼ Poisson(λ ). This λ rate I will now call ‘photon flux’, to indicate it is not a discrete photon count,

but rather our rate estimate of the process that generated the photons ν(x, t), and ultimately the ob-

servation Y (x, t). This grey level to photon flux estimate is shown in figure 2.8b, where the errors

were assumed additive Gaussian in the output space (representing the amplification and electrical

noise), and were also propagated through a MAP inverse of the likelihood.

Code
Pedestal ±
Pedestal Noise
std

Under-
amplification
probability *
Amplitude

Gain per
photon ±
Noise std

Saturation
grey value

(photon flux)

00.00 8.67±4.87 0.30∗51.56 94.89±
53.23 3822 (40.19)

01.00 137.30±64.44 0.30∗142.00 699.02±
561.91 8191 (11.52)

02.00 2.77±9.64 0.32∗91.00 180.45±
85.82 5872 (32.53)

03.00 36.45±69.12 0.05∗128.24 777.39±
353.17 8191 (10.49)

04.00 4.13±7.37 0.03∗22.26 36.11±
10.11 6418 (177.64)

Table 2.3: Learned likelihood parameters for underamplified Poisson likelihood

Next, I investigated the effect of the resulting non-linear transformation on the data, mainly

whether or not the resulting process became more Poisson-like, having a Fano factor of 1 – despite

being rate estimate rather than actual photon count ones. I show the mean-variance plots for the

original and the transformed data in figure 2.8c-d, and also show the parameters of the affine fits in

table 2.4, which shows that we can achieve reasonable standardisation across multiple datasets, that

were created in different labs by different equipments and settings.
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Lastly, I show the need for spatial gain normalisation within a single field of view, by showing

the mean image in figure 2.8e, and the mean photon flux image in figure 2.8f. The latter already

reveals darker areas better, by learning the strong non-linearity present near the photomultiplier

pedestal. These low light levels are typical in biological scanning two-photon imaging application,

and thus most datasets are affected by this non-linearity. However, there usually still remains a lot

of gain variation present across the field of view, the strongest of which is often induced by non-

homogeneity of the scattering tissue (vasculature). This is well illustrated in the learned spatial gain

non-uniformity of dataset 00.00, shown in figure 2.8g. An other important effect is the circularly

symmetric illumination and collection fall-off away from the optical axes, towards the edges of

the image, which is better shown by figures 2.9 to 2.11g. Finally, further strong non-uniformity is

often aligned with the scanning direction, shown in figure 2.12e-g. We wish to design priors that

are capable of identifying non-uniformities that we do wish to correct (such microscope artefacts

or vasculature shadowing), without inadvertently explaining away features of the data that we did

not want to. As discussed earlier in section 2.2.2, our main computational tools for prior design

for Gaussian Processes include the choice of kernel type, inducing symmetries and setting strong

hyperpriors for spatial lengthscales.

Code Orig
Offset Orig Gain Photon

offset
Photon
Gain

00.00 16.19 155.46 0.00 1.35

01.00 137.17 1524.11 -0.29 1.49

02.00 35.27 331.94 0.16 1.62

03.00 -246.82 1024.69 -0.47 1.14

04.00 19.29 27.89 0.26 0.71

Table 2.4: Original and likelihood-corrected (photon) gain and offset estimates

The mean images of the spatially gain corrected and photon flux transformed datasets are shown

in figures 2.8 to 2.12h, and they demonstrate the strengths and potential weaknesses of the proposed

method. Note that I applied the exact same hyperparameter settings, initialisation, and priors to all

five vastly different datasets. The too long spatial lengthscales used were unable to perfectly capture

the strong edge effect in dataset 04.00, resulting in overamplification near the scan-aligned edges,

but otherwise the results are fairly uniform.

To more precisely describe the effects of the spatial gain normalisation, I also evaluated it at

the background pixel locations, on the held out time frames. Furthermore, as the single-observation

photon-flux transform induces a difficult-to-understand noise distribution, I instead estimated a sin-

gle λ (x) rate per background location, calculating the maximum a posteriori estimate λ̂ (x) given

all validation frames, Y (x, t ∈ [1001,2000]). This is consistent with our original modeling assump-
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tion, that the only variation in background observations are due to Poisson and additive noise, and

the signal is generated at a fixed rate, λ (x). The histogram of the estimated λ̂ (x) values over all x

background locations, is shown in figure 2.8i. To illustrate the effects of the spatial gain correction,

I also overlay the histogram of the gain-corrected λ̂ (x)/G(x) values, where I matched the mean of

the histograms to enable direct comparison. We can see that in all datasets the spatial gain correction

reduces the spread of the histogram, showing that the spatially gain-corrected background is indeed

much more uniform.
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Figure 2.8: Evaluating model-based data correction for dataset 00.00.
(a) Conditional distribution over potential incident photon count at each observed output grey level.
(b) Maximum a posteriori estimate of the photon flux, given a single output observation. Error bars
indicate one sigma output noise level, transformed through the estimated likelihood non-linearity.
(c) Mean-variance plot of original data, excluding missing data.
(d) Mean-variance plot after the likelihood transform, with the signals representing photon flux.
(e) Original mean image, excluding missing data.
(f) Mean over estimated photon flux per frame.
(g) Learned spatial gain non-uniformity.
(h) Mean over estimated spatially gain corrected photon flux per frame.
(i) Histogram of maximum likelihood photon flux per pixel, with the maximum likelihood photon
flux computed across all validation frames. The spatial gain-correction is then applied to these
stationary photon flux estimates, and the mean-matched histograms are shown.
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(a) Conditional distribution over photons at
grey levels.
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(b) Maximum a posteriori estimate of in-
cident photon flux at a single output ob-
servation.
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(c) Mean-variance plot in original data, per background
pixel.
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(d) Mean-variance plot of photon flux es-
timates, per background pixel.

http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1_figResults_InverseMarginals_nf0000_20190525T114324.html
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1_figResults_InverseML_NonLin_nf0000_20191117T170752.html
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1_figResults_GainEstmation_Orig_nf0000_20191117T170752.html
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedHtml/ch1_figResults_GainEstmation_Photon_nf0000_20191117T170752.html
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(f) Temporal mean after transformation into
photon flux estimates.
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(g) Learned spatial gain non-uniformity.
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(h) Temporal mean after both likelihood and
spatial gain correction.

(i) Mean-matched histograms of original and corrected pixel-wise Poisson in-
tensity, showing the effect of spatial gain correction.
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Figure 2.9: Evaluating model-based data correction for dataset 01.00.
(a) Marginal distribution over potential incident photon count at each observed output grey level.
(b) Maximum a posteriori estimate of the photon flux, given a single output observation. Error bars
indicate one sigma output noise level, transformed through the estimated likelihood non-linearity.
(c) Mean-variance plot of original data, excluding missing data.
(d) Mean-variance plot after the likelihood transform, with the signals representing photon flux.
(e) Original mean image, excluding missing data.
(f) Mean over estimated photon flux per frame.
(g) Learned spatial gain non-uniformity.
(h) Mean over estimated spatially gain corrected photon flux per frame.
(i) Histogram of maximum likelihood photon flux per pixel, with the maximum likelihood photon
flux computed across all validation frames. The spatial gain-correction is then applied to these
stationary photon flux estimates, and the mean-matched histograms are shown.
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(a) Marginal distribution over photons at grey
levels.
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(b) Maximum a posteriori estimate of in-
cident photon flux at a single output ob-
servation.

0 500 1000 1500 2000

0

0.5M

1M

1.5M

2M

2.5M

3M
Background pixels

Affine fit

Original observations

Mean intensity over time (a.u.)

V
ar

ia
nc

e 
ov

er
 ti

m
e 

(a
.u

. 2  ) 0 outliers / 7865 data

Affine fit: y = 1524.11 * (x-137.17)

(c) Mean-variance plot in original data, per background
pixel.
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(d) Mean-variance plot of photon flux es-
timates, per background pixel.
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(f) Temporal mean after transformation into
photon flux estimates.
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(h) Temporal mean after both likelihood and
spatial gain correction.

(i) Mean-matched histograms of original and corrected pixel-wise Poisson in-
tensity, showing the effect of spatial gain correction.
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Figure 2.10: Evaluating model-based data correction for dataset 02.00.
(a) Marginal distribution over potential incident photon count at each observed output grey level.
(b) Maximum a posteriori estimate of the photon flux, given a single output observation. Error bars
indicate one sigma output noise level, transformed through the estimated likelihood non-linearity.
(c) Mean-variance plot of original data, excluding missing data.
(d) Mean-variance plot after the likelihood transform, with the signals representing photon flux.
(e) Original mean image, excluding missing data.
(f) Mean over estimated photon flux per frame.
(g) Learned spatial gain non-uniformity.
(h) Mean over estimated spatially gain corrected photon flux per frame.
(i) Histogram of maximum likelihood photon flux per pixel, with the maximum likelihood photon
flux computed across all validation frames. The spatial gain-correction is then applied to these
stationary photon flux estimates, and the mean-matched histograms are shown.
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(a) Marginal distribution over photons at grey
levels.
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(b) Maximum a posteriori estimate of in-
cident photon flux at a single output ob-
servation.
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(e) Original mean image over frames, ex-
cluding missing data.
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(f) Temporal mean after transformation into
photon flux estimates.
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(h) Temporal mean after both likelihood and
spatial gain correction.

(i) Mean-matched histograms of original and corrected pixel-wise Poisson in-
tensity, showing the effect of spatial gain correction.
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Figure 2.11: Evaluating model-based data correction for dataset 03.00.
(a) Marginal distribution over potential incident photon count at each observed output grey level.
(b) Maximum a posteriori estimate of the photon flux, given a single output observation. Error bars
indicate one sigma output noise level, transformed through the estimated likelihood non-linearity.
(c) Mean-variance plot of original data, excluding missing data.
(d) Mean-variance plot after the likelihood transform, with the signals representing photon flux.
(e) Original mean image, excluding missing data.
(f) Mean over estimated photon flux per frame.
(g) Learned spatial gain non-uniformity.
(h) Mean over estimated spatially gain corrected photon flux per frame.
(i) Histogram of maximum likelihood photon flux per pixel, with the maximum likelihood photon
flux computed across all validation frames. The spatial gain-correction is then applied to these
stationary photon flux estimates, and the mean-matched histograms are shown.
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(a) Marginal distribution over photons at grey
levels.
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(b) Maximum a posteriori estimate of in-
cident photon flux at a single output ob-
servation.
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(e) Original mean image over frames, ex-
cluding missing data.
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(f) Temporal mean after transformation into
photon flux estimates.
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(h) Temporal mean after both likelihood and
spatial gain correction.

(i) Mean-matched histograms of original and corrected pixel-wise Poisson in-
tensity, showing the effect of spatial gain correction.
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Figure 2.12: Evaluating model-based data correction for dataset 04.00.
(a) Marginal distribution over potential incident photon count at each observed output grey level.
(b) Maximum a posteriori estimate of the photon flux, given a single output observation. Error bars
indicate one sigma output noise level, transformed through the estimated likelihood non-linearity.
(c) Mean-variance plot of original data, excluding missing data.
(d) Mean-variance plot after the likelihood transform, with the signals representing photon flux.
(e) Original mean image, excluding missing data.
(f) Mean over estimated photon flux per frame.
(g) Learned spatial gain non-uniformity.
(h) Mean over estimated spatially gain corrected photon flux per frame.
(i) Histogram of maximum likelihood photon flux per pixel, with the maximum likelihood photon
flux computed across all validation frames. The spatial gain-correction is then applied to these
stationary photon flux estimates, and the mean-matched histograms are shown.

0 1000 2000 3000 4000 5000 6000

0

0.2

0.4

0.6

0.8

1 n_photon > 10

n_photon = 10

n_photon = 9

n_photon = 8

n_photon = 7

n_photon = 6

n_photon = 5

n_photon = 4

n_photon = 3

n_photon = 2

n_photon = 1

n_photon = 0

Grey level in data (a.u.)

C
um

ul
at

iv
e 

pr
ob

ab
il

ity
 o

f 
ph

ot
on

 c
ou

nt

(a) Marginal distribution over photons at grey
levels.
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(b) Maximum a posteriori estimate of in-
cident photon flux at a single output ob-
servation.
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cluding missing data.
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(f) Temporal mean after transformation into
photon flux estimates.
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(h) Temporal mean after both likelihood and
spatial gain correction.

(i) Mean-matched histograms of original and corrected pixel-wise Poisson in-
tensity, showing the effect of spatial gain correction.
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2.4 Discussion

In this chapter I described a simplified, but mechanistic generative model of datasets recorded by

two-photon calcium imaging of neural tissue, and derived an algorithm capable of estimating the

model parameters directly from the observed data. I aimed to construct the model in such a way,

that the parameters directly correspond to particular biological or physical processes, which makes

it possible to interpret and potentially validate the recovered estimates. More importantly, if some

of these parameter values are measured by the experimenter, they can easily be incorporated into the

algorithm as fixed values or strong priors, making the estimation of other, unknown parameters more

precise and robust.

I then applied this algorithm to multiple recordings released publicly as part of the Neurofinder

challenge, to showcase its versatility and applicability, as a general method of standardising data

from different fields of view, brain regions or laboratories. The standardisation procedure has two

distinct parts. Firstly, the algorithm estimates the parameters of the photomultiplier and subsequent

electronics, that transform photon counts into the observed digital signal. These parameters can

then be used to standardise the signal properties of different field of views, and to correct for non-

linearities introduced by the observation process. Secondly, it attempts to correct for uneven gain

within a single field of view. The spatial unevenness results from the multiplicative contribution

from many processes, both biological and physical in nature. I do not try to distinguish their indi-

vidual contributions, merely acknowledge the fact that this unevenness exists, and algorithmically

estimate its extent. Given the learned models for each dataset, I then inverted them to get standard-

ised datasets, in which observed values represent the maximum a posteriori instantaneous photon

fluxes, and the background signal is indeed equalised across the field of view.

My preprocessing method performed well in equalising signal characteristics and gain across

the datasets, but there are still a few outstanding issues. Firstly, to avoid the intractable modelling

of signal variations over time, my fitting process assumes that all variations in the measurements of

a single pixel are not reflective of changes in the signal, but are solely due to the contributions of

the several noise processes in place: the inherent Poissonity, the photomultiplier noise and the sub-

sequent electric digitalisation circuits. This is of course a very strong assumption, and is definitely

not true for the regions of interest, in which we do expect to have a time-varying signal. Thus, to

try and comply with this assumption, the preprocessing model is fit only to a heuristically selected

subset of the pixels, which I deemed ‘background’, and treat them as having a single Poisson mean

across all frames. Often even the background – thought to be composed of fine neuropil – has clear

temporal variations which may need to be reduced, for example via matrix decomposition meth-

ods. An alternative, experimental way of providing training data for the preprocessing method is to

include unstimulated period during experiments, in which synchronised background variations are

often reduced. A second, smaller issue results from the approximate Gaussian Process nature of
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our estimated uneven spatial gain function. Gaussian Processes, especially with the added KISS-GP

kernel interpolation for their scalability, excel at describing spatially smooth functions, with uni-

form smoothness. The data we need to describe here, however, contain sharp changes at the edges

of the scanning direction, as well as shadowing from vasculature across a range of diameters. For

the examples shown in the chapter, I used a single setting of the approximations and kernel func-

tion hyperparameters, to show the method is quite generally applicable for vastly different datasets.

However, it does also clearly fail in some situations, and that can mostly be contributed to the inter-

polation introduced by KISS. Although omitting the grid interpolation and using a large number of

inducing points is possible, it would make the method significantly less scalable. This difficulty will

be reduced with the ongoing development of hardware and algorithmic tools, and does not represent

an inherent problem in the model itself.

The preprocessing method described here addressing a problem that has been identified before.

Numerous image normalisation algorithms exist, often in the context of histogram equalisation and

contrast enhancement (Bonnier and Simoncelli 2005; Dijk et al. 2007; Huang, Cheng, and Chiu

2013; Jin, Syu, and Jou 2017; Kim, Paik, and Kang 1998). My proposed solution is novel in the

sense of addressing the multiple types of noise present in the recorded data, and utilising multiple

samples of the same field of view. Others created image model based image standardisation, for

example based on human vision (Lyu and Simoncelli 2008) or via detecting salient regions (Cheng

et al. 2015), but these models and the resulting algorithms do not take into account the particular

characteristics of two-photon calcium imaging. For neural data analysis in particular, similar nor-

malisation is sometimes used less explicitly, by forming part of a complex model or data analysis

pipeline. These complex models attempt to identify smaller regions of interest, and often treat the

spatially non-uniform background signals as an additive element (e.g. Pachitariu et al. (2016)), but

do not describe its generative model thoroughly. To my knowledge, my idea of representing the dis-

crete nature of the recorded optical signal in calcium imaging microscopy, and discussing its effect

on the data, is novel. The joint identification of the observation model parameters, the regions of

interest and their activity time courses would be, of course, the ideal solution to avoiding the need

for heuristic selection of background pixels, as done by my preprocessing; however, it would sig-

nificantly increase model complexity and computational costs. I believe a potential implementation

would involve approximating a hierarchical model, which includes preprocessing, ROI identifica-

tion, and activity extraction. In this setting, the model parameters learned by preprocessing could

also be influenced by subsequent algorithms. Such integrated hierarchical models could well be the

most reproducible, interpretable and robust solution to carrying out data analysis on neural calcium

imaging recordings, but for now they are somewhat out of reach.

Lastly, I want to emphasise the point, that parameterisation of the proposed model corresponds

to measurable physical parameters. Although estimates of these are indeed recoverable from the data

– as shown in this chapter – I think the more important message is that often these parameters are
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accessible from the microscope control software, or could be measured via calibration slides prior to

experiments. Instead of then publishing and distributing the recordings standalone – as currently is

the practice – such metadata could be attached to aid subsequent analyses. Furthermore, as revealed

by the preprocessing algorithm, many datasets contain very low photon counts, which are greatly

amplified, resulting in high levels of noise. According to the photon flux estimates in this chapter, I

believe many of the currently used microscopes would be able to record the same datasets in photon

counting mode, completely eliminating the need for the non-linear inversion of photomultiplier am-

plification, making the spatially uneven gain – introduced by biological and optical elements prior

to the photomultiplier – the only problem needing correction.

To summarise, in this chapter I introduced a preprocessing method that standardises signals

across and within field of views, and showed that it works in a variety of settings, applicable to

numerous already published datasets. Furthermore, I hope that the success of my described model

highlighted characteristics of the generative model of the observed data, especially how various

elements of the two-photon microscope transform the signal we originally intended to measure.

These transformations can be partially recovered by my proposed model, but for moving towards

future standardisation of calcium imaging, the transformations could be characterised during the

data collection process, leading to more comparable recordings within fields of view, and across

different brain regions, animals and laboratories.



3

Segmentation of neural cell bodies via

Convolutional Higher Order Matching

Pursuit (CHOMP)

A mathematician, however, who could back his prophecy with mathematical formulas and

terminology, might be understood by no one and yet believed by everyone.

– Isaac Asimov, Prelude to Foundation

3.1 Introduction

A major goal at the interface of computational and experimental neuroscience is to gain direct and

robust access to single neurons’ activity, in the hopes of testing existing models of neural information

processing, constraining the space of possible computational models, and potentially leading to the

development of new ones that explain novel phenomena embedded in the recorded activities. Pro-

viding such access has long been a joint effort between developing novel experimental techniques,

and the matching data analytic tools that can robustly extract single neurons’ activity from the raw

datasets provided. Rey, Pedreira, and Quiroga (2015) review an excellent example of such a col-

laboration, describing the developments in extracellular electrophysiological recordings as well as

the corresponding analytic technique of spike sorting. Here I focus on a more recent, but now wide-

spread experimental technique: two-photon imaging of genetically encoded fluorescent calcium re-

porters, or calcium imaging for short. Similarly to the spike sorting problem, calcium imaging has

spawned its own set of data analysis challenges. A recent review by Stringer and Pachitariu (2019)

discusses the current algorithmic needs, including motion correction and spike deconvolution; in this

chapter, I address the question of localising single neurons and extracting their activity1 over time,

1It should be noted that this activity is not necessarily a direct result of electrical activity, but instead reflects the concen-
tration of calcium ions in the cytoplasm. Although there indeed is strong correlations between electrical activity, the amount
of free calcium and the emitted fluorescent signal, cells are also known to strongly regulate calcium concentrations via in-
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assuming the datasets have already been sufficiently motion corrected, and potentially the various

non-uniformities have been mitigated, as proposed in chapter 2.

This process is generally called the identification of regions of interest (ROIs). A standard pro-

cedure that converts a video of a field of view into activity estimates of individual neurons, is the

following: small binary masks are placed onto the field of view by a human marker, each reflecting

the spatial extent of a neuron; pixel values within these ROIs are then summed to reflect the neu-

ral activity. There are two main concerns about this procedure: a.) observed pixel values within

ROIs often contain signal from other neurons, or out-of-focus fluorescence due to the imperfect op-

tical sectioning of the microscope; and b.) human markers processing datasets have various learned

biases, and can also be strongly influenced by changing visualisations – the receiver operating char-

acteristic curve of manual segmentation across multiple human markers is shown by Pachitariu et al.

(2013). These issues led to the ongoing development of various algorithms, that attempt to automati-

cally decompose the observed fluorescence into sums of signals generated by individual – potentially

overlapping – neurons, taking into account fine neuropil-induced background or other contamina-

tions; these are called ‘demixing’ algorithms in the field. The need for widely applicable algorithms

for extracting ROIs from calcium imaging recordings is well illustrated by the existence and popu-

larity of the Neurofinder2 challenge. This is a collaborative effort from multiple experimental labo-

ratories; each lab made calcium imaging datasets publicly available, and provided a segmentation of

ROIs for each field of view3. The challenge provides an online interface for collecting implementa-

tion of proposed algorithms; it also validates and ranks the submissions automatically, using held out

data. In the future of calcium imaging, such quick automated ROI extraction algorithms may play

an even greater role: with the advancement of non- or partially-scanned imaging techniques (Schuck

et al. 2018; Schultz et al. 2017), we are able to record from significantly more cells – provided we

know and target their locations. This requires identifying ROIs rapidly and accurately as part of

the closed experimental loop, giving an even greater role to robust methods that do so; especially

considering that their results would now affect the data collected, rather than just the analyses of

already fixed datasets.

In this chapter, I first provide an overview of existing methods that aim to identify single neu-

rons; I discuss their main ideas, strengths and weaknesses in section 3.1.1. Next, I review matching

pursuit methods in section 3.1.2, as they form the basis of a new algorithm I propose in section 3.2:

Convolution Higher Order Matching Pursuit, or CHOMP for short, is a demixing algorithm tailored

to identify the apparent characteristics of neural activity in calcium imaging. I presented the compu-

tational method at the 2016 Machine Learning in Signal Processing conference (Bohner and Sahani

tracellular stores. Therefore the insights gained from calcium imaging may differ from those obtained via direct electrical
recordings, and should be interpreted with care.

2
http://neurofinder.codeneuro.org/

3It is unknown how these segmentations were created. Known techniques include a.) segmentation by multiple human
markers and approaching a consensual result; and b.) imaging a nuclear marker molecule alongside the calcium sensor, to aid
cell localisation.

http://neurofinder.codeneuro.org/
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2016), and I showcased its neural application at the 2016 Gatsby Tri-Center Meeting. Here, in sec-

tion 3.3, I apply it to both simulated data, and real recordings released by the Neurofinder challenge,

then evaluate the results. Finally, in section 3.4, I discuss the merits of the proposed model, required

extensions, and the future of algorithmic processing of neural calcium imaging recordings.

3.1.1 Overview of ROI extraction algorithms for calcium imaging

The algorithms presented here generally agree upon the fact that one needs to simultaneously es-

timate the spatial extent as well as the activity time courses of hundreds of neurons, in the face of

significant noise and signal contamination. However, they also all acknowledge the fact that this

problem is both computationally intractable, and the solution is not well regularised in the number

of neurons inferred, making it a difficult problem. What these algorithms differ in, is the types of

approximations they make to arrive at a tractable problem, and the types of constraints they put on

the potential spatial extents, as well as the time course characteristics of individual neurons.

Spatio-temporal constraints. The constraints placed on spatio-temporal characteristics fit into

three broad categories. Some methods place no constraints (such as PCA, SVD), but they tend to

arrive at mixtures of sources rather than separating them. Placing spatial and temporal sparsity con-

straints leads to the family of independent component analysis methods (see Mukamel, Nimmerjahn,

and Schnitzer (2009), based on Hyvärinen and Oja (2000)); whereas non-negativity constraints re-

sult in non-negative matrix factorisation based segmentation (Maruyama et al. 2014). These ideas

help with separating signals from neurons with strongly differing activities; however, the resulting

algorithms do not separate signals from correlated sources well – even spatially distant ones – as

they do not take into account the physical shape of neurons. One may add more constraints to matrix

factorisation that further limit the potential spatial filters’ shapes (Pnevmatikakis et al. 2016). Alter-

natively, the use of templates – basis functions with limited spatial support – lead to convolutional

methods; see Szlam, Kavukcuoglu, and LeCun (2010) for the original algorithm, and Pachitariu et

al. (2013, 2016) for neural applications. Methods based on normalized cut or level set segmentation

(Jianbo Shi and Malik 2000; Kaifosh et al. 2014; Reynolds et al. 2017; Smith and Häusser 2010),

rely on finding spatially connected, but otherwise non-specifically shaped regions, that minimise the

sum of within-cell and within-background discrepancies; it is worth noting that these methods often

rely on heuristic background equalisation such as CLAHE in Kaifosh et al. (2014) or locally adaptive

filters in Smith and Häusser (2010), and could thus benefit from the method described in chapter 2.

Finally, a popular form of temporal constraint is to represent only certain features of the individual

pixels’ activity, such as the maximum, the mean (Pachitariu et al. 2013), or the cross-correlation with

nearby pixels (Kaifosh et al. 2014; Reynolds et al. 2017; Smith and Häusser 2010).
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Tractability. Such feature representations are not only useful to reduce noise or represent desir-

able neural characteristics, but in fact they significantly reduce the computational complexity of the

methods. Indeed, separating the problems of spatial source localisation and temporal reconstruction

of activities into two distinct steps is a common way of achieving tractability. As such, source lo-

calisation is often carried out on a reduced feature set; nevertheless it remains a difficult problem

to simultaneously detect all sources at once, such that they all adhere to the spatio-temporal con-

straints. Level set methods are naturally intractable, and are typically solved by so-called active

contours, which make an initial guess and then greedily evolve the individual regions, numerically

solving partial differential equations; given good initial guesses and a simple correlation-based fea-

ture representation, these can then converge rapidly. In factorisation style algorithms, the source

detection problem may be solved by minimising a cost function that combines reconstruction loss

with a penalty for the number of sources used; essentially an L0-regularised regression. This is a

difficult cost function to optimise exactly, and therefore we turn to approximate inference methods.

Two general types exist: one, the so-called L1-relaxation results in solvable problems via replacing

the L0 cost with an L1 one on reconstruction weights, and is applicable to both matrix factorisation

methods (Pnevmatikakis et al. 2016) and template-based convolutional methods (via group lasso,

introduced by Yuan and Lin (2006) and improved by Boyd et al. (2011). Another way of approx-

imating the L0-regularised regression problem is via greedy iterative reconstruction of sources that

maximally decrease the reconstruction loss; these are called matching pursuit methods (Pachitariu

et al. 2013, 2016). The algorithm I propose in this chapter – Convolutional Higher Order Matching

Pursuit – belongs to this family of methods; thus I now review in more detail matching pursuit, as

well as its various extensions that make it more applicable to the neural source detection problem.

3.1.2 Introduction to matching pursuit

The idea of L0-regularised regression is that given a signal y∈R|I| recorded at the set of I locations

as the dependent variable, and multiple templates {bk ∈ R|I|}K
k=1 as the independent variables, we

can find the optimal sparse regression coefficients x̂ ∈ RK – also called reconstruction coefficients,

and activations – as

x̂ = argmin
x

(
‖y−x>B‖2 +λ‖x‖0

)
, (3.1)

where λ is the regularisation penalty, and B collects the bk templates as columns – the individual

templates are also called basis functions or dictionary elements, and their collection can be referred

to as ‘bases’, or ‘dictionary’.

Matching pursuit (Mallat and Zhang 1993) provides a greedy approximate solution to this re-

gression problem, by initialising x = 0 and activating its xk elements one by one: on each iteration,

it first marginally solves for each non-active element xk, then selects the one that maximally reduces
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the residual reconstruction cost:

Algorithm 3.1 Matching Pursuit algorithm pseudocode

1: Let x̂0 = 0 be the empty vector of basis coefficients, j = 0 the current iteration, and B the

template matrix.

2: repeat
3: j← j+1.

4: Calculate the current residual ỹj = y− (x̂j−1)>B.

5: For each unused k, solve for the best reconstruction of the residual via xkbk, and compute

potential reconstruction cost change ∆Creconst
jk , if we were to use the k-th basis function.

∀k where x̂j−1
k = 0

xj
k = argmin

xk

‖ỹj− xkbk‖

∆Creconst
jk = ‖ỹj− xj

kbk‖2−‖ỹj‖2

= (xj
kbk)>(xj

kbk)−2(xj
kbk)>ỹj

(3.2)

6: Let x̂j
k = argmin

xj
k

∆Creconst
jk be the newly activated basis function coefficient on iteration j

7: until ∆Creconst
jk +λ > 0 for all k, and thus adding a source does not decrease the total cost C.

8: Return x̂j−1 as the approximate solution to equation 3.1.

Although a rather general algorithm, this basic matching pursuit formulation is not immediately

applicable to the neural source segmentation problem. Firstly, this formulation assumes we have a

single sample y to reconstruct, whereas in neural applications multiple measurements are available

over time: y(t), with t ∈ [0,T ]. This issue may be addressed by either extending the templates b,

or altering both the coefficients x and the cost function C to account for the repeated samples. For

large T , these solutions lead to expensive algorithms, and often a feature representation of the data

is extracted instead: Let Y ∈ R|I|×d f be d f features of the data, with the templates b being elements

of this feature space, b ∈ R|I|×d f , while still having a single activation coefficients per template,

x ∈ RK.

The main difficulty of applying matching pursuit to neural calcium imaging comes from defin-

ing a suitable collection of templates, B. This dictionary needs to be able to sufficiently represent

the data (or features); moreover, to segment neurons, each activated bk template needs to corre-

spond to exactly one neuron. However, in calcium imaging, the field of view contains a large, and

underdetermined number of neurons, whose locations and shapes are also unknown. Therefore to

represent every possible shape and location, and to infer the neural identities via the activations x̂

resulting from algorithm 3.1, we would need an extremely large number of templates, leading to an

intractable algorithm. This is addressed by two successive extensions to the basic matching pursuit

algorithm, convolutional (Szlam, Kavukcuoglu, and LeCun 2010) and convolutional block matching
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pursuit (Pachitariu et al. 2013). The convolutional extension assumes that the size of the templates

– now denoted P for patch size – is smaller than the observation space I, and the full dictionary

B is effectively created as a convolution of the small templates with all potential locations. The

idea behind this extension is that we never need to represent the full B convolutional dictionary,

but rather organise the reconstruction coefficients x such that x ∈ R|I|×K, ie. we represent the basis

function activations at every potential location4. The reconstruction in step 4 of algorithm 3.1 is

now computed as ∑k bk ∗ [x̂j−1] ·k, and we need to accordingly adjust computing xj
k and ∆Creconst

jk in

step 5; otherwise the algorithm remains the same. Block matching pursuit is a both mathematically

and computationally straightforward addition, which changes the L0 penalty term of equation 3.1 to

‖∑k x ·k‖0. Conceptually, however, it allows us to further reduce the dictionary size K by enabling

us to use multiple basis activations at the same location without additional cost. This means that po-

tential cell shapes at a location are not described by a single bk template (requiring many templates

to account for all possible shapes), but rather as a linear combination of the templates, ∑k x ·kbk,

capable of describing numerous shapes with only a few templates. The complete cost function of

convolutional block matching pursuit is thus

C =

∥∥∥∥∥y−∑
k

bk ∗ [x] ·k

∥∥∥∥∥
2

+λ

∥∥∥∥∥∑k
x ·k

∥∥∥∥∥
0

 (3.3)

and the approximate matching pursuit solution can still be computed by algorithm 3.1, with small

modifications to step 4 and 5.

My algorithm, Convolutional Higher Order Matching Pursuit – introduced next, in section 3.2.1

– uses this idea in essence, with a feature set Y specifically designed to match interesting neural

characteristics, while enabling us to exploit the computational advantages of Convolutional Block

Matching Pursuit. The requirement of a – now much simpler – dictionary of basis functions B as

input still remains, and this I discuss in section 3.2.2, how one might initialise and update it via

dictionary learning.

3.2 Convolutional Higher Order Matching Pursuit and dictio-

nary learning for segmenting neurons

3.2.1 Convolutional Higher Order Matching Pursuit

The aim of Convolutional Higher Order Matching Pursuit (CHOMP) is to carry out sparse signal

decomposition of multidimensional, repeated signal measurements, where the measured signal di-

mensions have some built-in structure; in the case of our main application – calcium imaging –
4It is worth mentioning that the set of potential source locations need not coincide with the observation locations I for

convolutional matching pursuit to be applicable. To my knowledge this has not been derived before, and thus I introduce this
novel possibility in section 3.2.
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this would be pixels or voxels organised in a 2 or 3 dimensional grid. Therefore, from here on-

wards I will refer to this structure as measurement ‘space’ or ‘spatial structure’ and the individual

measured dimensions as being ‘locations’, although the structure of measurements may well be of

spatio-temporal nature, in which repeated measurements would be multiple time series.

In this section I first discuss the algorithm rather generally, without explicitly specifying the

spatial structure. However, as our intention is to analyse data from calcium imaging – and thus

evenly spaced grids as our measurement structure – I will describe in detail the computational sim-

plifications that can be made to significantly speed up the algorithm for grid data.

Generative model

In order to understand the problem this algorithm solves, I first describe the generative model. This is

based on the idea of measurements that are generated by a set of sources, which have fixed locations

and small spatial extents, but varying activity across samples. To clarify the language used in this

section: the maximum spatial extent of a source I call a ‘patch’, the apparent signal generated by

a source on a single frame is a ‘signal mode’, assumed to be described by a linear combination of

fixed basis functions (templates).

Each measurement at an observation location thus represents the superposition of spatially

shifted samples of the apparent signal modes from multiple sources, with the shifts correspond-

ing to the vector difference of the observation location and the source location. This measurement

process is illustrated in figure 3.1. These measurements – corrupted by additive noise – are taken

at each observation location repeatedly. The resulting samples are assumed to be independent from

one-another5.

Formally, let the data be generated by a set of S sources, O= {Os}S
s=1, located within a

D-dimensional space. Each source has a location, ls ∈ RD, and generates a measurable signal in

a finite extent D-dimensional patch around its location. This signal is described by a linear combina-

tion of K known basis functions, B= {bk(·)}K
k=1, with activations x ∈ RK for each basis. The bases,

bk : RD 7→ R, are each stationary functions with finite cuboidal support P = P1×P2× . . .×PD,

where P i = [−m i,m i] are closed intervals around zero; therefore bk(l′) 6= 0, ⇐⇒ l′ ∈ P , where l′

often represents a vector difference, l− ls, essentially centring the basis function at a source location.

The source locations and their corresponding time-varying6 activations at times T , {xs,t} t∈T ,

are collected in Os = {ls,xs}. Let T = [1, . . . ,T ] for simplicity. Our goal is to infer these source

locations and activations, given T noisy measurements, {yt}T
t=1. We write y ∈ R|I|×T for the entire

collection of measurements, where I = I1×I2× . . .×ID is a set of D-tuples indexing discrete

5This is not generally the case in time series measurements, such as our calcium imaging videos. However, if the time-
varying signal is stationary over time and sampled less frequently than its auto-correlation length, our independence assump-
tion is fairly satisfied. We can achieve this by sufficiently downsampling high-frequency time-series measurements.

6From here onwards I will refer to the signals changing over samples as them having time courses, as they do in calcium
imaging, although this need not generally be the case.
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l1

P l1

l2

P l2

I1

I2

Figure 3.1: Source locations and patches embedded in a grid measurement space. The patches
might overlap, or extend over the edges of the measurement space, as illustrated. Black
circles indicate the source locations, the grey boxes show the patches that the individ-
ual sources affect and the dark grey area indicates overlap between the patches, where
the signals from the two sources are added. The grid represents a measurement grid,
and the observed data is the signal collected within each square, corrupted by additive
noise.

measurement locations in the D-dimensional data space7. The generative model of our measured

data y, given the bases B and the sources O, is thus:

∀ l ∈ I, t ∈ {1 . . .T}

ỹ l, t(O,B) =

(
S

∑
s=1

K

∑
k=1

bk(l− ls)xs,t
k

)
y t = ỹ t(O,B)+ εεε

t,

(3.4)

where εεε
t ∼ N (0, C ∈ R|I|×|I| ) is additive Gaussian noise, potentially correlated across measure-

ment locations I, but independent over samples t.

Cost function

Based on the generative model described, the inference problem can be described as two joint in-

ferences: finding the source locations, and estimating the corresponding signal time courses at each

location. An added complication is that the number of sources is unknown, and need to be estimated

as part of the inference.

As discussed earlier in section 3.1.2, matching pursuit methods introduce a penalty for each ad-

ditional source used in reconstructing the data. They thus find a balance between the reconstruction

error and the number of objects used, by starting with 0 sources and maximum error, and adding

7Note that in experimental setups the measurement locations themselves would have an effective spatial extent within the
space, rather than being point measurements. However, in current technical description, the effective spatial area of signal
collection can be represented within the basis elements bk(·) themselves – effectively a convolution of the true signal mode
with the measurement extent – and thus we can safely think of the measurements, as if collected at point-like locations.
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sources iteratively, until the penalty for adding a new source would be larger than the reduction in

reconstruction cost. Let our cost function thus be the sum of the reconstruction error and the cost of

the used sources:

C = Creconst (y, ŷ) + Csources (Ô). (3.5)

Notice, that in this formulation the inference of the locations and activations of sources have

to be done jointly each time we add a new source, making this a rather complicated, and often

intractable problem. As discussed in section 3.1.1, this can be resolved by separating the inference

into two steps, first finding source locations in a simpler feature representation of the full data, then

reconstructing the full activity time courses given the source locations – both potentially tractable

problems. The main task is now to select features that enable precise localisation, even considering

the sparse neural activity, and the significant noise. Previous algorithms use the mean (Pachitariu et

al. 2013), or the local cross-correlation (Pachitariu et al. 2016) as features, however they suffer from

missing neurons with low activity, or lack the additive representation of signal from overlapping

sources, respectively.

Convolutional Higher Order Matching Pursuit (CHOMP) extends and encompasses these ear-

lier feature representations, and creates a flexible framework that takes into account the character-

istics of neural activities recorded via calcium imaging. We expect the cytoplasmic calcium signal

in active neurons to exhibit higher variance than background signals, as well as being more skewed

towards higher values, and more kurtotic due to the sparse activity. CHOMP thus extracts these

features from the provided samples, and finds source locations that display the expected neuron-like

properties.

We also wish to retain the additivity of the individual signals for spatially overlapping sources,

therefore our feature representation needs to operate in the space of cumulants. Furthermore, due to

the non-pointlike nature of our sources, we need to retain not only the pointwise cumulants at each

observation location, but also the joint cumulant tensors (such as the covariance matrix) for observa-

tions that are within the same patch P , and thus could be jointly influenced by a single source. The

unbiased, minimum-variance empirical cumulant estimator is the multivariate K-statistics, defined

by Kendall, Stuart, and Ord (1987). In order to compute it, we first need to define the unnormalised,

non-central vector moments of the observed data, as

S r =
T

∑
t=1

(yt)⊗r, (3.6)

where (·)⊗r is the rth generalised (tensor) outer product (·)⊗ (·)⊗ . . .⊗ (·). We use the first

four K-statistics – see Kendall, Stuart, and Ord (1987) for higher-order expressions, and Di Nardo,

Guarino, and Senato (2008) for a general discussion – for T samples:
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Y1 =
S1

T

Y2 =
T S2−S⊗2

1

T (T −1)

Y3 =
T 2S3−3T S2⊗S1 +2S⊗3

1

T (T −1)(T −2)

Y4 =
T 2(T +1)S4−4T (T +1)S3⊗S1−3T (T −1)S⊗2

2 +12S2⊗S⊗2
1 −6S⊗4

1

T (T −1)(T −2)(T −3)
.

(3.7)

Note that this retains the spatial structure of the original data, meaning if our observations are

on a plane (D = 2), then the mean, Y1, will be a 2nd order tensor, the variance, Y2, is a 4th order one,

and so on. Similarly for D = 3 dimensional datasets the relevant scaling is 3rd, 6th, etc. dimensional

tensors. Although the formulas given above compute these tensors for the complete observation

space, due to our generative model and small basis functions, we will only be able to reconstruct

elements of these tensors that are within our interaction length, as defined by the patch size P .

Therefore, we do not need to compute or store most tensor elements, significantly reducing both

computational and storage costs; specifically Yk
l1l2···lk only need to be stored if ∀ i,j li− lj ∈P . Added

to the fact that these cumulant tensors – as generalisations of covariance matrices – are symmetric8,

we can increase efficiency by storing and computing only reconstructable and unique tensor entries.

The feature extraction procedure is illustrated in figure 3.2, which shows the extracted cumulant

feature tensors for two 1-dimensional sources with identical shapes, but different activities.

Having defined and extracted these neurally relevant features from the data that we wish to

reconstruct, we have two tasks left to define the feature reconstruction cost, Creconst
X . First, we need

to compute the reconstruction of the features Ŷ, given a current setting of the inferred sources, Ô.

Secondly, we need to define a distance metric between the reconstructed and original features.

Starting with the feature reconstruction, we need to remember that our main purpose with the

feature representation was not having to compute the basis function activations, {xs,t}, for each

source and time point. This, however, means we do not have access to the reconstruction of the

original data ŷ(t), as we are only to reconstructing the extracted features Y. To indicate this differ-

ence, let us define a new set of basis function activations, {Xs,r ∈ RK }R
r=1, for each source s, and

each r cumulant order. These are r-th order tensors of size K×K× . . . r×K, with the Xk1k2,···k r

entries being the activation of a higher order basis function, which is the result of the tensor product

of respective bases, ⊗r
i=1bk i(·); see equation 3.9 for the uses of Xr in the feature-based generative

model. Although each Xr has Kr entries, these coefficient tensors themselves need to be symmetric

tensors, which significantly reduces their degrees of freedom compared to the number of entries:(K+r−1
r

)
� Kr. To illustrate the tractability achieved through this feature representation, it is helpful

8This is also called supersymmetric in some communities. See the work by Comon et al. (2008) for a detailed introduction
to symmetric tensors and multilinear calculations.
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a.

l1 l2

b. Mean

Variance

Skewness

Figure 3.2: Feature extraction procedure in CHOMP for two sources with identical shapes. a. Two
sources in a 1D space, l1 with high mean and skewness, l2 with high variance. The
thick line is the true mean across the whole space, the thin ones are individual samples.
The squares below indicate observation locations in 1D and the black colour shows
the shape of the sources at those locations. b. The first three resulting cumulant ten-
sors. Darker colour indicates higher value. The source at l1 would have been found by
an algorithm reconstructing mean values only, but at l2 the variance feature is likely
necessary for successful source localisation.

to compare the number of free parameters in CHOMP to the number needed to reconstruct the full

time course. In a realistic scenario of K = 4 bases, R = 4 cumulant orders and T = 1000 samples:

R

∑
r=1

(
K + r−1

r

)
= 69� 4000 = T ∗K (3.8)

Note that this nearly 100-fold reduction is to be understood per source, and in calcium imaging

we often expect hundreds of sources within a single dataset. Therefore CHOMP needs to estimate

on the order of 10000 times less free parameters during inference of source location, compared to

a method that would reconstruct the complete time course at the same time. On the other hand,
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CHOMP retains much more information about the time course itself than a method that operates

only on the mean of all samples, admittedly with only K = 4 free parameters per source. Note that

in fact CHOMP directly encompasses the mean-only method; we can simply set R = 1, and ignore

higher order cumulants. Having defined this new higher order feature reconstruction, using {Xs,r}
as coefficients, we can compute the full reconstruction of each tensor of order r; this is similar to

equation 3.4, but now we reconstruct feature tensors of multiple orders, rather than multiple temporal

samples:

∀ li ∈ I, r ∈ {1 . . .R}

Ŷ r l1,··· ,lr
(OX,B) =

(
S

∑
s=1

K,K,··· ,K
∑

k1,k2,··· ,k r

(
X s,r

k1k2···k r

r

∏
i=1

bk i(li− ls)

))
,

(3.9)

where OX represents the set of source feature reconstruction estimates, by storing their locations and

feature activation coefficient tensors:

Os
X =

{
ls ∈ RD,

{
Xs,r ∈ RK×K×... r×K

}R

r=1

}
. (3.10)

Furthermore, note again, that each reconstructed feature tensor, Ŷr, is a I ×I × . . . r×I space, in-

dexed by r ‘locations’ {li ∈ I}r
i=1; whereas the reconstruction coefficient tensors, Xs,r, are indexed

by r integers, {k i}r
i=1, which also select the appropriate basis functions for the product in equa-

tion 3.9.

The final step in fully defining the feature reconstruction cost Creconst
X , is to set a distance metric

between the reconstructions and the observations. I give here a generic definition that showcases the

flexibility of CHOMP. Afterwards, I show what hypotheses various choices represent, then briefly

discuss potential extensions.

Firstly, in our model, the reconstruction orders are completely independent due to the use of

cumulant feature representation, and thus the most important choice is balancing the weights of

individual feature order reconstruction errors; we can do this with R weights, c∈RR
≥0. Secondly, we

need to define R distance metrics, f r(·, ·) : I r×I r 7→ R+, acting on the observed and reconstructed

features. Then simply

Creconst
X =

R

∑
r=1

c r f r
(

Yr, Ŷr
)
, (3.11)

but this simple form gives us a wealth of options. If only one c i is non-zero, then this results in simple

pursuit algorithms, with c1 6= 0 reconstructing the mean signal as done previously by Pachitariu et al.

(2013), whereas c2 6= 0 favouring locations with higher spatially structured covariance, and when

only c4 6= 0, we carry out pure kurtosis pursuit, pinpointing sparsely firing cells. Having multiple

non-zero coefficients in c essentially interpolates between these options.
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The other choice is of course the distance metric itself, with which one needs to be more careful.

The simplest option is an entrywise norm, such as the Frobenius norm, for each r order. However,

it should be noted that for a given dataset y, where noise is independent and identically distributed

across samples, the feature noise levels we expect in the individual entries vary both with the order

of the feature tensor, as well as whether or not the entry is a diagonal or an off-diagonal entry within

the tensor. This may be further complicated by having spatial autocorrelation within individual yt

samples, which should also be taken into account in the error metric used to compute the recon-

struction cost. A generally applicable procedure, assuming additive Gaussian noise on samples, is

to estimate noise levels and spatial autocorrelation lengths using the yt samples, applying Isserlis’

theorem (Isserlis 1918; Vignat 2011) to compute the expected noise in the various tensor entries,

then defining the appropriately weighted entrywise Frobenius norm:

f r
(

Yr, Ŷr
)
=

1
Nr(P)

∥∥∥∥ 1
σσσ

r(y)
�
(

Yr− Ŷr
)∥∥∥∥2

F
, (3.12)

where σσσ
r(y) is the expected entrywise standard deviations based on the noise levels in y, and Nr(P)

is the number of elements in a feature patch of order r, which ensures higher reconstruction orders

are not overrepresented in the cost function simply because of their higher number of reconstructable

entries.

Having written down the reconstruction cost, we now only need to define the cost of sources

used, Csources
X (Ô), to arrive at a full description of the cost function we wish to minimise. In basic

matching pursuit algorithms, this is simply a weighted function of the number of sources used in the

reconstruction (the cardinality of Ô), but again, CHOMP provides more options due to its convolu-

tional nature. Importantly for neural applications, as we believe our sources occupy physical space,

we may wish to discourage the algorithm from finding highly overlapping sources. We don’t want

to completely disable this behaviour, especially in D = 2 dimensions, as overlapping sources can be

the result of imperfect optical sectioning during two-photon calcium microscopy. Generally a good

sources cost is

Csources
X (ÔX) = λ‖ÔX‖+

S

∑
s=1

s

∑
s′=1

g(Ôs
X, Ô

s′
X), (3.13)

where λ is the cost per source and g(Ôs
X, Ô

s′
X) is an overlap penalty between sources s and s′. In its

simplest form, it operates on distances between source locations g(·, ·) ∝ ‖ls− ls
′
‖, and is decreasing

with distance, being zero for sources further away than the patch sizeP . However, one may also wish

to take into account the reconstructions of nearby sources via the coefficients Xs and Xs′ , penalising

nearby sources with complementary reconstructions less.

To conclude, the complete cost function we wish to minimise is built as the sum of the recon-
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struction cost, and the cost for sources used, and is in the following parametric form:

CX = Creconst
X

(
Yr, Ŷr

)
+Csources

X (ÔX)

Creconst
X =

R

∑
r=1

c r f r
(

Yr, Ŷr
)

f r
(

Yr, Ŷr
)
=

1
Nr(P)

∥∥∥∥ 1
σσσ

r(y)
�
(

Yr− Ŷr
)∥∥∥∥2

F

Csources
X = λ |ÔX|+

S

∑
s=1

s

∑
s′=1

g(Ôs
X, Ô

s′
X),

(3.14)

where the main user-adjustable parameters are c, the weights of individual reconstruction orders, and

λ , the cost for each source. On a lower level, one can further customise the designs of the metrics

for reconstruction quality f r(·, ·) and for source overlap penalty g(·, ·).

Inference via matching pursuit

The main advantage of matching pursuit based source localisation is that we turn an intractable si-

multaneous inference problem of an unknown number of sources into an iterative process. We add

sources one-by-one, selecting the new source location greedily, such that it maximally decreases the

cost function, until no potential source would decrease the cost anymore. Computing the potential

decrease of the cost at a proposed new location in the above defined cost function is a computation-

ally cheap procedure, as the reconstruction cost change depends only on a few of the observations –

those within the patch size – and we can solve for all Xr coefficient tensors in closed form. Further-

more, the change in source cost only depends on a simple function of the previous sources, and even

though the computational cost of the overlap-cost increases linearly throughout the inference with

each additional source, it is still negligible for the typical number of a few hundred sources.

However, in order to select where the next source should be placed, we essentially need to carry

out global optimisation at every iteration across all possible source locations (that is approximately

the convex hull of observation locations, padded by the patch size, Conv(I ±P)). Although this

would of course be computationally extremely expensive and thus intractable, we can exploit two

characteristics of the cost function to approximately carry out this global optimisation procedure.

Firstly, the reconstruction cost function itself is as smooth as the basis functions bk(·) are, meaning

we can first compute the cost decrease on a grid, and use a few promising locations to initialise local

optimisations, ultimately finding the next source location with maximum cost decrease9. Secondly,

all reconstruction cost changes are local around a proposed location. This means two things: a.) we

9This is of course not necessarily the global optimum of cost decrease, but it still results in a reproducible greedy algorithm
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can massively parallelise computations on modern computational clusters, spreading both data and

computation across nodes at will and b.) we only need to carry out the computation on the full grid

once, since in subsequent iterations we can update this grid only around the previously added source.

After we have selected where to add the next new source, updating the current reconstruction

and the residual is simply a byproduct of the selection process, and computationally free. The only

extra computational cost is updating the grid that serves to provide initialisation for the next set of

local optimisations. The full pseudocode for the procedure is shown in algorithm 3.2.

Algorithm 3.2 High level inference pseudocode for Convolutional Higher Order Matching Pursuit

1: Let ÔX = {} be the empty set of inferred sources

2: At a set of locations (L) spanning the observation space Conv(I ±P) compute the optimal

reconstruction coefficients X = {Xr}R
r=1 that (locally) minimise the reconstruction error:

3:
∀ l ∈ L :

Ỹ(l) = Ŷ(ÔX∪Ol
X), where Ol

X = {X, l}
X̃(l) = argmin

X
Creconst

X
(
Y, Ỹ(l))

) (3.15)

4: repeat
5: At each location l ∈ L compute ∆CX based on X̃(l)
6: At a few ‘promising’ locations, initialise gradient descent jointly in l and X on CX to find

the local minima, and subsequently select the global minimum location and reconstruction

Õnew
X .

7: If adding Õnew
X decreases the cost, expand the solution set, ÔX := ÔX∪ Õnew

X .

8: Update X̃(l) affected locally by the new source, where l− lnew ∈ 2P
9: until Õnew

X does not decrease the cost CX.

10: Given the locations in the solution set ÔX, calculate the individual sample reconstruction coef-

ficients xs,t, and thus the full reconstruction of the original data, Ô.

Observations on a grid

As discussed above, an efficient solution to finding the global optima of the cost function involves

first computing the cost surface on a grid of potential source locations L. From here onwards, I am

also going to assume that my observations also lie on a grid, which is typically the case in two-photon

calcium recordings (be it 2 or 3 dimensional), my main application of interest. This assumption

allows for a further set of simplifications when computing X̃(l) in step 3 of algorithm 3.2.

Let a local patch around an observation at location l be P l, and let the observation grid’s step

size be such that a patch covers a total of M observations. Therefore, we can represent a local patch

of observations as a D-th order tensor with M elements, let us denote this patch as yt
l. Similarly, we

may represent the individual basis functions bk(·) as D-th order tensors with a total of M elements,
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let bk = bk(P) denote this tensor10.

When computing the cumulant features Yr, we can now similarly represent local patches of

them as Dr-th order tensors with Mr elements, denoting such a local feature patch tensor as Yr
l.

In order to write down local reconstructions – following equation 3.9 – in a tensor format now

available due to the grid structure, we can define outer products of the basis functions tensors, letting

bk1k2...k r = bk1 ⊗ . . .⊗bk r (where ∀i k i ∈ {1 . . .K}) indicate a Dr-th order tensor with Mr elements.

Let us define the respective flattened (vectorised) tensors as ~Yr
l and~bk1k2...k r being Mr long vectors,

with Br ∈ RMr×Kr
being the matrix collecting all possible variations of the vectorised basis function

outer products as columns. Then our local reconstruction problem can be written as

∀ r : X̂r
l = argmin

Xr
f r
(
~Yr

l, Br~Xr
)
. (3.16)

For clarity, let’s assume here that f r(·, ·) is simply the Frobenius norm, but this easily gener-

alises for the entrywise weighted versions suggested above as well. Therefore the solution is

X̂r
l = argmin

Xr

∥∥∥~Yr
l−Br~Xr

∥∥∥2

F

=

(
Br>Br

)−1

Zr
l

where Zr
l = Br> ~Yr

l .

(3.17)

Here Zr
l ∈RKr

represents the vectorised projection of the r-th order local patch cumulant tensor

onto the r-th order basis function tensors. Having solved for the optimal reconstruction coefficients

X̂ l, we can compute the maximum decrease in the reconstruction cost, given a new source at l, as

∆Creconst
X (l) =

R

∑
r=1

c r

(∥∥∥~Yr
l−Br~Xr

∥∥∥2

F
−
∥∥∥~Yr

l

∥∥∥2

F

)
=

R

∑
r=1

c r

(
−2~Xr>Br> ~Yr

l + ~Xr>Br>Br~Xr
)

=−
R

∑
r=1

c r

(
Zr>

l

(
Br>Br

)−1

Zr
l

)
.

(3.18)

This means that we do not even need to store the feature reconstruction coefficients X through-

out the steps 3-5 of algorithm 3.2, as using only the projections of the data onto the expanded bases

enables us to compute the potential reconstruction cost change at all locations l ∈ L. Furthermore,

10This description is applicable when the approximating grid L is chosen with a grid size that is an integer multiple of
the observation grid size. This is typically a good choice for calcium imaging applications, where neurons span multiple
pixels/voxels. For approximation grid sizes that are rational multiples of the original, e.g. 1/n step sizes, one would need
n different sets of bk tensors, applying the appropriate one at each sub-grid offset value during the convolutional procedure
described in the following. This finer initial approximation increases the computational complexity nD-fold initially, and
nDr-fold during the local updates, while the procedure remains highly parallelisable, and the gradient descent optimisation
will likely converge faster due to the better initialisations.
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these projections can be computed very efficiently by higher order convolutions as shown in equa-

tion 3.17, and then to calculate the cost change, we only need to compute the inverse
(

Br>Br
)−1

once, resulting in fast quadratic form computations.

To carry out steps 6 and 8 of algorithm 3.2, the optimisation and the update, we can similarly

complete the whole procedure in the projection space of Zr, noting that both of these steps again

require evaluation the bk(·) basis functions at arbitrary locations, rather than using their bk tensor

representations.

Solutions on a grid

In order to further simplify the inference process, we may wish to sacrifice a bit of localisation

accuracy, and decide that our source locations may only lie on the grid L. Note that this represents

an approximation to the original generative model described in equation 3.4, where source locations

were in a D dimensional Euclidean space, rather than in a finite discrete subset thereof.

However, with a fine enough grid we lose little in localisation, but completely eliminate the ex-

pensive gradient descent optimisation in step 6 of algorithm 3.2, and may also significantly simplify

the local coefficient update of step 8. Specifically, with this approximation we never need to evaluate

the bases bk(·) at arbitrary locations, and therefore we do not even need to represent the complete

basis functions, only the M-element tensors bk.

The local update after adding a new source to the solution set ÔX generally requires computing

the residual in feature space Y by subtracting the reconstructed BX, as the cost function change as-

sociated with the next source depends on the proposed source’s ability to fit this residual. However,

as data and residuals only enter the cost change calculations via the basis projections Z (see equa-

tion 3.18), we do not need to explicitly represent the residual, we may just compute the change in

the projections directly, after adding a new source Os = {X̂s, ls}. For clarity, I first show the changes

for r = 1,2 using the basis function formulation – that is applicable for arbitrary ls source locations –

then discuss how the tensor representation may be used to speed up the computations. For arbitrary

source locations, the update is

∆s[Z
1
l ]k =

∫
l′

bk(l′− l)

(
∑
k′

bk′(l′− ls) [X̂s,1]k′

)

∆s[Z
2
l ]k1k2

=
∫ ∫

l′1,l
′
2

bk1(l′1− l) bk2(l′2− l)

 ∑
k′1,k

′
2

bk′1(l′− ls) bk′2(l′− ls) [X̂s,1]k′1k′2

 .

(3.19)

Therefore, in order to carry out the update directly in Z space, we essentially need to compute the

pairwise convolutions of the basis functions with each other in every order, then weight the convolu-

tions by the reconstruction coefficients, that are linear functions of Z themselves (see equation 3.17).
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Therefore we can define a single linear operator, U r(∆l | {bk(·)}K
k=1), that is a function of distance

and the basis functions, and maps the projection vector Zr
ls at newly added s source to the projection

vector at nearby locations l:

∆sZ
r
l =U r(l− ls | {bk(·)}K

k=1) · Zr
ls (3.20)

When the solution locations ls are restricted to the L grid, this linear update operator can be repre-

sented by a M∗×Kr×Kr tensor Ur, and only needs to be computed once. Here M∗ is the number

of grid points within a 2P patch, which is the area where Z projections are affected by adding a new

source. Therefore updating all projections around the newly added location can be written as:

∆sZ
r
2P(ls) = Ur Zr

ls , (3.21)

where 2P(ls) selects the appropriate M∗ locations affected. A visual summary of algorithm 3.2,

using the vectorised projections Z, is shown in figure 3.3.
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Figure 3.3: Algorithm flowchart for Convolutional Higher Order Matching Pursuit. Showcases
the initial computation of projecting the data features onto the basis functions, then the
iterative update loop, which involves only spatially local computations.

3.2.2 Dictionary learning

The inference algorithm proposed in the previous section relies on a fixed set of basis functions B

– often called a dictionary – that collectively are capable of describing the temporal changes of the

various signal modes of cells of interest. Although in some signal processing applications these

modes may indeed be known, or at least stationary over multiple recordings, which use the same

observation process and similar signal generators, it is nevertheless useful to discuss how one may

initialise a set of basis functions, as well as how to iteratively update them based on the inference

results. I first discuss the update procedure, as it is generally applicable to arbitrary types of data,

then provide potential initialisations that are more specific to two-photon calcium imaging datasets.

In order to update the basis functions, we have to select appropriate training data that admits
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to sparse decomposition, resulting in the new bases. As the basis functions’ support is the patch P ,

our first task is to select patches around the inferred source locations; let these locations be P(ls).
In the general case, where ls are arbitrary locations, these extracted patches will result in location-

value pairs (u ∈ P and v ∈ R), where the values are scalar observations yt
l (where l ∈ I), and the

locations are shifted relative to the current source location, with u = l− ls spanning the patch P . We

then use these {u,v} pairs as training data to any generalised additive model capable of learning K

components that explain the training data well, and represent basis functions that can be evaluated at

arbitrary new locations within the patchP . Such models are described by Adam, Durrande, and John

(2018). One difficulty during the preparation of this training data is that multiple inferred sources

may affect the same observation location owing to overlapping patches. In these cases care must be

taken to either omit these affected locations from the training data, or – when affected by n different

sources – represent them as n separate samples, with values {v∗i}n
i=1, where v∗i is the observed value

v, minus the sum of reconstructions of all but the i-th source affecting that location11.

When both observations and solutions lie on a grid we do not have to represent the bases as

functions, but we can rather use their D-th order tensor representation, bk. Similarly, the patches

around inferred sources, yt,∗
P(ls), are D-th order tensors, with the same size as the bases, with the ∗

again suggesting to explain away other sources at overlaps. Updating this tensor representation of the

bases is a much more standard problem, as we can vectorise the patches, collect them into a matrix as

columns, and apply standard matrix factorisation methods to recover the top K (singular) vectors that

best explain the data, according to some metric and satisfying given constraints. Applicable matrix

factorisation methods are Singular Value Decomposition (SVD), Independent Component Analysis

(ICA) or Non-negative Matrix Factorisation (NMF). That is,

[V] ·,s =~yt,∗
P(ls) for all Os ∈ O

{
bk

new

}K

k=1
= MatrixFactorisationK (V) .

(3.22)

Decomposing feature tensors. Alternatively – especially when we are trying to ignore some or-

ders of signal cumulants during source localisation, and not even aiming to represent the full tem-

poral signal – we may wish to update the basis functions based on the feature tensors, rather than

based on the original observation samples. In this case, we can similarly collect the feature tensors

Yr,∗
P(ls), which are now Dr-th order tensors computed from the noisy data. Learning sparse decom-

position from tensors of multiple orders is still an active research area, especially when we have

multiple noisy samples from each order. Two methods that are capable of implementing tensor-

based learning are Higher Order SVD (HOSVD, by Lathauwer, Moor, and Vandewalle (2000)) and

Multi-Tensor Factorisation (MTF, by Khan, Leppäaho, and Kaski (2016)).

The former, HOSVD, relies on averaging across the decompositions of all standard factor-k

11This is similar to the idea of the cavity distribution in expectation propagation
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flattenings of the tensors. Although this is very simply applicable for symmetric tensors – as we

only have to do a single flattening – to my knowledge it has only been derived for a single tensor of

a single given order. My attempt at extending HOSVD to multiple tensor samples of multiple orders

proceeded as follows. For each tensor order r, and each sample s flatten the symmetric feature tensor

Yr,∗
P(ls) into an M×Mr−1 matrix, and stack the S samples as columns, resulting in an M× S ∗Mr−1

matrix, that I call Vr. If we now stacked tensors of different orders as columns again, the lower

orders would be significantly underrepresented, as each additional tensor order yields M-times as

many samples as the previous one. Therefore, we need to ensure we are representing each tensor

order sufficiently well, before doing the decomposition. I found the following heuristic options: a.)

One might randomly subsample the columns gained from higher order tensors to reduce the number

of columns to M, the same as the first order tensor, noting this is extremely lossy. Alternatively, one

can renormalise the columns of these Vr matrices. Two options seem to work in practice, but was yet

unable to prove their domain of applicability. b.) The first renormalisation option is to simply divide

each entry in each matrix by Mr/M, the number of entries in the tensor divided by M, the number

of elements in the basis functions. I found however, that this could now lead to under-representing

the effect of higher order tensors. c.) The second option comes from my earlier discussion of the

number of free elements in a symmetric tensor (see equation 3.8), and thus I use the number of free

entries in each symmetric tensor, rather than the total number of entries. This penalises higher orders

significantly less, as
(M+r−1

r

)
�Mr for the typical large M and r > 2.

The other method, Multi-Tensor Factorisation (MTF), defines a principled joint Bayesian prior

for the weighing between multiple tensors orders, but I found the resulting computational complex-

ity and running times of the provided implementation prohibitive to use with the typical parameters

in calcium imaging applications with M > 50, R > 2 and S > 100. Therefore, if dictionary updates

are required, I for now recommend the use of equation 3.22 with well-understood matrix factori-

sation methods, until multi-sample, multi-order tensor factorisation methods enter a more maturely

applicable phase.

Application to neural data. Next, I discuss the specific application of CHOMP inference and dic-

tionary learning to neural two-photon calcium imaging datasets. CHOMP relies on basis functions

capable of describing neurons well. One way of initialising the CHOMP dictionary is to use the

source locations indicated by human markers as training data, then apply the dictionary learning

shown in equation 3.22. Although as discussed previously, this does introduce unnecessary human

bias, typically the most prominent 10-50 cells per field of view are agreed upon by all human mark-

ers, and the bases that describe them do not significantly change in repeated experiments – provided

those use the same microscope with similar settings, and probe the same brain areas in the same
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species. These human-segmented datasets are typically available or easy to collect in most experi-

mental laboratories, and thus can be used as an initialisation to CHOMP. The patch size P of basis

functions is chosen to ensure including the segmented cells’ full extent.

That said, I both prefer reducing the human bias in data analysis, and does not necessarily

have access to previously segmented data of interest; thus I describe here an initialisation that is

purely driven by a model of neural signal generation. Firstly, the most popular type of recordings,

and thus the ones I mainly focused on, are two-dimensional optical cross-sections of superficial

cortex layers containing pyramidal neuron cell bodies. The typical shapes that correspond to the

cell bodies in such recordings are filled circles and annuli (‘donuts’). As the fluorescent calcium

sensors are designed to mainly be expressed in the cytoplasm, but not the nucleus, the filled shape

corresponds to cells for which the optical cross-section does not include the nucleus, or in which

the calcium sensor protein is overexpressed also in the nucleus (these latter cells are typically dead).

Conversely, donuts correspond to cells in which the darker middle section is the nucleus, with the

halo of cytoplasm around it. Other active neural elements in the field of view are neural processes

(axons or dendrites); the ones that are perpendicular to the field of view show up as speckles in the

image, whereas the non-perpendicular ones appear as long thin lines. Lastly, non-neural elements

typically correspond to vasculature, either perpendicular to the field of view, appearing as larger

‘holes’, or non-perpendicular vasculature above the image creates ‘shadows’, affecting a larger area

in the field of view (see e.g. figure 3.12a for exemplars of each of these elements).

To initialise a set of basis functions capable of describing such data, we first need to determine

the maximum cell size. This is probably best done by visual inspection (as slightly overestimat-

ing only increases computational cost, but is not otherwise detrimental), but one may utilise D-

dimensional discrete Fourier transform to find the spatial frequencies present in the data, or finding

the typical circle size via circle Hough Transform. Once this has been done, a good initialisation for

the bases includes a small disk with K−1 increasing radii donuts, the linear combination of which

is capable of describing speckles, donuts and filled circles of various sizes. After this initialisation,

one may proceed iteratively with inference and dictionary updates, and can discover non-centrally

symmetric signal modes as well.

Basis function symmetries. The symmetries of the basis functions both during initialisation and

the updates is an interesting question. As discussed in chapter 2, we can easily design Gaussian Pro-

cess function descriptions with arbitrary symmetries, and similarly restricting matrix decomposition

methods to find basis modes only with pre-designed symmetries is a matter of reparameterising the

locations u of the training data, then arranging the vectorised values~v∗ to reflect the symmetrising

transformation done in location space. In my experience, however, a number of interesting signal

modes may not be symmetric about the centre of the source, and thus artificially limiting the dictio-

nary updates to discover only symmetric modes may render the bases unable to explain interesting
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neural behaviour, and thus potentially miss sources during inference. This can especially be the case

for large apparent cell sizes and higher frame rates: in these circumstance, some cells – whose pro-

cesses are not perpendicular to the 2-dimensional optical section – display a calcium release wave

propagating through the cell body. Similarly, in high frame-rate 3-dimensional datasets, we would

always expect such waves to be present, and should not forcefully introduce symmetries into basis

functions.

3.2.3 Iterative inference and dictionary learning across datasets

In order to end up with a good reconstruction of the dataset, we generally need to carry out inference

and dictionary update steps iteratively, until CX does not decrease anymore at the end of a full

inference step with further dictionary updates, meaning the iterative inference-update procedure has

converged.

However, this may be an expensive procedure and one would end up with slightly different sets

of basis functions for each dataset. If the sole purpose of the bases is to provide good source local-

isation, and in subsequent data processing the only output used will indeed be the source locations,

then this is not a problem. However, if the bases are to be used also in determining the full extent

of single-cell regions of interest (ROIs) or even during the extraction of the neural signal12, it is

desirable that the learned bases remain stable over multiple data analysis sessions.

We can achieve this by performing the inference simultaneously across multiple datasets

(recorded by the same microscope with the same settings, but potentially in different animals,

tasks or even brain regions), then doing the dictionary update on all patches collected from all

datasets. When this iterative procedure on the sum of all costs from individual datasets, Ctotal
X =

∑datasets Cdataset
X , converges, we can ensure that further data processing steps may rely on this fixed,

stable set of basis functions, regardless of the dataset. This also has the advantage that once such a

fixed dictionary is learned, one only needs to perform a single inference step on new, similar datasets,

significantly reducing computational needs. Furthermore, as the update tensors Ur in equation 3.21

are a function of the bases only, they can be computed once and stored for subsequent inferences,

leading to further speedup.

3.3 Validation and experimental results

3.3.1 Validation of CHOMP-based location inference

In order to thoroughly evaluate the impact of incorporating higher order cumulants in convolutional

matching pursuit, I created a simulation using a broad range of signal distributions, evaluating the

12For example, instead of summing up all signal within a binary ROI to represent the signal of that ROI, we can use the
optimal reconstruction of the signal that both reduces additive noise and rejects signals resulting from source overlaps
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localisation accuracy, and comparing to a group lasso implementation by Boyd et al. (2011). These

results are published in Bohner and Sahani (2016), and reproduced here.

Datasets were simulated from the generative model (equation 3.4) in a D = 1 dimensional

space, with |I|= 512 observations on an equidistant grid, and true source locations restricted to the

observation grid, thus ls ∈ L and L = I, with 26 sources per field of view (≈ 0.05 occupancy rate,

ensuring overlapping sources). Each simulation was based on a new random set of basis functions

– provided as input to the tested inference algorithms – with M = 11, K = 2, entries chosen from a

unit variance normal distribution, then the bases are symmetrised about the centre and normalised

to unit norm. Signal distributions were modelled as mixtures of Gaussians, with mixture parameters

selected by non-linear least-squares to match an intended set of cumulants. I explored symmetric

distributions with means and variances spanning multiple orders of magnitudes (µ ∈ [0,10],σ2
signal ∈

[0.01,10]), zero skewness, and a number of excess kurtosis values (3,10,50). For each source,

basis activation coefficients, xs
k,t, were sampled (T = 1000 samples) from a distribution with given

cumulants, and I explored three scenarios for sources placed within the same field of view. In the

no mixing case, all sources within the same field of view share signal coefficients sampled from the

same distribution, whereas in the uniform mixture, the sources’ signal distributions were sampled

uniformly randomly from all possible settings. Lastly, in the realistic mixture case, I first sample a

single set of cumulant settings, then the individual sources’ distribution parameters are distributed

log-normally around the single setting, with one order of magnitude standard deviation. This is

called the realistic case, as generally we expect sources’ signal distributions to vary slightly within

the same field of view, but not over multiple orders of magnitude.

The source locations were chosen uniformly randomly within the field of view – only ensuring

no exact co-localisation, overlaps are however common – and the final observations were created

as the centred basis functions multiplied by the appropriate source signal coefficients – summed

additively for overlapping sources – and corrupted by zero-mean, unit-variance (σ2
noise = 1) additive

Gaussian noise. For all three signal distribution mixture types within the field of view, I simulated

and analysed n = 10000 fields of view.

Inference of source locations was carried out as described in figure 3.3, with a stopping condi-

tion modified to correspond to the true number of sources. The values of σσσ
r in the reconstruction

cost distance metrics f r(·) (see equations 3.11 and 3.12) were set as described there, resulting in

(σσσ r)2 = (Mr−Kr) ∗ (σ2
noise/T ). For comparability I used the true value for σ

2
noise = 1, instead of

estimating it from the data, as suggested for real datasets.

A natural evaluation metric is the frequency with which the algorithm correctly locates the

sources. I applied the algorithm using increasing orders of cumulants as features, and found that

as long as the signal distributions contain significant higher order structure, it is indeed feasible to

attempt to reconstruct those tensors, and they do increase localisation performance (see figure 3.4a).

A further feature of greedy algorithms in general, including the current one, is that they provide a
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Figure 3.4: a. CHOMP incorporating higher order cumulants offers substantial gain in localisa-
tion performance when the corresponding structure is present in the signal distribution.
Each cell shows the fraction of sources correctly localised in n = 10000 runs for dif-
ferent signal parameters (exact parameters were distributed normally with a standard
deviation of one order of magnitude around the specified value). b. Localisation per-
formance expressed as AURC for all runs (n = 3×10000+600) with varying mixtures
of sources within a single run. No mixing: All sources share the same signal distribu-
tion. Realistic mixture: as in (a). Uniform mixture: Signal distributions may vary up
to 4 orders of magnitude within the same field of view. Means, 1σ and 2σ quantiles
indicated. c. Assessing the improvement within a single field of view gained by in-
corporating higher order cumulants. Bars are the mean gains in AURC over the first
order method, runs selected by signal distribution criterion (n <= 10000). High vari-
ance>= 1, Low mean<= 0.1. Error bars are SEM. d. Comparison of running times
(n = 4×600).
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natural ordering of the sources found. We can thus define the Area Under the Recall Curve as

AURC(O,Ô) =
1
S

S

∑
s=1

NumCorrect[Ô1:s]−Chances

s−Chances

Chances =
1(|I|
s

) s

∑
s′=1

s′
(

s
s′

)(|I|− s
s− s′

) (3.23)

and estimate the performance using this metric, which weights the correctness of earlier sources

higher. This is of interest especially in the case, when the field of view contains signals from multiple

distributions, such as the realistic or the uniform mixtures (see figure 3.4b). Finally, I looked at how

much higher order features offer on a case-by-case basis (figure 3.4c) and found that for all practical

cases, higher order estimators are substantially beneficial.

I also compared the proposed CHOMP method to a group lasso implementation by Boyd et al.

(2011), that corresponds to the L1-relaxation of equation 3.3. To this group lasso, I provided as

input the full |I|×K|I| spatial design matrix, as well as the grouped time courses belonging to the

corresponding locations. Estimated time courses were sorted by their norms to obtain the ordered Ô

for the group lasso, so that AURC could be evaluated as above. CHOMP outperformed the group

lasso (figure 3.4b) in source localisation while being over two orders of magnitude faster13 (see

figure 3.4d).

3.3.2 Applications to neural data

Having validated CHOMP on simple data simulated from its generative model, we need to evaluate

it on real neural recordings. To this end I used the Neurofinder datasets – carefully characterised in

chapter 2 – and unless otherwise stated, the data used as input to CHOMP has been transformed into

photon flux estimates and divided by the non-uniform spatial gain, as the preprocessing described

in chapter 2 suggests. Finally, before passing to CHOMP, the resulting non-integer photon flux

data was stretched to the uint16 range and represented by integers, as that is the expected format

of most neural recordings. Note, that although these transformations indeed equalise the expected

background signal level, as shown in section 2.3.2, they cannot fundamentally change the signal-

to-noise ratios across the images, which should be taken into account during the reconstruction of

higher order cumulants.

I first examine the characteristics of neural data in section 3.3.2.1, whether it indeed includes

detectable co-cumulants generated by single neurons of small spatial extents, as the CHOMP genera-

tive model suggests. Next, in section 3.3.2.2, I show that CHOMP is indeed capable of reconstructing

both the mean signal and higher order cumulants, and these can be used in localising single neural

cell bodies. Finally, I discuss the results of CHOMP on the Neurofinder challenge in section 3.3.2.3.

13Note that I could evaluate the group lasso method only on smaller sample of n = 600� 10000 due to prohibitively slow
running times.
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3.3.2.1 Higher order co-cumulants are present in the data

For a detailed example on what higher order cumulants and joint cumulants are present in the data,

I will use the 01.00 dataset, that contains clearly overlapping cells. Therefore, first in figure 3.5, I

characterise how the dataset was transformed using the preprocessing methods described in chapter 2

to achieve uniform background fluorescence over the field of view. Furthermore, in figure 3.5b and

e, one may see that there is indeed structured pixel-wise variance present, with visible shapes clearly

matching cell-like objects in the mean image. Similar structures are present in the standardised 3rd

and 4th pixel-wise univariate cumulants – skewness and kurtosis – as well, shown in figure 3.6. These

pixel-wise higher order cumulants I will call diagonal cumulants, as they represent the diagonal of

the joint cumulant tensors.

Although these diagonal higher order cumulants already show cell-like spatial structures, and

thus may be beneficial to use as features during segmentation, the reason for the spatial structure in

these pixel-wise statistics is the underlying Poisson distribution generating the signals: The variance,

skewness and kurtosis are all directly related to the (instantaneous) mean. Therefore, the main idea

of using higher order cumulants contains representing how activities of pixels vary jointly, using the

joint cumulants of nearby pixels, rather than only the pixel-wise statistics. Such joint variations then

in principle enable one to distinguish seemingly overlapping cells, and segment them correctly. To

illustrate this, let us first zoom in on the mean and variance images, and see how covariance tensors

may be visualised, in figure 3.7. The ultimate difficulty that CHOMP attempts to solve, but is hard

for humans to interpret, is to retain a sense of spatial closeness of pixels, while still representing their

joint cumulants. CHOMP achieves this by using higher order tensors; for example, the covariances

of a patch of pixels in D = 2 dimensional data are a D×D = 4-th order tensor, whereas their joint

kurtosis could only possibly be represented by a D×D×D×D = 16-th order one. Although as

discussed earlier, these tensors are symmetric, with few unique elements, that doesn’t help under-

standing what they represent, or to visualise them. Visualisation is best done in 2D via flattening the

tensors14, and getting used to the interpretation. As we are more familiar with covariance matrices

over vectors, which do retain spatial closeness, I first show in figure 3.7 (e-h) the covariance matrix

along a single vertical line. Firstly, (g) shows that the covariance matrix has a strong diagonal, due

to the independent Poisson noise for each pixel; and although off-diagonal structure is present, it

is difficult to interpret. In order to visualise the cell-induced covariances, I indicate the presumed

cell locations along the line in (f), and show a low-pass Gaussian-filtered (σfilt = 1.2 pixels) view of

the covariance matrix, from which the diagonal was removed before filtering, and treated as missing

data in the visualisation. The two overlapping cells now indeed have visible and distinguishable

covariance structures, despite the high degree of overlap, and also illustrate the reason we decided

to use cumulants. The overlapping area has clearly higher covariances than the individual cells, but

14In this chapter all flattening was carried out in Matlab ®, therefore using Fortran-style (column first) reshaping.
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Figure 3.5: How spatial correction affects mean and variance of dataset 01.00. Although the
background mean signal is indeed correctly equalised, as shown by the difference between (a) and
(d), the signal-to-noise ratio does not change by divisive normalisation, and thus originally darker
areas - generally with lower signal to noise ratios - now appear to have higher pixel-wise variance
in (e), compared to (b). The numeric differences are caused by (a) and (b) representing actual
photon flux estimates, whereas (d) and (e) have been stretched, such that the integer dataset utilises
the uint16 range optimally; the stretch factor was 3747.
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Figure 3.6: How spatial correction affects skewness and kurtosis of dataset 01.00. Both images
represent standardised cumulants, that is the raw n-th cumulant divided by σ

n, where σ is the
standard deviation of the same pixel. Standardised cumulants are unaffected by spatial gain
correction.
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(a) Standardised 3rd cumulant (skewness) over
time of photon fluxes estimated at each pixel
and frame.
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(b) Standardised 4th cumulant (kurtosis) over
time of photon fluxes estimated at each pixel
and frame.

covariances are additive, and thus ideal for matching pursuit type iterative reconstruction, such as

implemented by CHOMP. Others have also recognised the importance of such off-diagonal joint

variation in cell segmentation applications, using features like cross-correlation, to find co-varying

pixels (Smith and Häusser 2010). I do believe other metrics are generally less robust due to their

lack of additivity, and would advise the use of joint cumulants for separation of additive overlapping

sources.
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Figure 3.7: Covariances are present in the data. The mean and variance images in (c)-(d) are the
patch indicated in (a) and (b). (e)-(h) illustrate covariances along a vertical line, (i)-(l) along a
horizontal line, and (n)-(q) in a small patch. (m) shows spatial autocorrelation.
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(b) Variance over time of photon fluxes esti-
mated at each pixel and frame.
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(d) Variance in a smaller area.
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(e) Black line indicates selected pixels for (g).
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(f) Colored lines indicate highlighted regions in
(h).
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(g) Covariance matrix of the selected pixels, di-
agonally dominant and noisy.
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(h) Smoothed covariance matrix with diagonal
removed, cell covariances are indicated.
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(i) Black line indicates selected pixels for (k).
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(j) Colored lines indicate highlighted regions in
(l).
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(k) Covariance matrix of the selected pixels,
shows spatial autocorrelation (multiple strong
diagonals).
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(l) Smoothed covariance matrix with diagonals
removed, cell covariances are indicated.
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we can see significant spatial auto-correlation, caused essentially by temporal autocorrelation
of the two-photon imaging setup. In the non-scanning (vertical) direction, autocorrelation is
completely absent.
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(n) Black box indicates selected pixels for (p).
All pixels within the box contribute.
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(o) Colored lines representing pixels, whose
covariances are highlighted in (q) as blocks.
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(p) Covariance matrix of the selected pixels.
The blocked structure arises from the fact that
this covariance matrix no longer retains spatial
closeness in the horizontal direction. This is
well illustrated by the fact that the strong off-
diagonals (the results of scanning autocorrela-
tion) are offset by 21 pixels – the height of the
box in (n).
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(q) Smoothed covariance matrix with diago-
nals removed. The highlight boxes indicate
the small covariance boxes for the pixels sub-
selected in (o), but also note the co-covariance
blocks between those sets of pixels, due to both
lines overlapping with the rightmost cell.

Regardless of metric, one must be careful about potentially unexpected artefacts in the data,

which is introduced by the experimental system. One such common artefact, that strongly corrupts

our mental model of cell-induced covariances, is shown in figure 3.7 (i-l). By simply examining the

covariance matrix along a horizontal direction, we find that instead of a single strong diagonal rep-

resenting independent pixel variances, there are multiple strong diagonals in (k), indicating spatial

auto-covariance. The fact that this only shows up in the horizontal direction, but not the vertical one,

is a strong indicator that this is in fact not a spatial effect, but rather the temporal auto-correlation

induced by the two-photon microscope system, strictly appearing in the scanning direction. In order

to discover truly cell-induced covariance structures in the scanning direction, we thus need to esti-

mate this autocorrelation length (m), and remove the appropriate diagonals to reveal the structure of

off-diagonal covariances (j,l).

Thus far, we did not need to worry about retaining the sense of spatial closeness, as we were
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examining covariances along a single line. My last example highlights the difficulty of visualisation

and interpretation in the realistic case, in which one attempts to reveal and reconstruct covariances

within an image patch. In figure 3.7 (n-q) I first indicate a patch of pixels and its covariance matrix

in (n,p), revealing a blocked structure due to the flattening process disturbing the sense of spatial

closeness in the horizontal direction. This is well illustrated by the fact that the strong off-diagonals

– the results of scanning autocorrelation – are offset by 21 pixels, which is the height of the selected

box in (n). Lastly, to aid with the understanding of this blocked structure, two coloured vertical lines

are indicated in (o), whose covariance blocks are shown in (q). Note the existing cross-covariances

between the two lines of pixels (found at the off-diagonal intersection of coordinates of individual

blocks), which is likely induced by the rightmost cell contributing signal to both short lines of pixels.

Finally, as an illustration, that such co-cumulant tensors may be computed for higher order

cumulants as well, the resulting co-cumulants of different orders are shown in figure 3.8 for 5 pixels

along the vertical line shown in figure 3.7e. It is difficult to see structure in this by eye, it merely

demonstrates the exponential growth of tensor size. This is the reason why CHOMP never explicitly

represents these co-cumulant tensors, merely their projections onto the basis functions, and even

then it exploits the tensor symmetricity to reduce both storage and computation costs; without these

reductions, the algorithm would be significantly slower and potentially impossible to run without

using out-of-memory storage.
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Figure 3.8: Illustration of co-cumulants of different orders. From left to right we
see flattenned representations of 5 pixels’ co-cumulants in orders 1
through 4. Although structure is present, it is progressively more dif-
ficult to understand it as the tensor order is increasing.

3.3.2.2 CHOMP reconstructs higher order co-cumulants

Given that the data indeed contains interesting higher order structure, I now show that CHOMP is

capable of reconstructing such structure, and thus these features can be used to localise regions of

interest that resemble active neurons. In figure 3.9, I first show the full flattened covariance tensor (a)

of the zoomed-in region discussed in figure 3.7, and display the reconstruction achieved by CHOMP

(b), as well as the residual covariance (c). Note, that to ensure the clarity for this example, CHOMP

was ran in a pure off-diagonal covariance pursuit mode, ignoring all other cumulant orders (including
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the mean) as well as the diagonal of the covariance matrix (highly correlated with the mean, due to

the Poisson nature of the signal). The full area displayed is a 49x62 pixel region, whereas CHOMP

was using a basis function size of 23x23 pixels, which results in the reconstruction being restricted to

the block-diagonal subset of the full covariance matrix (b). The nature and quality of the reconstruc-

tion is difficult to judge in the 3038x3038 covariance matrix shown in (a-c), and therefore I show the

reconstruction along the same horizontal and vertical lines of pixels as analysed above, in figure 3.9

(d-g) and (h-k), respectively. These indeed showcase that CHOMP recognised and reconstructed

existing covariance structures, noting that the imperfect residuals result from model mismatch, and

the fact that CHOMP did not only reconstruct these particular slices of the full covariance tensor,

but attempts to minimise the residual over the complete tensor, as shown in (a-c).
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Figure 3.9: CHOMP reconstructs the full off-diagonal patch covariance. (a-c) show the full
covariance for the whole zoomed region in figure 3.7 with the diagonals removed, but are difficult
to interpret. Therefore (d-g) and (h-k) show more interpretable subsets of the CHOMP
reconstruction, along the horizontal and vertical lines used before.
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(a) Full flattened covariance tensor of the 49x62 pixel region shown in figure 3.7c-d.
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(b) Reconstruction of (a) by CHOMP, using 7 sources with a patch size of 23x23. The localisa-
tion and reconstruction was based on the off-diagonal covariances only, no diagonals or other
cumulant orders were used.

0

1

2

3

4

5

6
106

(c) The residual shows that covariance was indeed reduced.
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(d) Pixel-wise variance, with black line select-
ing pixels for the covariance matrix in (e) and
colored lines indicate boxes in (e-g). Repro-
duction of figure 3.7j.
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(e) Original covariance along line of pixels.
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(f) CHOMP reconstruction of covariance.
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(g) Residual covariance.
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(h) Pixel-wise variance, with black line select-
ing pixels for the covariance matrix in (i) and
colored lines indicate boxes in (i-k). Reproduc-
tion of figure 3.7f.
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(i) Original covariance along line of pixels.
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(j) CHOMP reconstruction of covariance.
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(k) Residual covariance.
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3.3.2.3 Results on the Neurofinder challenge

Finally, to show the applicability of preprocessing and CHOMP across numerous datasets, I discuss

the results on the Neurofinder challenge. The main training datasets were introduced and thoroughly

characterised in chapter 2, but the aim of the challenge was not. Neurofinder consist of 5 distinct

sets of two-photon calcium imaging videos of various areas of the mouse brain, recorded by different

labs from multiple distinct fields of view; see table 2.1 for a summary. The aim is to identify small

regions of interest (ROIs) in the data, corresponding to individual neural cell bodies. Each field of

view has been labelled by the challenge organisers, with the labels indicating the location and spatial

extent of individual ROIs. The methods for generating these Neurofinder labels are unknown, but

for some of the datasets they have been publicly released, to serve as training data for supervised

algorithms, or as calibration and validation for others. For the remaining datasets the labels have

been withheld, and are used as a test set to evaluate the performance of algorithms, by submitting

sets of automatically identified binary ROIs for each field of view.

The performance is evaluated by the provided ‘neurofinder evaluate’ script15. It first computes

the centre of mass for both Neurofinder-labelled and algorithm-identified ROIs. Next, it carries out

a greedy matching procedure between the two sets of centres, matching nearest neighbours first, and

up to a maximum distance of 5 pixels – noting that the general diameter of a cell in these datasets

are 10-25 pixels, all fields of view are approximately 512x512 pixels, and contain several hundred

cells according to the Neurofinder labels. After the nearest neighbour matching, two key metrics are

computed: recall is the proportion of Neurofinder-labelled cells co-localised with algorithmically

proposed ones, whereas precision is the proportion of algorithm-labelled cells co-localised with

Neurofinder ones. The final, combined, performance metric is then computed as their harmonic

mean:

combined = 2∗ recall∗precision/(recall+precision), (3.24)

and the sum of combined performances across test fields of view is used for ranking the submitted

15
https://github.com/codeneuro/neurofinder-python/blob/master/neurofinder/commands/evaluate.

py

Figure 3.10: CHOMP Neurofinder test results, showing key metrics on all held out test datasets.

https://github.com/codeneuro/neurofinder-python/blob/master/neurofinder/commands/evaluate.py
https://github.com/codeneuro/neurofinder-python/blob/master/neurofinder/commands/evaluate.py
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Figure 3.11: CHOMP Neurofinder training results; showing the changes in Neurofinder
performance metrics when selecting the first N cells from the CHOMP solution, for increasing
values of N. The number of Neurofinder-labelled ROIs are shown on the plots, and due to the
metric chosen it coincides with the crossing of the 3 curves. Dataset 00.00 is discussed in more
detail later, its training results are shown in figure 3.12f.
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(a) Dataset 01.00
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(b) Dataset 02.00
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(c) Dataset 03.00
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(d) Dataset 04.00

algorithms, collected on the challenge website16. The achieved performance metrics of my proposed

algorithm on the test datasets are shown in figure 3.10.

CHOMP, being a greedy method, naturally ranks the identified ROIs according to how much

they contribute to the reduction of the cost function (see equation 3.18). The number of submitted

ROIs for each test dataset were chosen such that combined performance on the corresponding train-

ing dataset was maximised. As the Neurofinder labels are available for the training datasets, we can

in fact trace the changes of performance metrics as we take the first N cells from the CHOMP solu-

tion set for various values of N, see figure 3.11. Generally, the first locations identified by CHOMP

agree with the Neurofinder labels, resulting in high precision initially. Later on, as CHOMP iden-

tifies more regions of interest with significant residuals to reconstruct, they are less likely to agree

with the Neurofinder labels. The recall however does keep increasing with added sources17, al-

16
http://neurofinder.codeneuro.org/

17This is partly a random effect. As discussed in section 3.3.1, adding an extra source, even at a random location always
increases the recall chance.

http://neurofinder.codeneuro.org/
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though it does not reach 1, meaning CHOMP does not identify some of the cells that are labelled by

the Neurofinder challenge.

As a more detailed example, I showcase the Neurofinder and CHOMP labels of dataset 00.00,

examine both false positives and false negatives (taking the Neurofinder labels as the ground truth for

now), and discuss the reasons for the discrepancies. Both sets of labels are shown in in figure 3.12c,

with one obvious difference arising from the preprocessing revealing cells in darker regions (a-b,e).

Another difference is that although the cardinalities of the label sets shown in (c-e) are equal in

the full field of view, CHOMP is capable of suggesting a significantly larger number of regions of

interest (f-h). Of course adding sources not labelled by Neurofinder decreases the precision metric

(f,h), and even then CHOMP misses some of the Neurofinder-labelled ROIs (g).

In figure 3.13, I thus investigate these differences by looking at the activity time courses of

the CHOMP-identified and missed ROIs. In (a-d) I show the locations and activity – extracted

from the preprocessed dataset via binary masks – of the top 10 CHOMP-identified ROIs in the two

regions, showing that most indeed have cell-like activity, even those not amongst the Neurofinder

ROIs (b,d cells 2-10). A potential explanation as to what enables the identification of these extra

ROIs, is that preprocessing equalises the noise and signal levels across the field of view; see the

difference between (e) and (f) compared to (c) and (d). Furthermore, CHOMP attempts to find

cell shapes and corresponding cumulants that are typical across the field of view, enabling it to

pinpoint co-varying regions of restricted shapes that may have little activity (as discussed earlier, see

figure 3.9), but also limiting its ability to reconstruct less typical cells. Although for highly active

cells this generally is not a problem, as enough of the activity falls into the reconstructable subspace,

which drives CHOMP’s localisation, this model mismatch does affect the localisation of nearby,

overlapping regions of interest, that are less active. The greedy algorithm first reconstructs the active

cell, somewhat incorrectly, and then the remaining residual of nearby cells does not resemble cell-

like activity anymore. This problem is shown in figure 3.13g-h, where the activity of Neurofinder-

labelled ROIs are shown, showing examples of strangely shaped active and nearby inactive regions

(cells {8,11,12}, {2,22,24} and {1,4,15,19}), or where the labelled regions are largely inactive (cells

12, 24, 15, 26).

Lastly, to further investigate the reasons for discrepancy between the Neurofinder-labelled ROIs

and those identified algorithmically based on the cell activity, I compare CHOMP to the currently

most popular activity-based neural segmentation pipeline, Suite2p (Pachitariu et al. 2016). Suite2p’s

segmentation relies on an EM-style algorithm, iteratively assigning pixels to ROIs in the E-step and

estimating the activity of each ROI in the M-step; both the cost function and the approximation differ

from CHOMP’s approach. Although Suite2p’s ROI extraction algorithm does not naturally offer an

ordering of the proposed ROIs as CHOMP’s greedy algorithm does, nevertheless it applies a post-

processing step: a classifier that determines for each ROI its probability of being a cell – this is the

ordering used in the following plots, when comparing the proposed ROIs from the two algorithms to
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Figure 3.12: CHOMP results on dataset 00.00.
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(c) Preprocessed mean image. Neurofinder-labelled (blue) and CHOMP-identified (orange)
cell locations are superimposed. The markers represent the centre of mass of individual bi-
nary region of interests. The 330 ground truth locations, and the first 330 CHOMP identified
locations are shown.
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(f) Precision-recall curve calculated by the external neurofinder script, given the 330 ground
truth locations and the first N locations identified by CHOMP.
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(h) As in (e), but using double the number of
cells in the CHOMP solution set.

each other, as well as to the Neurofinder labelled ones. Briefly, Suite2p (version 0.6.16) was installed

via pip, then ran on the raw Neurofinder data with largely default settings, except registration was

omitted due to the input data being pre-registered. Furthermore, the ’sparse˙mode’ option was set to

True, as per explicit instructions from the author. This resulted in a total of 166-4686 ROIs proposed

by Suite2p in the 5 datasets, although some with low confidence values according to its built-in

classifier – the number of ROIs passing Suite2p’s default cell-likeness threshold is indicated on the

plots. Figure 3.14 shows that although both algorithms first identify Neurofinder-labelled ROIs with

high confidence (as indicated by high precision values early on), these sets of ROIs proposed by the

two algorithms differ substantially from one another (as shown via the initially low co-localisation).

Furthermore, they both also suggest numerous ROIs that are not part of the originally labelled set

(indicated by the subsequent decline in precision), but these extra ROIs are not necessarily the same

for the two algorithms (as co-localisation never reaches 1). To investigate the types of differences



3.3. Validation and experimental results 109

Figure 3.13: Discussing CHOMP results on dataset 00.00. CHOMP identifies additional ROIs that
have cell-like activity (b,d). The preprocessing makes signals more comparable across the field of
view (a-f), revealing these additional cells (d,f). CHOMP misses some inactive ROIs close to
highly active ones (g-h). Supplemental videos are available for the zoomed in areas in (a) and (b),
see appendix A for details.
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(a) As in figure 3.12d, but showing only the top
10 ROIs suggested by CHOMP.
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(b) As in figure 3.12e, but showing only the top
10 ROIs suggested by CHOMP.
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(c) Activity time courses from the 10 numbered
ROIs in (a), identified by CHOMP.
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(d) Activity time courses from the 10 numbered
ROIs in (b), identified by CHOMP.
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(e) As in (c), but extracting from the original
dataset instead of the preprocessed one.
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(f) As in (d), but extracting from the original
dataset instead of the preprocessed one.
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missed by CHOMP, or are near the missed
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(h) Time courses of ROIs in (g), with the red
asterisk indicating cells that were not found by
CHOMP.

further, I compare and contrast the set of labelled ROIs at various numbers of proposed ROIs for both

algorithms in figure 3.15. As evidenced in (a) and (c), both algorithms produce good co-localisation

with the Neurofinder-labelled ROIs, but not with each other, meaning they focus on different fea-

tures. With the default parameter settings of both algorithms it seems Suite2p strongly prioritises

sparse activity, and fails to label even very bright cells (e,g); whereas CHOMP labels only bright re-

gions first and foremost (c,e,g). When the ‘correct’ number of ROIs is supplied (b), both algorithms

show reduced co-localisation with the ground truth labels – see precision curves in (a) – but the

co-localisation of the algorithmic ROIs have increased (a,b), suggesting that they indeed find novel

regions of interest that weren’t part of the original Neurofinder-supplied label set, yet are agreed

upon by two substantially differing algorithms. This is exemplified even stronger when taking into

account the algorithms’ capabilities of suggesting more ROIs, as shown in (d,f,h), especially the

three co-localised novel candidate ROIs in (h). Examining (f) and (h) in more detail suggests that

when asked to propose a large number of ROIs, Suite2p and CHOMP differ substantially in their ap-

proach. Overall, due its strong spatial priors, CHOMP identifies only larger regions of interest, thus

spaced away from one another; conversely Suite2p uses the increased degrees of freedom to identify

smaller ROIs closer to one another (f,h) largely typical of axonal or dendritic activity. Therefore

CHOMP may be the better choice to look for cell bodies in single-cell approaches, whereas Suite2p

is better suited towards discovering the total information encoded in the calcium imaging recording,

be it by cell bodies or neurites. That said, the best solution may be to exploit their differences and use

both methods in tandem, and ROIs proposed by both represent strong candidates for real cell-like

behaviour.

To conclude, CHOMP is capable of identifying a large number of potential regions of interest

in the various datasets provided by the excellent Neurofinder resource. The correctness of the pro-

posed regions is generally difficult to evaluate, without direct access to the particular brain region

to confirm findings via electrophysiological recordings. This would of course be a huge experi-
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Figure 3.14: CHOMP comparison with Suite2p; the plots show the precision of each algorithm
against the set of Neurofinder-labelled ROIs given the N most cell-like ROIs proposed by each
algorithm independently, for various values of N. Furthermore, at each N value I show the fraction
of co-localisation between the two algorithms. Interestingly, although both algorithms find largely
Neurofinder-labelled ROIs first (at low values of N), they are honing on on different features first,
as indicated by the initially low co-localisation (that is independent of the Neurofinder labels).
Dataset 00.00 is discussed in more detail later, the results are shown in figure 3.15a.
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(b) Dataset 02.00
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(c) Dataset 03.00
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(d) Dataset 04.00

mental burden, with questionable usefulness, as the experimental conditions change across brain

regions, animals, microscopes, labs and even people carrying out the experiment; thus even such

clear validation would be of limited generalisability. Other techniques to achieve ground truth for

cell localisation include multicolor imaging with nuclearly localised markers (e.g. Peron, Chen, and

Svoboda (2015)), or matching the activity of extracted ROIs with electrophysiological data from the

same area (Chen et al. 2013b; Schultz et al. 2009). Such methods are generally capable of identify-

ing false negatives (ie. cells that are missed by segmentation algorithms such as CHOMP), although

it is sometimes difficult to argue whether those missed cells simply display little-to-no activity in

the calcium recording itself. Furthermore, with any method, it is extremely difficult to dismiss

false positives, which would only potentially be possible via post-mortem tissue staining or electron

microscopy reconstructions of the same area (Vishwanathan et al. 2017), that rely less on random

effects such as viral uptake or gene expression levels in individual cells.
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Figure 3.15: Comparison of CHOMP and Suite2p on dataset 00.00.
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(a) Comparing the precision of CHOMP and Suite2p given the Neurofinder-labelled ROIs and
increasing numbers of ROIs proposed by each algorithm, sorted by their internal confidence
metrics. The co-localisation of the ROIs proposed by the two algorithms is shown for each
number, demonstrating that CHOMP and Suite2p focus on different features.
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(b) Preprocessed mean image. Neurofinder-labelled (blue dot), CHOMP-identified (orange
circle) and Suite2p-proposed (red cross) cell locations are superimposed. The markers rep-
resent the centre of mass of individual binary region of interests. In all subfigures the 330
Neurofinder-labelled ROIs are shown, however the number of ROIs shown from the two algo-
rithms varies. Here 330 algorithmic ROIs are shown from each pipeline.
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A potentially better way to analyse the performance of cell segmentation algorithms is to try

and understand the usefulness of their output towards answering a particular scientific question –

the one the recorded data was supposed to answer in the first place. Most often calcium imaging

recordings are associated with both visual, auditory or tactile inputs provided or measured by the

experimenter, and also behavioural outputs generated by the animal. Calcium imaging recordings

serve as insight into how the brain represents and processes information, and are much more easily

interpreted in context. Therefore, the performance of segmentation algorithms is also best analysed

in such context, for example by understanding how correlated is the activity of individual ROIs

with measured inputs or outputs, or how well the collection of all ROI activities represent latent

computational variables, that we expect to find in the brain area. This latter may also provide a

metric for the usefulness of individual ROIs, in context of all other ones within the same field of

view, by analysing the experimentally relevant information gain associated with them.

3.4 Discussion

In this chapter, I introduced a novel algorithm, Convolutional Higher Order Matching Pursuit

(CHOMP), that is capable of localising and segmenting regions of interest that correspond to single

neural cell bodies in neural calcium imaging recordings. It achieves this by extending Convolutional

Block Matching Pursuit, and adds the ability to represent joint higher order cumulants of small im-

age patches. These joint cumulants are useful and tractable features in identifying neurons, due to

their confined spatial extent, in which pixels are jointly influenced by the underlying cellular activ-

ity. Furthermore, the cumulant representation is well suited towards two-dimensional two-photon

microscopy recordings, in which there are numerous apparent overlaps due to the imperfect opti-

cal sectioning. These overlaps contain summed signal from multiple sources, and thus cumulants

– which are additive, unlike many other potential features, such as cross-correlation – are a correct

representation of the typical single-plane two-photon calcium imaging microscopy recordings.

CHOMP, a matching pursuit based algorithm, proceeds to localise regions of interest by using

basis functions with small spatial support, and iteratively selects a single local region, in which

the current residual features can be best reconstructed. It is an extremely flexible algorithm, as its

cost function can be tailored towards various expected noise characteristics, or be focused towards

particular orders or parts of cumulants. In fact, it encompasses previous algorithms; for example

Convolutional Block Matching Pursuit can be recovered by putting all reconstruction weight towards

the mean, whereas reconstructing only the off-diagonal covariance essentially results in an additive

version of cross-correlation based segmentation algorithms.

CHOMP of course possesses several limitations as well. Firstly, the greediness of the algorithm

sometime prevents finding the optimal solution for nearby or overlapping sources. Although this is

a recognised problem in convolutional matching pursuit algorithms, it is significantly reduced by
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the use of full higher order co-cumulant tensors. Nevertheless, other similar algorithms often use a

post-processing step that jointly solve for the best reconstruction within a small area, given a fixed

number of sources; a difficult, but potentially tractable algorithmic improvement, that CHOMP is

currently lacking. A more fundamental limitation is the finite cardinality dictionary of basis func-

tions. These basis functions essentially describe allowed signal modes, which limit our definition

of how signal from a neuron should appear in the recording. This is a desired feature in rejecting

non-typical signals, and works well to that effect. The issue comes from the greedy iterative nature

of CHOMP, where signals at identified locations are reconstructed, and the algorithm proceeds anew

on the residual feature set. Due to the limited set of basis functions, the reconstruction is necessarily

imperfect, and it sometimes results in a difficult-to-reconstruct residual, even in cases where the re-

maining residual indeed contains signal from another, overlapping cell. I believe a potential solution

would be to use a constrained reconstruction in the style of non-negative matrix factorisation, in

which both the basis functions and the reconstruction weights are constrained to be positive. This

idea works well in the mean and variance, however it is less obvious, how to extend it to higher order

cumulants, or off-diagonal elements; a potentially valuable avenue to pursue, merging two popular

approaches of neural segmentation algorithms. Finally, it should be noted that higher order cumu-

lants of two-photon microscopy data differ significantly from the typical application of matching

pursuit – instead of the typically assumed iid. Gaussian noise, most of the noise is in fact Poisson

distributed, due to the nature of the recording. This means that the diagonals – and sometimes even

certain off-diagonals – of higher order cumulants are significantly correlated with the mean signal.

As the current version of CHOMP was not in fact designed with correlations across different orders

of cumulants in mind (that are generally assumed independent), I had the most success by combin-

ing the mean with only the off-diagonal elements of the higher order features, to avoid weighting

high mean activity too highly. Of course the diagonal higher order cumulants also provide useful

information about the mean, and may be used to get more stable estimates of it.

I applied CHOMP to the datasets published as part of the Neurofinder challenge, to demonstrate

its capabilities. The datasets come from multiple brain areas, behavioural tasks, microscopes and

labs, therefore they showcase the wide applicability of the algorithm. In fact, these datasets differ

from one another in a number of important ways, as well as their is significant signal variation within

the same field of view. These differences hurt CHOMP’s – and likely other methods’ – ability to

identify regions of interest. This recognition lead to my development of the preprocessing algorithm

described in chapter 2, which resulted in a more robust segmentation across the different datasets.

These datasets also contain an existing segmentation for each field of view, created by the challenge

organisers by undisclosed means. I evaluated the performance of CHOMP with the aid of both the

publicly released as well as the withheld test label sets, and found that the cells highly weighted

by CHOMP tend to agree with the provided segmentation. The publicly released labels helped me

identify certain limitations of CHOMP, especially regarding false negatives, the labelled regions that
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were missed by CHOMP. However, subsequent analysis revealed that a number of ‘false positives’ –

regions of interest identified by preprocessing and CHOMP, but not amongst the provided labels – in

fact may be active cells, suggesting that my proposed methods are capable of finding novel regions

of interest, difficult to identify by previously agreed upon methods.

To summarise, I introduced a novel segmentation algorithm for neural calcium imaging record-

ings, showcased its capabilities on numerous datasets, and discussed its strength and weakness,

suggesting ways of diminishing the latter. Convolutional Higher Order Matching Pursuit, or other

algorithms building on its main ideas can be a useful addition to neural data analysis pipelines, and

along with the previously proposed preprocessing method, they may result in a reproducible way of

transforming raw calcium imaging recordings into standardised single-neuron activity time series,

ultimately making data from different cells, fields of view or even labs more comparable, leading to

more robust scientific conclusions.
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Learning interpretable models of latent

stochastic dynamical systems

Einstein’s thinking is always on the ontological level traditional in physics; trying to de-

scribe the realities of Nature. Bohr’s thinking is always on the epistemological level,

describing not reality but only our information about reality.

– E. T. Jaynes on the Bohr-Einstein debates, Probability in Quantum Theory

4.1 Understanding the dynamics of neural recordings

When a neuroscience experiment is set up, we often aim to investigate the computation that a brain

carries out in order to successfully solve an experimenter-defined task. Examples include probing

premotor cortical areas for information relating to planned movement (Churchland et al. 2012) or

looking for integration of evidence for decision making within the prefrontal cortex (Mante et al.

2013). Having recorded neural activity underlying the execution of the task, we seek to identify

the ’computational variables’ represented by the neurons, and thus to understand the process of the

computation. However, most individual neurons appear to fire unreliably, and so these computational

variables must be reflected in the collective patterns of many neurons. They are, in effect, ’latent’

in the population activity, and so must be inferred. To ensure that our understanding of the system’s

complexity is well-captured by our inferred computational variables, we want them to explain much

of the recorded signal; but we also want to ensure that they represent a stochastic, time-homogeneous

Markovian state space - that is, given the current state of the system, the next state will not depend

on the past history of states. This makes our set of recovered computational variables in some

sense complete: such a set of variables enables us to reason about the individual system states, as

well as paths through the state space, without having to consider non-(temporally)-local effects.

Furthermore, it lets us investigate the dynamics of the state space, so that we can make probabilistic

predictions of future states of the system and its representation within the recorded neurons.
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Sketching the dynamical portrait of even noiseless, simple systems is no easy task. In order

to glean insight into the noisy, subsampled data recorded from an extremely complicated system

carrying out an experimenter-defined task, we need to make certain choices and compromises.

One approach investigators often take is to use a simple model to fit to available data, and

examine how this simplified description changes over time, or as we vary experimental parameters.

Examples include fitting linear dynamical systems to monkey evidence integration data, where the

change in dynamics is parameterised by the context (Soldado Magraner 2018); or our work, in which

the parameters of linear dynamics are allowed to slowly vary over time, via building a hierarchical

model with a Gaussian Process prior (Park, Bohner, and Macke 2015). Although linear dynamics

can be learned efficiently in closed form and their changes can be thoroughly interpreted (Soldado

Magraner 2018), their use for explaining medium timescale evolution of systems is open to criticism,

because such descriptions do not adequately capture the data itself; and one has to be very careful

when interpreting results. However, allowing for linear dynamics’ parameters to vary more rapidly

in time (such as Duncker et al. (2017)), make their interpretations difficult.

An alternative, more recent approach has been to fit models with complex, non-linear Marko-

vian dynamics1to multivariate time series data. Examples are latent recurrent neural networks (see

e.g. LFADS by Pandarinath et al. (2018a) and Sussillo et al. (2016)) and Gaussian Process State

Space Models (GPSSM, see e.g. Damianou, Titsias, and Lawrence (2011) and Eleftheriadis et al.

(2017), without neural data applications). Although these methods are powerful at inferring the com-

plex and noisy trajectories of the computational variables encoded by the recorded neural population

activity, and they do contain an explicit description of the dynamical transition function, the results

only really provide insight into ‘what’ the system does (following those inferred trajectories), rather

than the ‘how’ it does it (via implementing interpretable dynamics that lead to those inferred trajec-

tories). These problems have been recognised by others too, and they turned to the classic method

of describing the learnt model dynamics by ‘opening the black box’, and finding the fixed points of

the model (Golub and Sussillo 2018; Sussillo and Barak 2013).

The idea of utilising fixed points and locally linearised dynamics as human-interpretable de-

scriptions of complex dynamical systems is indeed a powerful one, and has a long history in physics.

Bifurcation theory concerns itself with identifying the number and type of fixed points in a system.

Its application to deterministic systems is part of the standard curriculum, however identifying - or

even defining - fixed points or attractors in stochastic dynamical system is in its early stages (Arnold

and Crauel 1991; Diks and Wagener 2006; Wang, Chen, and Duan 2018), and thus random fixed

1There also seems to be a lot of confusion in the terminology of what people call a ‘dynamics’ or ‘dynamical model’. In
my definition, also stated as above, a latent dynamical system is described by not only a latent state that evolves over time, but
I put a further requirement of having a well-defined Markovian state transition function as part of the model. In my view, this
requirement disqualifies several methods that implement arbitrary non-Markovian time correlation structures, such as GPFA
(see Duncker and Sahani (2018) and Yu et al. (2009)), including extensions such as Gaussian Process Latent Variable Models
(e.g. Wu et al. (2017)) and Variational Latent Gaussian Processes (Zhao and Park 2016). Although these are powerful at
inferring latent trajectories, they do not provide explicit descriptions of the latent dynamics, and depending on the GP kernel
choices, the trajectories likely do not exhibit first-order Markovian dynamics.
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point or stochastic bifurcation theory is not easily applicable to experimental data recorded from un-

known systems. Therefore the approach used by the methods above (e.g. Golub and Sussillo (2018))

was to simulate trajectories from the learned systems (either noiseless, or averaging noisy ones), and

find deterministic descriptions of the fixed points of the system.

I felt that this methodology - fitting a stochastic dynamical system to data, then finding fixed

points using the model only - could be improved by directly including deterministic fixed point

descriptions as parameters of the model, and fitting the observed data while simultaneously learning

point estimates or posteriors over the fixed points and local linearisations. This directly results in

a human-interpretable description of an unknown, noisy dynamical system, while ensuring that our

uncertainty about the number, location or properties of the fixed points is propagated correctly, and

taken into account as part of the model fit.

The main idea of conditioning the transition dynamics on fixed points is described in sec-

tion 4.2; then I discuss the case when the transition dynamics function has a Gaussian Process prior,

leading to a conditioned Gaussian Process State Space Model, in section 4.2.1. My first specific

implementation – submitted to ICML 2018 (Bohner and Sahani 2018) and presented at COSYNE

2018 (Sahani 2018) – is described in section 4.2.2, whereas a subsequent, more flexible algorithm

– the result of a collaboration with Lea Duncker and Julien Boussard and published at ICML 2019

(Duncker et al. 2019) – is shown in section 4.2.3. Finally, the two described algorithms are applied

to simulated systems in section 4.3, to demonstrate their ability to both infer latent trajectories, and

provide correct and interpretable descriptions of the dynamics given moderate datasets, including

ones mimicking typical neural recordings in sections 4.3.4 and 4.3.5.

4.2 Modeling latent stochastic dynamics with fixed points

In order to build up towards the idea of finding the fixed points within dynamical maps fitted to

repeated time-series recordings, we need to first describe the individual elements of a model that

could implement such a task, then find a way of combining them together. I will discuss a very

general model at first, and show the particular choices I made gradually - keeping in mind that there

are many such choices, which all lead to a different specific algorithm, some potentially better or

more broadly applicable than mine. My aim here was not to explore the complete space of all such

potential algorithms, or argue my choices are the best possible ones; but rather to describe and share

a working implementation of an idea that I hope will spark a novel way of looking into dynamical

systems fit to neural recordings.

First, let us define the data we wish to model. It consists of repeated measurements (trials) of a

time series

y(t) ∈ RN, t ∈ [1,T ] , (4.1)
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where the output dimensionality N often corresponds to the number neurons recorded from, and

T could be the number of video frames in calcium imaging, or time bins in spike sorted electrical

recordings. In the simplest case, each trial will consist of the same number of neurons and time

points, and thus the collection of trials may be described as either the set Y = {ym(t)}t=1...T
m=1...M or

simply the tensor Yntm. Note that for the algorithm described here, we do not require the trials to

have the same number of time points in trials, but it greatly simplifies the mathematical description.

We do - for now - require the time points to be equally spaced in time (which is usually the case

with microscopy and time-binned data), but in an extension described later – which was part of

a collaborative effort to improve my initial model – that requirement will also be dropped (see

section 4.2.3).

Our first modeling step involves dimensionality reduction of the time series data, by assuming

there is a lower dimensional latent dynamical space, which is capable of capturing the interactions

between the often large number of recorded neurons. Let us denote timeseries within this latent

space as x(t) ∈ RD, where D is the latent dimensionality. Therefore the first modelling step of

dimensionality reduction is

y(t) = g(x(t))+ εεε
y(t) , (4.2)

where our goal is to infer latent time series x and learn an output mapping function g : RD 7→ RN,

such that the discrepancies εεε
y(t) are minimised (according to some metric and aggregation2).

Next, we wish to learn about the dynamical evaluation of the latent time series. At our current

level of understanding most real biological process are ‘inherently’ noisy, therefore we need to de-

scribe our dynamical evaluation as a stochastic differential equation (SDE), dx= f ′(x)dt+
√

ΣΣΣ
x dw,

where w(t) is a Wiener noise process. However, given we are assuming our data is on a fixed step

time grid, we can use the significantly simpler language of stochastic state-space models, a discrete

time analogue of SDEs. Therefore we can write

x(t +1) = f (x(t))+ εεε
x(t) , (4.3)

where we need to learn a dynamical transition map f : RD 7→ RD and the level of transition noise

εεε
x(t).

Finally, to enhance our insight into the dynamical process, we wish to explicitly model the

locations of the fixed points in the transition map f (·) and the behaviour of the system around them

through local linearisations. Let sl ∈ RD be a fixed point in f , and Jl ∈ RD×D the Jacobian matrix

of f evaluated at that point
(

ie. Jl = ∇x f (x) |x=sl

)
. If we then choose a parametrisation of f that

depends explicitly on these fixed points and local linearisations, we can learn these parameters as

2In the simplest case the squared error summed over all neurons, time points and trials, ∑n,t,m ε
y
nm(t)

2. Minimising this
results in the optimal solution if we assume the observations have uniform isotropic Gaussian noise.
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part of our model fitting process.

The full model is then

x(t +1) = f (x(t))+ εεε
x(t)

y(t) = g(x(t))+ εεε
y(t)

such that ∀ sl, Jl

f (sl) = sl and ∇x f (x) |x=sl = Jl .

(4.4)

In such a model, we succeed to fit the data, and gain direct scientific insight into the behaviour

of a system that could have generated the observations, in a single step. What parameterisation of f

may enable us to include the fixed point parameters and still fit datasets with various output and noise

models? Recent work on Gaussian Process State Space Models (GP-SSMs) has shown great promise

in modelling stochastic latent non-linear discrete time dynamical systems in a variety of applications

(e.g. Frigola, Chen, and Rasmussen (2014) and McHutchon (2014)); furthermore, functions drawn

from a Gaussian Process also lend themselves to be conditioned on their fixed points and derivatives.

As it uniquely combines these strengths, I chose to use a Gaussian Process parameterisation for

the transition map function f . This choice informs both the inference and learning steps of any

algorithm, and thus will now be discussed in detail.

4.2.1 A Gaussian Process prior with fixed point parameters

Let the D-valued transition map function be a collection of D independent scalar-valued functions,

f (·) = [ f 1(·), f 2(·), . . . , f D(·) ], a common technique when representing multiple-output functions

via Gaussian Processes.

A Gaussian Process prior over a scalar-valued function f d(x)∼ GP(m(x),k(x,x′)) with given

mean and covariance functions, m(·) : RD 7→ R and k(·, ·) : RD×RD 7→ R, defines a joint distribu-

tion of function values for an arbitrary set of input points X∈RD×P, where m is applied column-wise,

and k is applied to all pairwise combinations of columns. The joint distribution of outputs is Normal:

f d(X)∼N (m(X) , k(X,X)) (4.5)

In addition to the mean and covariance functions3, we now wish to incorporate the fixed points

S =
[

s1, . . . ,sL
]
∈ RD×L and the local linearisations J =

[
J1, . . . ,JL

]
∈ RD×D×L where L is the

number of fixed points. A Gaussian Process conditioned on these implies a joint distribution of not

only the function values at given inputs, but also the fixed point and derivative parameters (which

are mathematically equivalent to observations in a GP, but their values may change during the model

3that may differ for each output dimension, resulting in a set of md and kd functions
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estimation algorithm). In order to describe this joint distribution, we first need to define the deriva-

tives of the mean and covariance functions, as they couple the Jacobians (essentially equivalent to

derivative observations) to function value observations.

Fortunately, the derivative of a Gaussian Process is a Gaussian Process by itself, with the new

mean function being the derivative of the mean function ∇m(·), and the covariance function being

the gradient of the covariance function with respect to both inputs ∇1∇2k(·, ·) (see in appendix C).

Furthermore, the cross-covariance of a Gaussian Process and its derivative can also be computed, by

taking the gradient of the original covariance function with respect to only one of its inputs, ∇1k(·, ·)
or ∇2k(·, ·). Therefore the complete joint normal distribution of the f d(·) function values at given

locations X induced by a Gaussian Process that includes fixed points S and their local linearisations

J can be written as



Sd·

Jd··

f d(X)


∼ N





ms

∇ms

mx


,



kss
∇2kss ksx

∇1kss
∇1∇2kss

∇1ksx

kxs
∇2kxs kxx




(4.6)

where Sd· and Jd·· selects the d-th entry along the first dimension, and the superscripts indicate the

inputs to the functions m and k, with s representing the fixed point locations S, whereas x corresponds

to the locations of interest X. Note that the locations of the Jacobians always correspond to that of a

fixed point, therefore for example ∇1ksx = ∇1k(S,X) indeed represents the cross-covariance of the

(mean-centred) Jacobians and potential function value observations, with the Jacobians and gradient

function outputs appropriately reshaped4.

An equivalent, alternative view of this prior is instead of examining the joint distribution of

fixed-point related parameters and function values as in equation 4.6, we rather define a conditional

Gaussian Process on the function values:

p( f (x) ) = GP( f (x) | ∀ l f (sl) = sl , ∇ f (sl) = Jl ), (4.7)

where the m mean and k covariance functions are omitted from the notation for clarity, but are im-

plied by any GP. Note that the algebraic computations (including the conditioning itself) is generally

done based on the joint view in equation 4.6, but this conditional view of GPs may provide additional

insight.

As we are establishing a powerful prior over a completely unknown function that we wish to

4The gradient operation increases the tensor order of the function, which then need to be flattened to represent the corre-
sponding block of the covariance matrix
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estimate from data, we need to insert a little more flexibility into it. The main concern is a priori

determining the number of fixed points. In order to automatically select the number of fixed points

during the inference and learning processes described later, I chose the strategy of setting the number

of fixed points large, but augmenting the prior with an extra learnable variance parameter σ
l for

each fixed point, such that it doesn’t constrain the function value exactly, but f (sl) = sl +σ
l
εεε , with

εεε ∼ (N)(0, I). This then results in Automatic Relevance Determination (ARD) style procedure (see

Snelson and Ghahramani (2012) for a GP example), in which the system is allowed to learn large σ
l

values for fixed points that are ‘unnecessary’, therefore not only learning the location of true fixed

points, but also pruning the extra ones. Note that there a number of alternative options available

for determining the cardinality of a set of unknown parameters (such as life-death processes as in

Pnevmatikakis et al. (2013) or standard model selection via a held out validation dataset), but they

tend to be computationally more expensive than the ARD procedure used here.

Mathematically, these extra variance parameters enter the joint prior through the kss block of

the covariance matrix in the joint (equation 4.6) , such that kss = k(S,S)+ diag( [σ1, . . . ,σL ] ). In

the conditional prior view of equation 4.7, these added variance parameters enter much more clearly,

by specifying the function value at a fixed point as a normally distributed random variable p( s̃l ) =

N (sl,σ lI) and integrating over these intermediate random variables:

p( f (x) ) =
∫
· · ·
∫
GP( f (x) | ∀ l f (sl) = s̃l , ∇ f (sl) = Jl )∏

l
p( s̃l ) ds̃l. (4.8)

Having established how our parametric Gaussian Process prior affects the distribution of func-

tions via the fixed points and local linearisation, we now need to understand how this idea may be

applied to infer latent time series xm(t) from the data Y , and learn the various model elements: the

output mapping g, the output noise εεε
y, the transition map function f along with the transition noise

εεε
x, and of course the parameters of interest, the fixed point locations S, their ‘certainties’ σσσ

s and the

linearisations around each fixed point, J.

4.2.2 Estimating latent Gaussian Process transition map models of time series

The main difficulty of simultaneously inferring latent space trajectories x(t) and learning the tran-

sition function f (·) in the GP framework, is that exact Gaussian Process posteriors are represented

by their input-output relationships; however, if these inputs and outputs are themselves latent, and

inferred using f (·), a complex dependence structure arises, making exact inference and learning

intractable.

This issue of the dependence structure of latent time series models with a GP transition function

is discussed at length by McHutchon (2014), here I merely state their results. The first, and easiest

way of breaking this dependence structure is to just make the assumption that the dependence struc-

ture does not exist to begin with, and treat the time series data as merely a regression problem from
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time t to time t +1, essentially ignoring the propagation of uncertainty over time. This is simple and

can be effective in certain situations, but in the case of investigating neural system, the estimation

and representation of uncertainty is often a key question, and as such, I decided to find an alternative

approach.

Another way that is widely used in scaling up Gaussian Process, is that of inducing points,

essentially a set of extra input-output pairs that exclusively describe the function f (·), without direct

dependence on the data. These can either be thought of extra parameters of the complete model lead-

ing to the family of methods called sparse GPs, which include FITC and PITC; or can be thought of

as variational parameters and are to be integrated over when predicting from an estimated posterior.

Here we utilise both approaches in the description of two distinct methods for estimating the transi-

tion function. I will first describe in detail the sparse GP version and the algorithm it led to, and later

also include the main ideas from the variational approach, which was joint work with Lea Duncker

and Julien Boussard and is described in section 4.2.3.

4.2.2.1 Sparse approximation

We introduce inducing point locations z ∈ RD and uncertain function values at those locations

f d(z) = ũd, where ũd ∼ N (ud,σ
u) is a normal random variable with mean ud and uncertainty σ

u.

The reasons for this uncertainty parameter are both that our measurements are noisy, and that we

are learning a function in an unknown, transformed latent space, so we do not expect to have the

same uncertainty (noise variance) everywhere in the latent space. This representation for a sparse

approximation of a heteroscedastic function follows the idea by Snelson and Ghahramani (2012).

We can also collect the ud scalar values into a vector, and write f (z) = ũ and ũ ∼ N (u,σu),

where σ
u is diagonal, if the output dimensions of f (·) are independent. Whether or not to use a

different uncertainty level σ
u for each output dimension is a choice one can make, I decided to use

a single value per inducing point location, therefore it represents how much the u should constrain

the function at that location, rather than some form of non-isotropy in latent space transitions (for

which we later introduce a different parameter that is location-independent).

Of course, we need more than one inducing point to sufficiently represent the function, and thus

we denote the collections of inducing point locations, mean values and uncertainties as Z ∈ RD×K,

U ∈ RD×K and σσσ
u ∈ RK, respectively. These are treated as additional parameters of the model,

and are to be estimated given the data, along with parameters described previously. Our “posterior”

Gaussian Process will then really mean finding a setting of these inducing point parameters, such that

the predictive distribution given the true prior and the inducing point parameters as “noisy training

data” results in a GP distribution over functions that optimises the exact marginal log likelihood of

the time series data. The joint over the posterior function values f̂ d(X), the prior and the inducing

values resemble the form of equation 4.6, noting the added location-wise uncertainty terms σσσ
u and
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σσσ
s in the covariance, and the added superscripts z representing the kernel’s input being Z, e.g.

∇1ksz = ∇1k(S,Z).



Ud·

Sd·

Jd··

f̂ d(X)



∼ N





mz

ms

∇ms

mx



,



kzz +diag(σσσu) kzs
∇2kzs kzx

ksz kss +diag(σσσ s) ∇2kss ksx

∇1ksz
∇1kss

∇1∇2kss
∇1ksx

kxz kxs
∇2kxs kxx




(4.9)

To simplify notation for further calculation, from this point onwards we assume (without

loss of generality) that the mean function m(·) is uniformly zero, and we introduce the matrices

Kpost ∈ R(K+L+KL)×(K+L+KL) and Kpred ∈ RP×(K+L+KL), representing the posterior and the predic-

tive parts of the covariance matrix above:

Kpost =



kzz +diag(σσσu) kzs
∇2kzs

ksz kss +diag(σσσ s) ∇2kss

∇1ksz
∇1kss

∇1∇2kss



Kpred =

[
kxz kxs

∇2kxs

]





Ud·

Sd·

Jd··


f̂ d(X)


∼ N

 0 ,

 Kpost (Kpred)>

Kpred kxx




(4.10)

As these posterior predictions f̂ are going to be the ones that enter into our optimisation scheme,

it is useful at this point to define the mean and variance f̂ d(x) given a single test input location x,

and the current setting of all model parameters. Note that due to our assumption of independence of
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each f d(·) function, the covariances of the predictions are 0. This trivially generalises to all d output

dimensions, and also to multiple input locations5.

E f̂[ f̂
d(x)] = Kpred [Kpost]−1


Ud·

Sd·

Jd··



Var f̂[ f̂
d(x)] = k(x,x)−Kpred [Kpost]−1

(Kpred)>

(4.11)

Having established how the sparse approximation can be used to describe a “parametric” GP

that disconnects the learned transition function from the dependence structure of the time series data,

we have two tasks left. First I will discuss how we infer the latent path given the data and a current

setting of all parameters (for the prior, the inducing points, the kernel and the output mapping),

Secondly, once we have inferred the latent path’s distribution, we can see how the parameters may

be changed to maximise the exact marginal log likelihood via gradient ascent.

4.2.2.2 Inference and learning

There are numerous inference algorithms available for latent time series data, but they all generally

follow the scheme of passing massages forward and/or backward in time in the latent space, and also

collecting messages from the observed outputs at each time point, by (approximately) inverting the

output model. Message passing schemes that only propagate information forward - and thus may be

used in real-time applications - are called filtering algorithms (examples include work by Ko et al.

(2007), Poyiadjis, Doucet, and Singh (2011), and Wan and Van Der Merwe (2000)), whereas on

already recorded data we may carry out ‘smoothing’, which also incorporates messages from the

future to determine the most likely latent state distribution at a given time (for example Deisenroth

and Mohamed (2012) and Deisenroth et al. (2012)).

Given the large number of inference schemes available, it is fortunate that Andrew McHutchon

previously compared a large number of these methods on various simulated datasets (McHutchon

2014) that are close to our problem setting, and found that the so-called “Direct method” performed

best both in one-step-ahead predictive performance and recovering true model parameters. Further-

more owing to its relative simplicity it is a very stable method, unlikely to find spurious trajectories.

The inference scheme of this Direct method is Assumed Density Filtering (ADF, see Deisenroth,

Huber, and Hanebeck (2009) or Ramakrishnan, Ertin, and Moses (2011)), which I describe here in

more detail.

ADF proceeds via a single forward filtering for each time series in our dataset, and propagates

5Note that in the time series setting we generally only have to deal with single input locations at a time, representing our
current location in latent space
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beliefs through the current estimate of the transition function, incorporates messages from the obser-

vations, and projects any resulting non-Gaussian distributions onto a Gaussian via moment matching

of the means and variances. This results in a Gaussian belief over each latent state at the end of the

inference, enabling us both to represent these beliefs via only means and variances, as well as making

it a convenient input to any learning scheme, regardless of the output mapping6.

Let x̃t−1|t−1 represent our belief of the latent state at time t−1 as a normally distributed random

variable, with

x̃t−1|t−1 ∼N
(

µµµ
t−1|t−1 , ΣΣΣ

t−1|t−1
)

(4.12)

The superscripts t−1|t−1 indicate that we represent our belief of x at time t−1, with evidence

from y observations incorporated up to time t − 1 as well. In ADF, we first propagate this belief

through the posterior transition function f̂ (·), and approximate the resulting distribution again as a

Gaussian:

x̃t|t−1 ≈ f̂ ( x̃t−1|t−1 )+ εεε
x(t)

x̃t|t−1 ∼N
(

µµµ
t|t−1 , ΣΣΣ

t|t−1
) (4.13)

These moments may be computed via taking the expectations with respect to x̃t−1|t−1 of the

means and variances of the GP predictions shown in equation 4.11. The posterior part of the GP

covariance matrix, Kpost, does not depend on the test input x, and thus the expectation with respect

to x only affects k(x,x) and Kpred. Therefore the mean and variances of x̃t|t−1 can be computed by

µ
t|t−1
d = E x̃t−1|t−1E f̂[ f̂

d(x̃t−1|t−1)]

= E x̃t−1|t−1

[
Kpred

][
Kpost]−1


Ud·

Sd·

Jd··

 (4.14)

Σ
t|t−1
dd = E x̃t−1|t−1Var f̂[ f̂

d(x̃t−1|t−1)]

= E x̃t−1|t−1

[
k(x̃t−1|t−1, x̃t−1|t−1)−Kpred [Kpost]−1

(Kpred)>
]

(4.15)

= E x̃t−1|t−1

[
k(x̃t−1|t−1, x̃t−1|t−1)

]
−E x̃t−1|t−1

[
(Kpred)>Kpred

]
Tr
{[

Kpost]−1
}

However, taking the expectation with respect to an uncertain input does introduce co-variances

in the prediction, and thus we need to calculate the off-diagonal terms of Σ
t|t−1, unlike in equa-

6As non-conjugate output mappings can still make use of efficient Gaussian Quadrature integrators due to the Gaussianity
of the input
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tion 4.11, where those off-diagonal terms were zero. These calculations were originally carried out

by Deisenroth, Huber, and Hanebeck (2009), but I have adapted them to include the fixed points and

local linearisation terms, and written in terms of expectations rather than integrals, for clarity.

Σ
t|t−1
d1d2

= E x̃t−1|t−1E f̂

[
f̂ d1(x̃t−1|t−1) f̂ d2(x̃t−1|t−1)

]
−µ

t|t−1
d1

µ
t|t−1
d2

The expectation with respect to f̂ is then expanded and rearranged as follows:

= E x̃t−1|t−1


Kpred [Kpost]−1


Ud1·

Sd1·

Jd1··



Kpred [Kpost]−1


Ud2·

Sd2·

Jd2··



−µ

t|t−1
d1

µ
t|t−1
d2

=


Ud1·

Sd1·

Jd1··


>

[
Kpost]−>E x̃t−1|t−1

[
(Kpred)>Kpred

][
Kpost]−1


Ud2·

Sd2·

Jd2··

−µ
t|t−1
d1

µ
t|t−1
d2

(4.16)

These calculations completely determine the approximate belief at time t given data up to time

t−1:

p(x̃t|t−1)≈ p(x(t) | y(1 : t−1))

x̃t|t−1 ∼N
(

µµµ
t|t−1 , ΣΣΣ

t|t−1
) (4.17)

The final inference step is to incorporate the observation at time t, and compute the updated

belief

p(x̃t|t)≈ p(x(t) | y(1 : t))

x̃t|t ∼N
(

µµµ
t|t , ΣΣΣ

t|t
) (4.18)

In order to do this, we apply Bayes’ rule to the likelihood computed given our current belief:

p(x(t) | y(1 : t)) =
p(y(t) | x(t)) p(x(t) | y(1 : t−1))

p(y(t) | y(1 : t−1))

≈ p(y(t) | x̃t|t−1) p(x̃t|t−1)∫
p(y(t) | x̃t|t−1) p(x̃t|t−1) dx̃t|t−1

=
p(y(t) | x̃t|t−1) p(x̃t|t−1)

L(t)

(4.19)

where L(t)≈ p(y(t) | y(1 : t−1)) is the approximate marginal likelihood contribution at time
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t. As the above is a valid normalised probability distribution (that approximates the true posterior

belief at x(t)), we can find its first two moments and thus update our beliefs accordingly:

µµµ
t|t = E x̃t|t−1

[
x̃t|t−1 p(y(t) | x̃t|t−1)

L(t)

]

ΣΣΣ
t|t = E x̃t|t−1

[
x̃t|t−1 (x̃t|t−1)>

p(y(t) | x̃t|t−1)

L(t)

]
−µµµ

t|t(µµµ t|t)>
(4.20)

Given that our belief representation x̃t|t−1 is Gaussian, for conjugate likelihoods (such as affine

or GP transformations with additive Gaussian noise) these expectations may be available in closed

form (e.g. Deisenroth, Huber, and Hanebeck (2009)). However, even for non-conjugate likelihoods,

the resulting integrals over x̃t|t−1 can be computed by Gaussian quadrature, and thus these moments

can be approximated efficiently using numerical methods for arbitrary observation models.

To summarise, in order to infer the latent time series x(·), we chose to represent our beliefs

approximately via normally distributed random variables x̃t|t. Given an initial belief
{

µµµ
0|0, ΣΣΣ

0|0
}

,

we can successively for each new observation time 1.) update the belief by propagating it through

the GP transition function (see equations 4.14 to 4.16) and 2.) incorporate the new observation into

our belief (see equations 4.18 to 4.20).

These methods and equations are generally applicable for any choice of kernel function or

observation model. However, it must be stated that the kernel expectations which arise in step 1

are available in closed form only for linear, polynomial and Exponentiated Quadratic / Squared

Exponential kernel functions. As the Exponentiated Quadratic kernel function is the most applicable

one, I derived analytic expressions for the derivatives as well as all required expectations for it in

appendix C, which enables closed form forward propagation of the belief. The expectations in step

2 are only computable in closed form for linear or GP transformations with additive Gaussian noise.

Fortunately the Exponentiated Quadratic kernel over the latent space, and linear output mapping

with additive Gaussian noise defines a rather wide class of models. It restricts only the noise model,

the smoothness of the transition map f (·) – as defined by the lengthscale(s) of the kernel(s) – and

constrains the output mapping g(·) to be monotonic7. I derive the filtering step for the linear output

mapping in section 4.2.2.3 for this widely applicable setup.

Learning During the inference process described above, we already compute the approximate

marginal likelihood terms at each observation, L(t), and therefore we can compute the log marginal

likelihood as a function of all parameters θ .

7Any non-linearity in a monotonic output function can be represented by transformation of the latent space itself, and
the corresponding change of the transition function. In fact, allowing for and learning complex output mappings reduces the
interpretability of the inferred latent trajectories and the learned non-linear transition map, and therefore should be avoided.
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l(θ) = log p(y(1 : T ) | θ)

= log∏
t

p(y(t) | y(1 : t−1))

≈∑
t

log
∫

p(y(t) | x̃t|t−1) p(x̃t|t−1) dx̃t|t−1

= ∑
t

logL(t)

(4.21)

As all operations described in this section are differentiable (or the derivatives can numerically

be approximated), if one keeps track of the computation graph and the individual derivatives8, all

parameters can be updated via gradient ascent on l(θ) as the objective. In practice it is useful to

only update certain parameters after an inference step, such as keeping the output mapping g(·) (and

thus the structure of the latent space) more stable while initially learning the transition map f (·) via

its parameters θ f = {S,J,σσσ s,Z,U,σσσu} and kernel hyperparameters θk. Inference and learning steps

are iterated until convergence (or until some early stopping threshold based on a metric on held out

validation data).

4.2.2.3 Linear Gaussian observation model

As stated above, for a linear Gaussian observation model, we can obtain closed form updates for

incorporating a new observation into our belief, meaning we can fully specify equations 4.18 to 4.20.

Let

p(y(t) | x̃t|t−1 ) =Ny (g(x̃
t|t−1),ΣΣΣy)

g(x̃t|t−1) = Cx̃t|t−1

x̃t|t−1 ∼N (µµµ t|t−1,ΣΣΣt|t−1)

(4.22)

where x̃t|t−1 ∈ RD is our belief at time t given data up to time t − 1, C ∈ RN×D is the linear out-

put mapping, ΣΣΣ
y ∈ RN×N is the observation noise variance. We wish to calculate the approximate

marginal likelihood given our current belief, as well as update our belief in light of the new observa-

tion. We can calculate the conditional mean and variance of y given our belief as

p(y(t) | µµµ t|t−1,ΣΣΣt|t−1) =Ny

(
µµµ

t
y|b,ΣΣΣ

t
y|b
)

µµµ
t
y|b = Cµµµ

t|t−1

ΣΣΣ
t
y|b = ΣΣΣ

y +CΣΣΣ
t|t−1C>

(4.23)

Therefore the approximate marginal likelihood contribution at time t is

8for which automated methods are now widely available
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logL(t) = p(yt | µµµ t|t−1,ΣΣΣt|t−1)

=−1
2

(
N log(2π)+ log‖ΣΣΣt

y|b‖+(yt−µµµ
t
y|b)
>
(

ΣΣΣ
t
y|b
)−1

(yt−µµµ
t
y|b)
)
,

(4.24)

and from the conditional x|y,b we can update our belief via

µµµ
t|t = µµµ

t|t−1 +ΣΣΣ
t|t−1C>

(
ΣΣΣ

t
y|b
)−1

(yt−µµµ
t
y|b)

ΣΣΣ
t|t = ΣΣΣ

t|t−1−ΣΣΣ
t|t−1C>

(
ΣΣΣ

t
y|b
)−1

CΣΣΣ
t|t−1.

(4.25)

When this linear Gaussian observation model is used alongside an Exponentiated Quadratic

kernel function, the inference is completely analytically computable with closed form expressions,

and we can use the approximate marginal likelihood l(θ) = ∑ t logL(t) as an objective function for

parameter optimisation via gradient ascent.

In accordance with previous terminology, I will refer to this algorithm as Fixed-point Gaus-

sian Process Assumed Density Filtering (FP GP-ADF) with linear Gaussian observations in further

sections, and show applications in sections 4.3.2 and 4.3.5.

4.2.3 Continuous time modelling of transition flows via Variational Sparse

Gaussian Process inference and learning

This section presents joint work with Lea Duncker and Julian Boussard, published in Duncker et al.

(2019), resulting in the Fixed-point Gaussian Process latent Stochastic Differential Equation (FP

GP-SDE) algorithm. I summarise here the main ideas, please refer to the paper for further details9.

An alternative, more flexible approach to modeling dynamical systems is to identify the transi-

tion flows in the latent space, rather than relying upon discrete time transition maps. As mentioned

in section 4.2.2, we may use stochastic differential equations (SDEs) to model the evolution of the

latent state x

dx = f ′(x)dt +
√

ΣΣΣdw, (4.26)

where the function f ′(·) now represents a transition flow rather than the transition map itself, and ΣΣΣ

is the incremental noise covariance shaping the Wiener noise process w(t).

The latent state is observed indirectly through noisy measurements y ∈ RN at unevenly spaced

time points t i.

9Mind the notation and definitions in the paper is slightly different from present thesis chapter, but both are self-consistent.
Furthermore, the notation within this subsection uses subscripts for naming objects, and not to be understood as indicial
notation.
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Ey|x [y(t i) ] = g(Cx(t i)+d) (4.27)

We consider here a general, but particular form of measurement model, in which the measure-

ments are distributed with a known parametric form and generalized linear dependence; that is the

expected value is g(Cx+ d) with a given inverse-link function g and parameters C ∈ RN×D and

d ∈RN. We seek to infer latent paths x(t) along with the dynamical parameters and an interpretable

representation of the dynamical transition flow f ′(·).

In the following I describe the two main differences compared to the previous FP GP-ADF

algorithm. Firstly, we chose to use a different treatment of how inducing points were incorporated in

the model and what objective we use to learn model parameters. In the above FP GP-ADF algorithm

I treat the inducing points (represented by locations, mean values and uncertainties) as extra param-

eters of the model, and found maximum likelihood point estimates for all parameters, based on an

approximate marginal likelihood as the objective function. Here, as shown in section 4.2.3.1, we

used an alternative option for learning model parameters based on treating both the distribution over

the latents x as well as the inducing points u as variational parameters following Titsias (2009). We

then maximise the variational free energy (a well-defined lower bound to the marginal likelihood

rather than an approximation to it as previously) by integrating over the variational parameters10.

Secondly, in order to make use of the continuous time representation based on SDEs, we need to

employ a different inference algorithm (derived in section 4.2.3.2), one that uses the dynamical flow

representation to propagate latent beliefs and can thus incorporate observations at arbitrary time

points.

4.2.3.1 Variational sparse approximation

Although mathematically the introduction of fixed and inducing points to a GP prior over the tran-

sition flow function f ′(·) looks very similar to what we derived in equation 4.9, there are some

significant differences in what the parameters mean and how we proceed from there. I first state the

updated representation, then discuss the differences.

10Note that the parametric and variational treatments of model learning are easily interchangeable and thus we could
similarly derive a variational version of FP GP-ADF algorithm or a parametric version of the algorithm described here.
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

Ũd·

0

Jd··

f ′d(X)



∼ N



0 ,



kzz kzs
∇2kzs kzx

ksz kss +diag(σσσ s) ∇2kss ksx

∇1ksz
∇1kss

∇1∇2kss
∇1ksx

kxz kxs
∇2kxs kxx





(4.28)

Firstly, as we are modelling the transition flow rather than the map, we expect the function val-

ues at fixed points to be zero, rather than identity, therefore f ′(sl) = 0 for each fixed point. Similarly

the Jacobians Jl now represent derivatives of the flows rather than the map. Secondly, the inducing

point values used in the prior are themselves random variables, and their prior distribution is defined

by the kernel governing the GP, therefore for each latent dimension d we have Ũd· ∼ N (0,kzz) a

priori, and thus there is no extra diagonal term added to kzz in the joint covariance matrix. Given

these changes, we can again simplify the notation for the joint, then calculate the conditional prior

on each f ′d(·) function, similarly to equations 4.10 and 4.11, as follows:

Kprior =



kzz kzs
∇2kzs

ksz kss +diag(σσσ s) ∇2kss

∇1ksz
∇1kss

∇1∇2kss



Kpred =

[
kxz kxs

∇2kxs

]





Ũd·

0

Jd··


f ′d(X)


∼ N

 0 ,

 Kprior (Kpred)>

Kpred kxx




(4.29)

The form of the predictive mean and variance remains the same, noting that the inducing point
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values are random variables, and thus this represents a true conditional prior GP over f ′(·) rather

than a parametrised posterior.

f ′d | ũd ∼ GP
(
E f′ | ũ[ f

′
d(x)],Var f′ | ũ[ f

′
d(x)]

)

E f′ | ũ[ f
′
d(x)] = Kpred

[
Kprior

]−1


Ũd·

0

Jd··



Var f′ | ũ[ f
′
d(x)] = k(x,x)−Kpred

[
Kprior

]−1
(Kpred)>

(4.30)

We derived an alternative sparse GP prior over the transition flow f ′(·), conditioned on the

inducing point values Ũ and parametrised by the inducing point locations Z, as well as fixed point

locations S, the local linearisations around them J, and the kernel hyperparameters θk. We now need

to understand how to represent the latent process x(t), incorporate observations y(t i) recorded at

arbitrary times t i, propagate beliefs about x through the transition flow function f ′(·) and thus infer

the posterior p(x(t) |Y), and finally learn the parameters of both the transition flow f ′(·) and the

output mapping g(Cx+d).

4.2.3.2 Inference and learning

The problem of performing approximate inference in continuous-time SDE models has been con-

sidered previously, with the two main approaches being Expectation Propagation (Cseke et al. 2016)

and variational inference (Archambeau et al. 2007, 2008). We first review the latter approach in this

section, then derive our Variational Bayes algorithm that extends this work.

Review of Archambeau approximation

Archambeau et al. (2007, 2008) consider the latent SDE model in equations 4.26 and 4.27

under linear Gaussian observations. The authors derive an approximate inference algorithm based

on a variational Gaussian approximation to the posterior process on x(t) under the constraint that the

approximate process has Markov structure, as is the case for the true posterior process. The most

general way to construct such an approximation is via a linear time-varying SDE of the form

dx = (−A(t)x(t)+b(t))dt +
√

ΣΣΣ dw (4.31)

The instantaneous marginal distributions of this approximation at any time t are Gaussian, with
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means mx(t) and covariances Rx(t) that evolve in time according to the ordinary differential equa-

tions (ODEs):
dmx

dt
=−A(t)mx +b(t)

dRx

dt
=−A(t)Rx−RxA(t)>+ΣΣΣ

(4.32)

Archambeau et al. (2007, 2008) derive a lower bound to the marginal log-likelihood – often

called the variational free energy or evidence lower bound – whose maximisation with respect to qx

is equivalent to minimising the Kullback-Leibler (KL) divergence between the approximate and true

posterior process. The free energy has the form

F = ∑
i
〈log p(y i|x i)〉qx

−KL[qx(x)‖p(x)] (4.33)

The first term is the expected log-likelihood under the approximation and only depends on the

marginal distributions qx(x(t)). The second term is the KL-divergence between the continuous-

time approximate posterior process and the prior process. Archambeau et al. (2007) show that this

term can be written as

KL[qx(x)‖p(x)] =
∫
T

dt
〈
(f− fq)

>
ΣΣΣ
−1(f− fq)

〉
q

(4.34)

where f is the output of the true stationary posterior transition flow f̂ ′(·) evaluated at x(t),

f = f̂ ′(x(t)), and fq = fq(t,x(t)) =−A(t)x(t)+b(t) is our time-varying approximation to the cur-

rent flow, with the inputs omitted for both. Note that the noise covariance ΣΣΣ is deliberately chosen

to be equal for the SDEs in qx and p, as this term would diverge otherwise.

To maximise F with respect to mx(t) and Rx(t), subject to the constraint that the approximate

posterior process has Markov structure according to equation 4.31, one can find the stationary points

of the Lagrangian

L= F −C1−C2 (4.35)

with

C1 =
∫
T

dt Tr
[

Ψ(
dRx

dt
+ARx +RxA>−ΣΣΣ)

]
C2 =

∫
T

dt λλλ
>(

dmx

dt
+Amx−b),

(4.36)

where Ψ and λλλ are Lagrange multipliers. Archambeau et al. (2007, 2008) derive a smoothing algo-

rithm that involves iterating fixed point updates of this Lagrangian. These are either closed form, or

require solving ODEs forward and backward in time, thus achieving linear time complexity. In the

next section, we will modify this original algorithm in order to improve its numerical stability, and

show how to incorporate it in an efficient Variational Bayes scheme.
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Novel Variational Bayes extension

We can derive an efficient Variational Bayes (VB) algorithm (Attias 2000) for variational infer-

ence and learning in the model defined in equations 4.26 and 4.27, by maximising a variational free

energy. We assume that our full variational distribution factorises as

q(x, f, ũ) = qx(x)q f,u(f, ũ) (4.37)

Following Titsias (2009), we choose q f,u(f, ũ) = ∏
K
k=1 p( fk|ũk,θ)qu(ũk). The variational ap-

proximation of the posterior over the inducing points are chosen to be of the form qu(ũk) =

N
(

ũk|mk
u,R

k
u

)
. The marginal variational distribution q f(f) = ∏k

∫
dũk p( fk|ũk,θ)qu(ũk) is also a

Gaussian Process. The resulting expression for the variational free energy is of the form:

F∗ = 〈F〉q f
−

K

∑
k=1

KL[qu(ũk)‖p(ũk|θ)] (4.38)

The VB algorithm then iterates over an inference step, where the distribution qx over the latent

path is updated, a learning step where q f,u and the parameters in the affine output mapping are

updated, and a hyperparameter learning step where the kernel hyperparameters, and fixed point

locations are updated.

Inference Our inference approach follows directly from the work by Archambeau et al. (2007,

2008), though we consider a wider class of observation models and include a nonparametric

Bayesian treatment of the dynamics f under the conditioned sparse GP prior introduced in sec-

tion 4.2.3.1.

After using integration by parts on the Lagrangian in equation 4.35 (exchanging F for F∗),
we take variational derivatives with respect to mx(t) and Rx(t). Since our model has a rotational

non-identifiability with respect to the latents x, we fix ΣΣΣ = I without loss of generality. We arrive at

the following set of fixed point equations:

dΨΨΨ

dt
= A(t)>ΨΨΨ(t)−ΨΨΨ(t)A(t)− ∂F∗

∂Rx
�P (4.39)

dλλλ

dt
= AT(t)λλλ (t)− ∂F∗

∂mx
(4.40)

A(t) =
〈

∂ f
∂x

〉
qxq f

+2ΨΨΨ(t) (4.41)

b(t) = 〈f(x)〉qxq f
+A(t)mx(t)−λ (t) (4.42)

with P ij =
1
2 for i 6= j and 1 otherwise; and� denotes the Hadamard product. In contrast to previous

work, we explicitly take the symmetric variations of Rx(t) into account, which leads to a slightly

modified equation 4.39 compared to the work by Archambeau et al. (2007, 2008), and seems to im-
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prove the numerical stability of the algorithm. As a result, we can work with the fixed point updates

in equations 4.41 and 4.42 directly, without introducing a learning rate parameter that blends the

updates with the previous value of the variational parameters A and b, as was done by Archambeau

et al. (2007, 2008).

The inference algorithm involves solving the set of coupled ODEs in equation 4.32 and equa-

tions 4.39 to 4.42. using the conditions mx(0) = mx,0, Rx(0) = Rx,0 and λλλ (T ) = 0, ΨΨΨ(T ) = 0.

In principle, it is possible to use any ODE solver to do this. In this work, we chose to solve equa-

tion 4.32 using the forward Euler method with fixed step size ∆t to obtain mx and Rx evaluated on

an evenly spaced grid. Similarly, we then solve equations 4.39 and 4.40 backwards in time to obtain

evaluations of λλλ and ΨΨΨ. The solutions from the ODEs can then be used with equations 4.41 and 4.42

to obtain evaluations of A and b on the same time-grid used for solving the ODEs.

Evaluating the expectations of the terms involving f with respect to qx and q f only involves

computing Gaussian expectations of covariance functions and their derivatives. These can be com-

puted analytically for choices such as an exponentiated quadratic covariance function. We update

the initial state values mx,0 and Rx,0 using the same procedure as described by Archambeau et al.

(2008). Given the function evaluations on the inference time-grid, we use linear interpolation to

obtain function evaluations of mx and Rx at arbitrary time points. Further details on the inference

algorithm are given in the appendix of Duncker et al. (2019).

Learning Dynamics The only terms in equation 4.38 that depend on parameters in f are the ex-

pected KL-divergence between the prior and approximate posterior processes and the KL-divergence

relating to the inducing points for f, which are jointly quadratic in the inducing points and Jacobians.

Thus, given mx(t), Rx(t), A(t) and b(t), we can find closed form updates for the Jacobians and

variational parameters relating to f. These updates require tractable linear algebraic operations, and

the computation of one-dimensional integrals, which can be carried out efficiently using Gauss-

Legendre quadratures. Detailed derivations are given in the appendix of Duncker et al. (2019); there

we also provide closed form updates for the sparse variational GP approach for modelling f, without

further conditioning on fixed points and Jacobians.

Learning Output Mapping The only term that depends on the parameters C and d in equa-

tion 4.38 is the expected log-likelihood. Whether or not our algorithm admits for closed form

solutions depends on the choice of observation model. In the case of a Gaussian likelihood, we

can find the optimal updates as

C∗ =
(

∑
t
(y t−d)m>x,t

)(
∑

t
(Rx,t +mx,tm

>
x,t)

)−1

(4.43)

d∗ =
1
T ∑

t

(
y t−C∗mx,t

)
, (4.44)
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where the subscript t denotes a function evaluation at t. For other choices of observation model a

closed form solution may not be available, but parameter updates can again be found by maximising

the free energy using standard optimisation approaches.

Learning Hyperparameters The kernel function hyperparameters θk and fixed point locations S

are learnt by direct optimisation of the variational free energy. The inducing point locations Z can

also be included here, though we chose to hold them fixed on a chosen grid for all examples shown.

4.3 Applications

Having defined two novel algorithms, FP GP-ADF and FP GP-SDE that incorporate fixed points

and their local linearisation as directly learnable parameters, I wish to demonstrate that these ideas

and the resulting algorithms are indeed applicable for a variety of problem settings, including neural

data analysis. Although truly understanding an unknown real-world dynamical system is extremely

difficult, requiring years of careful analysis and probably repeated experiments and data collection

to test the hypotheses arising from initial analyses, these algorithms may serve as one of the tools

researchers can apply to glean further insights into systems, and generate truly testable hypotheses

based on the crude dynamical portraits we can recover computationally.

Due to the difficulties in evaluating whether a learned portrait accurately describes an unknown

system, we chose to validate the algorithms via a range of carefully simulated experiments, rather

than applying them to experimental data and attempting to draw superficial conclusions based on the

resulting fits.

This section describes the simulated systems and shows that the algorithms are indeed capable

of recovering the true dynamical portraits in a variety of settings, including non-uniform observation

times (for FP GP-SDE) and non-Gaussian noise models. The latent dynamics were restricted to 1

and 2 dimensional systems in these examples, as it is difficult to visualise and interpret the dynamical

portrait as well as the type and stability of stochastic fixed points in higher dimensions. However,

the implemented algorithms are readily applicable to D > 2 latent dimensions too. There is no such

restriction put on the dimensionality of the observed space, N, as in both electrical and imaging type

neural recordings we often get N � 50 simultaneously recorded neural timeseries, and thus in the

experiments below we demonstrate that the algorithms can indeed make use of such data.

I first show the basic capabilities of both algorithms, FP GP-ADF and FP GP-SDE, via two

similar one-dimensional systems, one defined by its transition flow function and sampled irregularly

in time (section 4.3.1), and the other sampled on a time grid with a dynamical map function gowern-

ing its evolution (section 4.3.2). Afterwards, I describe a life-like simulation of complex chemical

reactor, with three stable and two unstable fixed points. It was observed in high dimensions via a

‘spectroscopic’ measurement process, and showcases that our system is capable of learning very
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complex dynamical portraits (section 4.3.3).

Next, I discuss neural applications: first via simulating a generically parametrised known two-

dimensional SDE observed through a multivariate point process emulating electrical population

recordings (section 4.3.4); finally, I simulate from a high-dimensional spiking neural model ob-

served through a calcium microscopy like process on a regular time grid representing video frames.

The parameters of the spiking system were optimised by others to fit real neural recordings which

implement multi-stage 2-dimensional ‘memory and decision making’ dynamics, regulated by exter-

nal input and experiencing bifurcation (section 4.3.5).

In all examples, the Exponentiated Quadratic kernel function is used, due to the analytical

solutions it provides. For both methods the inducing point locations Z are chosen on an equidistant

grid, and these locations are not optimised, thus reducing computational complexity and improving

stability. For the GP-ADF method we initialise parameters via GP regression from time t to t + 1.

For the GP-SDE method, the inducing point means and the Jacobians are initialised as zero and the

ODEs in equations 4.39 to 4.42 are solved with the forward Euler method with ∆t = 1ms.

4.3.1 Double well flow

We first demonstrate the FP GP-SDE method on a classic one-dimensional double-well example,

where the latent SDE evolves with drift f (x) = 4x(1−x2), and is observed through y(t) = Cx(t)+d.

We simulate data on 20 trials with multivariate Gaussian outputs of dimensionality N = 15 with

unknown variances 0.25, and observe the output process at 20 randomly sampled time-points per

trial. We chose 8 evenly spaced inducing points in (−3,3) for f . While the true dynamics have three

fixed points, we condition the prior on f on four fixed points, initialise their standard deviations

as 0.1 and use the ARD method to automatically adjust those to select the correct number of fixed

points. The results are summarised in figure 4.1, demonstrating that the algorithm can successfully

perform inference and interpretable learning of the SDE path and dynamics, respectively, and does

not move away from the good initial location for the model parameters C and d.

4.3.2 Double well map and pitchfork bifurcation

Next I demonstrate that not only can we employ these ideas to find fixed points in a single experi-

mental dataset, but rather that FP GP-ADF applied to a set of datasets, which differ in the setting of

a single parameter (often the case in experimental data), can discover qualitative changes in the dy-

namics as the parameter varies. This qualitative change is called bifurcation, and is identified by FP

GP-ADF by correctly detecting that the number and stability of fixed points differ between datasets.

Here I demonstrate this ability through a classic one-parameter system that exhibits pitchfork bifur-

cation, and strongly resembles the one in section 4.3.1. Instead of investigating the performance at a

single setting of the parameter, I generated a set of datasets with varying parameter values.
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Figure 4.1: Double-well dynamics. A: Two example dimensions of the output process on two dif-
ferent trials. The dots represent the observed data-points of the noisy output processes
plotted in faint lines. The solid blue/green traces are the inferred posterior means with
±1 posterior standard deviation tubes around them. B: True and inferred latent SDE
trajectory for the same example trials as in A. The red traces represent the posterior
means with ±1 posterior standard deviation tubes around them, black traces show the
true latent SDE path. The black dots indicate the times when observations of y were
made. C: True and learnt dynamics together with the learnt fixed-point locations and
tangent lines. Stable fixed points are shown in black, unstable ones in magenta. The
uncertainty about the fixed point observation is illustrated using grey error bars repre-
senting ±1 standard deviation. Only the additional fourth fixed point is associated with
high uncertainty. D: True vs. learnt model parameters C and d.

The dynamics are defined by the stochastic map and the output is simply a noisy identity map-

ping, making inference simple.

x(t +1) = rx(t)− x3(t)+ ε
x
t (4.45)

y(t) = x(t)+ ε
y
t , (4.46)

where ε
x
t ∼N

(
0,σ2

x

)
and ε

y
t ∼N

(
0,σ2

y

)
iid. I then examine how varying the parameter r affects

the learned fixed points. For each parameter setting in the range 0.5≤ r ≤ 2.25 I trained the system

using 32 trials, lasting 20 time steps each, with σx = 0.2 and σy = 0.05, and the initial condition

close to zero x(0) ∼ N (0,0.0012). I then fit the FP GP-ADF model to the data with 16 inducing

points, with locations initialised automatically to equidistantly span the data for each dataset; and

using 5 fixed point as parameters (overestimating the true numbers of 1 or 3 depending on the value

of r), letting the ARD formulation determine the number of fixed points present in the system.

I first confirmed, that the method indeed captures the available data well for various values of
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Figure 4.2: Stochastic bifurcation experiment. A. The posterior fit of the Fixed Point Sparse Gaus-
sian Process on simulated data from equation 4.45. Small grey points represent the
training data. The solid line is the posterior mean, with the dashed lines indicating the
posterior standard deviation at 2σpost. The red and blue circles are the learned fixed
point parameter locations. Red colour indicates stable fixed points with the learned Ja-
cobian |J| < 1, and blue ones are unstable with |J| > 1. The circle size indicates the
strength of belief in the fixed point, the larger the size, the smaller the learned σ

s un-
certainty is. B. Same as A, with r = 1.75, after the bifurcation. C. Bifurcation plot of
the stochastic system. The solid lines represent the analytic solution for fixed point lo-
cations in the noiseless system, when σx = 0. The noiseless fixed points are at x = 0
and when r > 1 at x = ±

√
r−1, with the color indicating their stability. The circles

represent the learned fixed point locations [y axis position], for a dataset simulated at a
particular value of r [x axis position].

the bifurcation parameter r, as shown in figure 4.2 A and B. I then create the so-called bifurcation

plot, figure 4.2 C, based on the learned parameter values. The fixed points identified by FP GP-ADF

truthfully track the expected location and stability, while successfully recovering the true number of

fixed points. Consistently with previous findings on similar systems (Diks and Wagener 2006), we

indeed find that noise shifts the bifurcation towards larger values of r, and when the distances of the

noiseless fixed points are on the order of the transition noise σx, the random fixed points are not

detectable from data.
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4.3.3 Chemical reactor dynamics

To test the ability of the FP GP-SDE algorithm to recover realistic and complex dynamics from

well-understood real life systems, we turned towards chemistry, in particular the dynamics of the

iodate-AS(III) system under imperfect mixing, described by Ganapathisubramanian (1991). This

system is well-approximated by two coupled first-order ODEs describing the time evolution of the

concentrations of two iodate species, I− and IO−3 in a two-compartment reaction chamber. For

certain parameter settings this system exhibits complex multi-stable dynamics, giving rise to three

stable and two unstable fixed points. To simulate realistic data, we took the absorption spectra

of the two iodate species provided by Kireev and Shnyrev (2015), and the simulated output thus

resembles an absorption spectrum that is a linear mixture of the individual spectra, weighted by the

concentrations, and corrupted by low levels of Gaussian measurement noise.

The complete system is described in its parametric form11 as

E

[
dbI−cA

dt

]
=
(

kabI−cA + kbbI−c2A
)(

S0−bI−cA
)

+
F1bI−c0

VA
− (F3 +F4)bI−cA

VA
+

F4bI−cD

VA

E

[
dbI−cD

dt

]
=
(

kabI−cD + kbbI−c2D
)(

S0−bI−cD
)

+
F4bI−cA

VD
− F4bI−cD

VD

x =

bI
−cA

bI−cD

=

S0−bIO3
−cA

S0−bIO3
−cD

 f (x) =

E
[

dbI−cA
dt

]
E
[

dbI−cD
dt

]


dx = f (x)dt +σxdw

y(t) = Cx(t)+ εy εεε y ∼N (0,σyI)

(4.47)

where stochasticity arises due to small volumes and low concentrations, and thus low numbers

of molecules. Fl and F2 correspond to inflow into the main reactor of I− and IO−3 , respectively.

F3 is the total flow rate out of the main reactor. F4 is the volume flow rate at which the contents

of the major reactor are pumped into the minor reactor, and vice versa. VA is the volume of the

major reactor, and VD is the volume of the minor one. ka and kb are kinetic rate constants., and

S0 =
bI−c0+bIO3

−c0
2 is the average of ionic concentration in the inflow. The parameter settings of the

simulation for the results shown in figure 4.3 were as follows

11Please refer to Ganapathisubramanian (1991) for the meaning of the individual parameters and how the below system
was derived.
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Figure 4.3: Multistable chemical reaction dynamics. A: Streamline plot of the concentration dy-
namics for two species of iodine, together with the nullclines and fixed points. Stable
fixed points are black, unstable ones are magenta. B: Learnt dynamics and fixed points
with stability determined by eigenvalues of learnt Jacobian matrices. Increasing uncer-
tainty in the fixed-point observation is indicated by higher transparency of the dot. The
red contour plot illustrates the density of latent path locations across all trials used for
training. C: Example spectroscopy measurements (output process) across light wave-
lengths (nm). D: Example true latent path together with the inferred posterior mean
and ±1 standard deviation tubes for each latent dimension on the same trial as C. The
black dots indicate the time points at which measurements were taken.
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Noise free dynamics bI−c0 = 4.4×10−5 k0 = 2.7×10−3

VA = 4×101 F4 = 3.25×10−3

VD = 1 F3 = k0VA

ka = 2.1425×10−1 F1 =
1
2

F3

kb = 2.1425×104 F2 =
1
2

F3

S0 =
1
2

(
bI−c0 +1.42×10−3

)
Stochastic simulation dt = 1×10−3

σx = 0.3×10−3

σy = 1×10−3

We finally fit the FP GP-SDE model to simulated data of 20 trials with different initial con-

ditions, but the same parameter settings, and sampled a 13 dimensional spectroscopic observation

at 50 random time points on each trial (see figure 4.3 C), resulting in a 20× 50× 13 dimensional

dataset. As a result of the fit, we recovered the correct dynamical portrait, fixed point locations and

stability as shown in figure 4.3 A and B as well as inferred stochastic latent dynamics correctly, even

ones that switch between the various fixed points within a single trial, as shown in figure 4.3 D.

4.3.4 Neural population dynamics

This example demonstrates the FP GP-SDE algorithm under multivariate point-process observations.

We model the intensity functions of the nth output process as ηn(t) = exp(∑K
k=1 Cnkxk(t) + dn),

where x(·) is a K-dimensional stochastic dynamical process, C and d represent an affine mixing of

the underlying process (information) into a high dimensional observation space (neurons that encode

the information), a typical setup in dynamical system models of neural population observations.

Conditioned on the intensity function, the φ(n) observed event-times t(n) are generated by a Poisson

process – representing the neural spiking – with log likelihood

log p(t(n)|ηn) =−
∫

T ηn(t)dt +
φ(n)

∑
i=1

logηn(t
(n)
i ) (4.48)

In contrast to the Gaussian observation case, the first term in the log-likelihood above is continuous

in ηn(t) and the absence of events is also informative towards the underlying intensity of the process.

This observation process is common in neural data analysis, where electrophysiological record-

ing results in a set of spike-times of a population of simultaneously recorded neurons jointly embed-

ded in a circuit involved in performing a computation. In fact, studying neural population activity

as a dynamical system has gained increasing traction in the field of neuroscience in recent years –
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Figure 4.4: Neural population dynamics. Left: simulations with parameter settings b1 = 1.9,b2 =
0.5,z1 = 3,z2 = 3.9,w11 = 10,w12 = 5,w21 = 9,w22 = 3. Right: simulations with
parameter settings b1 = 0.4,b2 = 0.6,z1 = 1.7,z2 = 7,w11 = 20,w12 = 16,w21 =
21,w22 = 6. A: Raster plot of the observed spike times for a population of 50 neurons
for an example trial. B: Example paths through the two-dimensional latent space on
the same trial as A, together with a density plot of latent locations visited across all tri-
als that were used for learning the dynamics, shown in red. C: Streamline plots of the
true dynamics together with their fixed points and nullclines for each latent dimension.
Stable fixed points are black, unstable ones are magenta. D: Same density plots as in B
together with streamline plots of the learnt dynamics and learnt fixed points. The fixed
point stability is shown as indicated by the eigenvalues of the learnt Jacobian matrices.
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see Macke et al. (2011), Pandarinath et al. (2018b), and Shenoy, Sahani, and Churchland (2013),

including my own contribution in Park, Bohner, and Macke (2015) – and data analysis methods that

can obtain such descriptions are thus of great interest.

We simulate a two-dimensional (K = 2) latent SDE using the dynamics fk(x) = −xk +

σk(wk1x1−wk2x2− zk) for k = 1,2, where σk(x) = (1+ exp(−bkx))−1. Depending on the choice

of parameters bk, wkj and zk the dynamical system will exhibit different properties. We explore the

two regimes where the system either has two stable and one unstable fixed points (figure 4.4 C left)

or exhibits a single stable spiral (figure 4.4 C right).

We simulate data from 50 neurons on 25 trials for each of the two parameter regimes for bk,

wkj and zk. Figure 4.4 A shows example neural spike trains under the two regimes. Figure 4.4 B

illustrates sample paths through the latent space under the different dynamical regimes, together with

the density of latent locations visited across all trials. In both settings, we initialise our algorithm

with three fixed points and inducing points placed on an evenly spaced 4×4 grid in (−0.25,1.25),

and hold the parameters relating to the output mapping constant. Figure 4.4 C and D show the

true and the estimated flow fields in both settings, together with the location of the fixed points

and their stability as indicated by the eigenvalues of the Jacobian matrices. In both settings, the FP

GP-SDE method successfully recovers the main qualitative distinguishing features of the dynamics.

In the regime where the dynamics are conditioned on three fixed points but the generative system

only contains one, the two additional fixed points will either be associated with higher uncertainty

or move to regions where no or little data was observed, as indicated by the superimposed density

plots.

4.3.5 Mutually inhibiting neural populations observed via calcium imaging

Lastly, I demonstrate potential use of the FP GP-ADF algorithm on the type of data that we discussed

in chapters 2 and 3, recorded from a set of neurons via calcium imaging. To simulate such data that

could potentially be gathered with techniques becoming available within the next couple years, I

chose a model of mutually inhibiting neural population by Machens, Romo, and Brody (2005). My

choice was motivated by the fact that not only does the model exhibit interesting parameterised

dynamics, similarly to the examples above, but it was also carefully set up, such that individual

simulated neurons’ characteristics matched those recorded from monkey pre-frontal cortex.

They created a simplified spiking simulation model with realistic integrate-and-fire neurons,

structured inhibitory connectivity between two populations, and strictly external excitation12 (see

figure 4.5 A). This network was parametrised to be consistent with observed neural characteris-

tics from the Rhesus monkey brain, with original neurophysiological data and the original working

memory-decision making task published by Romo et al. (1999). Considering the increasing effort

12One might think of these as two groups of interneurons
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for making calcium imaging possible in primate brains (O’Shea et al. 2017; Seidemann et al. 2016),

and that I participated in the effort (Trautmann et al. 2019) for analysing the initial results of mon-

key calcium imaging, I decided to simulate the observed data as if the spiking network was viewed

through a calcium reporter and subsequent fluorescent imaging.

As in our study monkeys were injected with an AAV1-CamKIIA-GCaMP6f virus construct,

I used the GCamp6f kinetics as identified in vivo13 as 45 ms rise time, 142 ms decay time and

19% ∆F/F0 fluorescence increase (see Chen et al. (2013a) Supplementary table 3), and thus I use

the so-called fast rise, exponential decay (FRED, by Norris et al. (2005)) equation to describe the

calcium response after a spike (similarly to Lütcke et al. (2013), and see the inset of figure 4.5 C for

the resulting shape):

f FRED(t− tspike | τ rise,τdecay,A) = A∗
(

e
2

τ rise
τdecay

)1/2
(

e
− τ rise

t−t spike
−−

t−t spike
τdecay

)
. (4.49)

For the purposes of this simulation, non-linear saturation effects were not considered, to enable

us focusing more precisely on discovering the latent dynamics, however for real recordings they may

be taken into account both for the simulation and during model inference/learning (e.g. by Speiser

et al. (2017)). I simulated 30-30 spiking neurons from both populations A and B, then convolved

their spike trains with the FRED curve, to obtain the ‘noiseless’ calcium traces shown in figure 4.5

C.

The simulation then takes noisy snapshots of the instantaneous fluorescence every 125 ms (8

Hz), as is typical in calcium imaging to create the final dataset (see figure 4.5 C, markers). The

additive Gaussian observation noise level was set heuristically to match typical effective noise char-

acteristics after the intracellular variations, and various data recording and preprocessing steps (see

chapter 2 for a detailed description of the real noise process). For exact details of the simulation, see

the original paper (Machens, Romo, and Brody 2005), their detailed supplementary explanation and

code, and my simulation and model fitting code available online14.

The model fit results are shown in figure 4.6, and were fit to 40 simulated trials of 60 neurons’

fluorescence, observed at 17 time points over a 2 second trial, with initial conditions set to be at

(1,1). The model behaves differently at the two shown external excitation (Eext) levels, in one case

implementing a ‘decision making’ scheme (although here I used unbiased inputs, and only noise was

integrated to serve as the basis of such decision) and in the other a ‘loading’ scheme, with all traces

converging to a single stable fixed point (see Machens, Romo, and Brody (2005) about the naming

of these behaviours). FP GP-ADF, initialised with 5 potential fixed points, successfully recovers the

dynamics, the correct number of fixed points (as identified by the fixed point uncertainty parameter

σ
s) and their stability (including learning a saddle node in figure 4.6 A), demonstrating its potential

13In mice, monkey data is unavailable, some population average hints in Seidemann et al. (2016)
14
https://github.com/gbohner/gpdm-fixpoints

https://github.com/gbohner/gpdm-fixpoints
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Figure 4.5: Simulation of mutually inhibiting neural populations with calcium observations.
A: Circuit diagram of two mutually inhibiting neural populations under external ex-
citation Eext. B: Example raster plot during ‘decision making’. Due to the mutual in-
hibition, in this regime we observe winner-take-all dynamics, and thus population A
is silenced. C: Same trial as in B, showing two example neurons. Solid lines show the
instantaneous fluorescence as a result of spikes being convolved with GCamp6f ob-
servation kinetics. The noisy and sparse observed data is shown by the markers. Inset:
The fast rise exponential decay model output used as the convolution kernel.

usefulness in a calcium imaging setting.

4.4 Discussion

In this chapter I described two novel algorithms, FP GP-ADF and FP GP-SDE that learn interpretable

models of latent stochastic dynamical systems. The varied applications showcase the promise of

the proposed idea of conditioning the learned transition functions on their fixed points and also

demonstrate the first applications of learning GPSSM models of realistic neural-like data. Although

I do hope that these initial efforts will lead to a new class of interpretable machine learning models

applied widely to real neural recordings, there are still a few hurdles that need to be overcome for the

widespread usage of these type of algorithms, and thus will need to be subject to further research.

Firstly, for now we assumed the dynamical systems under investigation are autonomous; there
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Figure 4.6: Model fits of FP GP-ADF to the simulated data. Dashed line are the numerically com-
puted true nullclines of the simulated model. Grey arrows are the learned dynamics,
and markers show the location of learned fixed points. Marker size indicates the in-
verse of σ

s (the large the point is, the more likely it is to be a fixed point). A: Under
low external inputs the system exhibits winner take all dynamics. FP GP-ADF cor-
rectly identifies the 3 real fixed points, as well as their stability (red is stable, blue here
is learned as a saddle node, with one stable and one unstable eigenvalue of the associ-
ated J matrix.). B: Higher excitatory input causes a change in model behaviour, result-
ing in a single stable fixed point, that is indeed correctly identified.

is no input driving the system, or at least the input is stationary over many trials, allowing us to

learn the input-driven dynamics and treat changes in input as qualitative changes of the dynamics

themselves, such as in section 4.3.5. In this view, the input is changing the effective transition

function f (·), which may be undesirable. In previous work on GPSSMs used in the non-linear

control literature (e.g. McHutchon (2014)), they extend the transition function to map from the

state and inputs jointly to the new state, xnew = f (x, inputs). Although we could have added this

straightforwardly, this extension assumes that the inputs are known to the model at each point in

time, as they are set by the experimenter. This is often the case in chemistry or robotics application

of non-linear control. However, in many real systems, especially in neural recordings that usually

investigate a small, local part of a highly interconnected network, the system that we observe is

definitely non-autonomous, but we also do not have access to the inputs driving it. Simultaneously

learning dynamics implemented by the measured system as well as inferring the inputs driving it is

currently an interesting open research question (Soldado Magraner 2018; Sussillo et al. 2016). The

major difficulty is in attempting to ensure that the inferred inputs do not explain away the dynamics

that actually are implemented, and thus usually there are several constraints placed on the inferred

inputs, such as they vary slowly in time or vary little across trials, or map into a particular subspace

of linear dynamics (Duncker et al. 2017; Soldado Magraner 2018). A further issue with inferring

inputs is the partitioning of the innovations noise. We do expect to have noise in the transitions due

to inherent stochasticity and model mismatch, and allowing for the inference of inputs will explain

away some of this noise. Overall, I believe inferring inputs along with learning the dynamical system
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is a powerful idea, but it should be implemented with care, and with very specific considerations and

existing insight to the system under investigation. A potentially more generally applicable approach

would be to accept the fact that unknown inputs change the learnt dynamics transition function f (·),
and allow for it to indeed vary in time, such that we learn a full description of the transition process

across trials and time, f m(·, t). This is of course a very flexible description, and may be difficult to

learn, but it can be constrained in several ways, either by learning a switching process with a few

fixed transition functions and a Markov Chain switching between them, or by assuming that it varies

slowly in time, placing another Gaussian Process over the parameters of f (·), ensuring they change

smoothly in time. Both of these ideas have already been implemented for linear latent dynamics

(Park, Bohner, and Macke 2015; Petreska et al. 2011), and in my view they show more promise

than the attempt to infer the unknown inputs to the system. With regards to their interpretability,

they would result in the learning of single-trial bifurcations as we follow the now time-varying fixed

points, essentially showing qualitative changes in the dynamics, just as they are being changed by

the unknown inputs, and resulting in pictures similar to figure 4.2 C, but with time within trial being

on the x-axis.

A second set of concerns is regarding the application of the proposed algorithms to real world

datasets. Although the examples shown in section 4.3 demonstrate the reliability of the algorithms

on simulated data – the results match the ground truth fixed points extremely well, and approximate

the global transition function well too – this is all reliant on the available trials sufficiently exploring

the whole of the dynamical portrait. This is best illustrated in figure 4.4 B-D, where the density plots

showing data availability correlate strongly with ‘how well’ the true transition flows are estimated

in different parts of the state space. Of course this is a rather general issue, it is well known that

we can only estimate functions where we have samples from them (unless we assume certain trends

or periodicity), and Gaussian Processes are well-suited towards not giving overly confident function

estimates away from data. The larger issue is that in order to learn more complete dynamical por-

traits, we ideally need rather noisy latent paths exploring large chunks of the state space, whereas

current experimental philosophy aims to produce as noiseless and ‘reproducible’ single trial traces

as possible, not ideal for our purposes. A related question is a more precise definition of the ‘how

well’ we learn transition functions. For now we only provided visual comparisons of the true and es-

timated dynamical portraits, and have shown that the fixed point locations and stabilities are indeed

what we expect them to be, based on the crossings of nullclines. However, I feel we need further

clarifications on how to think of these results, especially when considering real world applications

to unknown systems. The potential answer is two-fold, with both directions requiring further work.

From a computational point of view, when the ground truth dynamics are known – such as in the

simulated experiments above – one ideally needs to define a metric of how much the learnt dynamics

differ from the ground truth. This should ideally be a metric that submits to hypothesis testing, so

we can make statements about learning the ‘correct’ dynamics matching the ground truth with some
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probability, given the system and the amount of data. To my knowledge such metrics are not cur-

rently available for learnt stochastic dynamical systems, and are highly non-trivial to come up with.

A potential avenue would be defining similarity metrics over arbitrary dynamical systems, such as

Smola, Vidal, and Vishwanathan (2004) did for linear dynamical systems, and should be explored in

the future. Fortunately, from an experimental point of view, when we are applying our methods to

real world data, the answer may be a bit clearer, although not necessarily easier to implement. I be-

lieve the correct procedure for using these computational methods would be to treat them as iterative

hypothesis generators. That is, given an initial dataset, one would apply to algorithms to sketch a

dynamical portrait and showing the locations and stabilities of proposed fixed points given multiple

trials for each setting of experimentally available parameters (such as in sections 4.3.1 and 4.3.4).

With this added information, the next set of experiments can be designed to confirm the locations

and stabilities of the proposed fixed points, or to explore new areas of the latent space to get a more

complete sense of the dynamics. Therefore, I believe that already in their current form, the pro-

posed algorithms can play a strong role in assisting experimentalists to get more useful data out of

their experiments, by pointing out dynamically interesting features in a very directly accessible and

human-interpretable way.

Thirdly, I need to discuss scalability of both the computational costs as well as the ease of

interpretability. The proposed methods scale very well with regards of the dimensionality of the

observation space due to the instantaneous output mapping from latent state to outputs, therefore

working with even thousands of simultaneously recorded – or even stiched, as in (Nonnenmacher,

Turaga, and Macke 2017) – neural time series that are now becoming available due to improved

experimental techniques, is not going to cause issues. However, scalability with regards to latent

space dimensionality D is an open question. Computationally, the number of free parameters in the

Jacobians scale quadratically with D, and could quickly lead to difficult-to-learn over-parametrised

systems. What’s worse, the number of inducing points required to tile a D dimensional space suf-

ficiently densely scales exponentially with D, quickly leading to huge kernel matrices kzz, although

this could be well-mitigated by further approximations, such as the KISS-GP – introduced by Wilson

and Nickisch (2015), and also described here in section 2.2.2 – for inducing point locations Z on an

equidistant grid. The scaling with D with regards to interpretability is potentially more worrying.

All our example applications were using only up to 2 dimensional latent spaces, as the descriptive

language for local linearisations around fixed point is rather complete in this case, stable or unstable

nodes, saddles and spirals are well understood and intuitive to many, and also the transition func-

tions can easily be visualised by regular x t→ x t+1 plots in 1D or by quiver plots in 2D. Already in

three dimensions the visualisations (and thus interpretation) become difficult, and the classification

of fixed point types – aside from the stable and unstable nodes – is less clear. Therefore instead of

attempting to use D� 2 latent dimensionalities for the proposed methods to capture more variabil-

ity in the latent space, I believe one would want to implement some of the ideas described in the
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paragraphs above and use a two-dimensional time-varying f (·, t) : R2+1→R2 transition function to

retain the ease of interpretability.

Finally, a minor point regarding the applications of latent stochastic dynamical system to

calcium-imaging data, as done in section 4.3.4. Although the proposed algorithms can indeed be

applied to calcium imaging observations, by treating the mapping from latent space to observations

as instantaneous, the identified latent dynamics are confounded by the time course of the calcium

reporter, as shown in figure 4.5. This time-convolution introduces correlations over time in the neu-

ral observations within the output space, whereas most existing state space models – including the

ones here – assume time-correlations are only present in the latent computational trajectories, not

in the observations. This issue is fairly specific to calcium imaging of neurons, and thus has not

been thoroughly explored by other communities. Computational neuroscientists have indeed started

working on these correlated-output models (see Speiser et al. (2017)), and I do think they become

very necessary for high frame-rate calcium imaging videos, where the time between frames is much

less than the width of the calcium reporter’s response peak, or ∆t � τ rise + τdecay. In lower frame-

rate applications, including the one presented here, this issue is much less severe, and should not

affect the learnt dynamics or the inferred computational trajectories too much.

To summarise, I presented here a novel way of doing data-driven stochastic bifurcation analysis,

and gaining previously unavailable scientific insight into various real-world-like systems. Although

this type of analysis is still in its infancy, it can already be a useful tool for scientists to aid their

iterative experimental design, and once some of the current limitations are overcome by solutions

I pointed out – or even better ones – it has the potential to become an essential tool in analysing

various types of real neural data.



5

Conclusions and further work

All theory is gray, my friend. But forever green is the tree of life.

– Johann Wolfgang von Goethe, Faust

Unsupervised machine learning is a powerful tool that bridges the gap between complex gener-

ative models and available biological data. It infers unknown parameters of the model by estimating

their complex relationships with the recorded data and each other. This inference processes is a

somewhat unusual way of scientific understanding, but it allows for defining and constraining mod-

els that were previously thought too complicated for practical use. This is demonstrated by the

models presented in chapters 2 and 3, which sketch physically-inspired generative models of cal-

cium imaging data. I then use machine learning to estimate the signal transformation introduced by

our measurement method, infer the changes in calcium ion concentrations – the signal we wanted

to measure – and demix superposed signals from multiple sources, to reveal the activity of single

neurons. Chapter 4 shows a different use of unsupervised machine learning, one that focuses on the

human understanding of neural data eo ipso, on its own account. In this case, the suggested models

are known to be incomplete and wrong, but they provide an interpretable picture of the informa-

tion in the data, without making assumptions on how it was generated. Ultimately, these models,

algorithms, and applications showcase the usefulness of machine learning in the understanding of

neural data; they may be used to analyse existing neural data, help in designing more informative

experiments in the future, and inspire other computational and theoretical researchers to build more

complex models, relying on the power of inference to evaluate their utility.

In terms of further work, the issues, shortcomings and potential extensions of the proposed

models and methods are already discussed in the individual chapters, so here I focus on the more

general challenges in the future of neural data analysis. As discussed in chapter 1, throughout the

history of cell-resolution neural data recording, novel experimental techniques always create new

data analysis challenges. Although the algorithmic solutions to these problems appear faster nowa-

days than they used to, there are still significant temporal gaps between the introduction of a new

experimental technique, the implementation of reliable computational solutions, and the adoption
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of automated analytic programmes into standard analyses. These time gaps could be significantly

reduced by closer collaboration between the developers of experimental methods and software so-

lutions. In particular, the adoption of excellent models and algorithms is often lacking, owing to

either limitations of their existing implementation – such as insufficient scalability, and inadequate

ease of use – or simply missing awareness from potential users. These issues could be reduced, if

algorithms were co-developed with the experimental method, then validated, and shipped together

with the recorded data. The latter is common practice in microscopy and in bioinformatics, and

is now appearing in neuroscience via the excellent Neurodata Without Borders project that aims to

standardise datasets, and include all transformations and analyses alongside the recorded data. This

project could make neural data analysis more accessible and reproducible, improving the rate and

robustness of scientific progress in the field. Therefore, an important task for the future for all de-

velopers – including me – is to help it succeed by reimplementing existing models and algorithms,

such that they comply with the proposed standards; and also to engage in discussion to make those

standards flexible, yet lasting.

Lastly, our understanding of the brain constantly improves and changes, and we need to remem-

ber the limitations of the cell-resolution neural data analyses described in this thesis. Many models

treat the neuron as the atom of information processing in the brain, and these models have indeed

been successful at describing numerous perceptual and behavioural phenomena. However, we must

not forget that the cell itself is a living organism, and intracellular components likely play a major

role in the storage and processing of information in the brain; furthermore, the electric spikes are

only one type of communication between neurons, with others including gap junctions as well as

the non spike-induced release and uptake of small molecules. Although memories were previously

thought to be well represented by stable electrical activity patterns of neurons – and implemented

by the strengths of their synaptic connections – it is likely that the brain stores and processes sig-

nificantly more information, than apparent via electrical activity. In particular, recent experiments

demonstrated that the transfer of learned behaviour – such as fear conditioning – can be passed

down several generations, showcasing that learned information was somehow transferred to a single

sperm cell; moreover, that cell was capable of sufficiently representing the information, evidenced

by the adult animals in subsequent generations behaviourally expressing the particular memory. This

process is largely not understood; the intracellular representation of memories is an open research

question, and its investigation might be a major avenue in future neuroscience research. The partic-

ular representation might be of epigenetic, or even genetic nature – to quote Barbara McClintock’s

1983 Nobel Prize lecture, the genome is “a highly sensitive organ of the cell”, capable of “sensing

the unusual and unexpected events, and responding to them”.
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Regardless of the level of investigation, models that best reflect a state-of-the-art understanding

of complex systems are bound to have unknown, and experimentally inaccessible parameters, ensur-

ing that the main ideas of this thesis – insight via inference – will continue to be relevant to scientific

progress.
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Appendix A

Supplemental material

This chapter provides links to electronic material related to this thesis.

Chapter 3 - Supplemental videos. Videos of the full time course of zoomed in regions of the

preprocessed data shown in figure 3.13 (a-b) are available as AVI video files to be downloaded from

my website:

• Zoomed in region in figure 3.13a, (7.9 MB):

http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedVideos/supplemental_

video_figure.3.13.a.avi

• Zoomed in region in figure 3.13b, (9.7 MB):

http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedVideos/supplemental_

video_figure.3.13.b.avi

• Full field of view in figure 3.12c, (84 MB):

http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedVideos/supplemental_

video_figure.3.12.c.avi

Computer code. All my computer code that implements the definition and estimation of models

proposed in this thesis – as well as the code that creates visualisations of the results – is publicly

available on Github. The code particularly relevant to each chapter was collected into repositories

created for this purpose:

• Chapter 2 – https://github.com/gbohner/thesis-code-chapter2-preprocessing

• Chapter 3 – https://github.com/gbohner/thesis-code-chapter3-chomp

• Chapter 4 – https://github.com/gbohner/thesis-code-chapter4-fpgp

http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedVideos/supplemental_video_figure.3.13.a.avi
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedVideos/supplemental_video_figure.3.13.a.avi
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedVideos/supplemental_video_figure.3.13.b.avi
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedVideos/supplemental_video_figure.3.13.b.avi
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedVideos/supplemental_video_figure.3.12.c.avi
http://www.gatsby.ucl.ac.uk/~gbohner/Thesis/savedVideos/supplemental_video_figure.3.12.c.avi
https://github.com/gbohner/thesis-code-chapter2-preprocessing
https://github.com/gbohner/thesis-code-chapter3-chomp
https://github.com/gbohner/thesis-code-chapter4-fpgp
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Notation

Throughout this work the reader encounters mathematical concepts of varying difficulty. As my aim

is to communicate any given concept as concisely as possible without introducing any ambiguity

into the equations, I felt like I need to adapt the descriptive power of the notation to the needs of the

concept.

There I use a mixture1 of the common matrix-vector notation for tensors of up to order two,

as well as the sum and indicial notations for computations that involve higher order tensors. To

maintain clarity of which notation is in use at any given time, the reader may use the following

guidelines:

• Non-bold objects with or without indices always refer to scalars. For example { a, a i, A ij,

A ijkl }.

• Bold objects always refer to non-zero order tensors (vectors, matrices or higher order ones). In

case indices are present along a bold object, they are used as in indicial notation (see below).

For example { a, A, a i, A ij, A ijkl }.

• For clarity, it is sometimes easier to add a subscript to an object, indicating its ”name”, that it

is different from another object sharing the same base symbol. To avoid confusion of names

with indices, I indicate names with an underline, for example { afirst, Asecond,A
previous
second }. As

naming objects via superscripts can not be confused with indicial notation, underlining of

superscripts as names may be ommitted.

The main features of the indicial notation, and how they relate to the common and the sum

notation most readers are familiar with, are as follows:

1. In a term, the number of free indices - denoted by (possibly indexed) lower case letters of

the English alphabet - represent the order of the tensor, with dimensions ordered according

to order the in which indices show up in the expression. The range of an index is often not

explicitly indicated, but inferred from context.

1Each notational style is kept consistent within a particular concept.
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Common name Tensor order Common notation Indicial notation

Scalar 0 a a

Vector 1 a ∈ RD a i i=1. . . D

Matrix 2 A A ij

A
>

A ji

Tensor 3 A A ijk

4 A A ijkl

2. Repetition of an index within the same term is called a dummy index, and indicates summation

over the range of the index. Common linear algebra operations are:

Common name Common notation Indicial notation Sum notation

Scalar product c = ab c i = ab i c i = ab i

Inner product c = a
>

b c = a ib i c = ∑
D
i=1 a ib i

c = A
>

b c i = A jib j c i = ∑
D
j=1 A jib j

Outer product C = ab
>

C ij = a ib j Cij = a ib j

Matrix trace c = Tr(A) c = A ii c = ∑
D
i=1 A ii

Tensor product - c i = A ijkB jk c i = ∑ j,k A ijkB jk

- C jl = A ijkB ikl Cjl = ∑ i,k A ijkB ikl

3. Functions applied to an element in indicial notation are understood as acting on each element

seperately. When a function is to be applied to the whole tensor, we indicate it by square
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brackets.

A−1 = [A ij]
−1 6= A−1

ij

eA = e[A ij] 6= eA ij

4. We define the following special symbols:

The all ones tensor 1 ijk.... This may be useful to carry out so-called broadcasting: When

the free indices do not agree in terms that are being summed, they may be multiplied by the

smallest order all ones tensors, such that the sum can be carried out, e.g. a i and B jk can not

be summed, but we may compute a i1 jk +1 iB jk.

The Kronecker delta tensor

δδδ ijk... =

1 if i = j = k = . . .

0 otherwise

Using the Kronecker delta tensor, we may extract the diagonal of a matrix A as the vector

A ijδδδ ijk, or represent a vector a as a diagonal matrix via a iδδδ ijk. We may also implement the

element-wise product of vectors a and b, as a ib jδδδ ijk.

The single entry tensor, where the raised indices select a single entry from their corresponding

dimension

ΩΩΩ
a,b,c,...
ijk... =

1 if i = a, j = b, k = c, . . .

0 otherwise

This may be used to access the 3rd column of a matrix A as A ijΩΩΩ
3
j or a slice from a tensor A

as A ijklΩΩΩ
4,2
jl .

The n-dimensional Levi-Civita or permutation tensor

εεε a1a2...an
=


+1 if (a1,a2, . . . ,an) is an even permutation of (1,2, . . . ,n)

−1 if (a1,a2, . . . ,an) is an odd permutation of (1,2, . . . ,n)

0 otherwise

5. Special operators �,⊕,	 carry out entrywise operations on tensors of arbitrary, but equal

orders and sizes, such as the Hadamard product:
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c i = [a i⊕b i] i = A i +B i

Cij = [A ij�B ij] ij = A ijB ij

Furthermore, these operators may be restricted to act only on certain slices of its inputs, and

thus can be applied to two tensors of differing orders, as long as the given slice is of equal size

in the two tensors. The result will be a tensor that contracts the inputs along the given slice,

but keeps the other dimensions from both input tensors, effectively ‘broadcasting’ each tensor

along the missing dimensions.

Cdij = [Adi⊕d Bdj]dij = Adi +Bdj = Adi1 j +Bdj1 i

Cdeijkl = [Adije�de Bdekl]deijkl = AdijeBdekl = (Adije1kl)� (Bdekl1 ij)

As there is some ambiguity in the order of dimensions in the result, it is recommended to

explicitly state the output dimensions of the resulting computation. Also note that



a1b1

a2b2

. . .

a Ib I


= a i�b i 6= a ib i = ∑

i
a ib i

6. We may use capital letters of the English alphabet to denote an ordered set of indices. If

P = {i jk}, then A ijk = AP 6= A jki.

7. We can denote derivatives as follows. Let A : RD→ RD i1
×D i2

×···×D in be an n-th order tensor-

valued function over a D-dimensional vector space. The gradient of A in the canonical basis

is denoted by placing the coordinate dimension after a comma:

∇A , A i1i2...in,d =
∂A i1i2...in

∂xd
d = 1,2, . . . ,D

Note that the resulting tensor is now of order n+ 1. Higher order derivatives are denoted by
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placing multiple indices after the comma.

A i1i2...in,de =
∂

2A i1i2...in

∂xd ∂xe
d,e = 1,2, . . . ,D

Remember, that repetition of indices still induces summation over the index, and results in a

lower order tensor. We can for example represent the divergence of a scalar-valued function f

as

∇
2 f , f ,ii =

D

∑
i=1

∂
2 f

∂x i ∂x i
,

which is indeed a scalar.

Let k : U⊗V→ R be a scalar-valued function defined over the tensor product of real finite

dimensional vector spaces. In the derivative, we may denote the identity of vector space by a

raised index:

k
,dUeV =

∂
2k

∂ud ∂ve

u ∈ U d = 1,2, . . . ,dim(U)

v ∈ V e = 1,2, . . . ,dim(V )





Appendix C

Exponentiated Quadratic kernel function,

derivatives and expectations

Our aim here is to define the Exponentiated Quadratic (also known as Radial Basis Function, Squared

Exponential or Gaussian) kernel function, write down its derivatives with respect to its arguments,

and to derive the various expectations in the scenario, where one of the input arguments is not

precisely known, but rather treated as a normally distributed random variable.

The final formulas are then used to estimate the output distribution of a function that has a Gaus-

sian Process prior with an Exponentiated Quadratic covariance function, the function is parametrised

by inducing points as well as fixed points and Jacobians around them, and the input to the function

is a normally distributed random variable.

C.1 The kernel function

Let x and z be D-dimensional vectors and k : RD⊗RD → R be a positive definite kernel function.

The exponentiated quadratic kernel function is parametrised by a positve output scale ν and positive

definite covariance matrix ΛΛΛ:

k (x, z | ν , ΛΛΛ) = νe−
1
2 (x−z)>ΛΛΛ

−1(x−z) (C.1)

The covariance matrix of the kernel function is often diagonal to reduce the number of pa-

rameters. As our latent space models contain rotational non-identifiability due to the flexible output

mapping, we can indeed assume this diagonality without loss of generality, thus we set ΛΛΛ = diag(λλλ ),

where λλλ is the D dimensional vector of so-called ‘kernel lengthscales’.

The Exponentiated Quadratic kernel function is closely related to the probability density func-

tion of the normal distribution in either of its entries, and this identity will be used extensively

throughout the derivations:
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Nx (z, ΛΛΛ) = pNormal(x | z, ΛΛΛ) (C.2)

= (2π)−D/2(|ΛΛΛ|)−1/2e−
1
2 (x−z)>ΛΛΛ

−1(x−z) (C.3)

=
1
ν
(2π)−D/2(|ΛΛΛ|)−1/2k (x, z | ν , ΛΛΛ) (C.4)

Therefore also

k (x, z | ν , ΛΛΛ) = ν(2π)D/2(|ΛΛΛ|)1/2Nx (z, ΛΛΛ) (C.5)

Furthermore, we are often required to compute the so-called kernel matrix between two sets of

inputs. Let {xn}N
n=1 = X ∈ RDxN and {zm}M

m=1 = Z ∈ RDxM be collection of N and M inputs, then

we can define the kernel matrix entry-wise, via common notation or via indicial notation as

Knm = k
(

xn, zm ∣∣ ν , ΛΛΛ
)

(C.6)

K = k (X, Z | ν , ΛΛΛ) (C.7)

Knm = k (Xdn, Zdm
∣∣ ν , ΛΛΛdḋ ) . (C.8)

Although possible, computing functions of the kernel matrix is not always simple or intuitive

using the entry-wise representation, and thus I first define operations assuming single inputs and

using the common linear algebra notation, but then also show how the same operations may be

carried out on collections of inputs using tensor calculations via the indicial notation. The single

input derivatives and expectations were made available by McHutchon (2013), whereas for collection

of inputs some of them were shown by Girard (2004) in an entry-wise fashion.

To my knowledge this is the first publicly accessible document that shows these derivatives

and expectations in a tensor format that lends itself easily for computer implementations, unlike

previous derivations. However, as the main ideas of these lengthy derivations follow those previously

published, I will show only the end result in some cases, to avoid introducing unnecessarily complex

notation. The intermediate algebraic manipulations rely mainly upon rearranging terms to produce a

normalised normal probability density function under the integral sign (which then integrates to 1),

and collecting terms such that we end up with sums and products of easily computable Exponentiated

Quadratic kernel functions with modified output scales, lengthscales or inputs.
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C.2 The derivative Gaussian Process

As we are using derivative observations as parameters for our fixed point models, we need to define

the derivatives of the kernel function with respect to either or both of their inputs. For single inputs

the derivatives are

k (x, z | ν , ΛΛΛ) = νe−
1
2 (x−z)>ΛΛΛ

−1(x−z) (C.9)

∂

∂x
k (x, z | ν , ΛΛΛ) =−ΛΛΛ

−1(x− z) k (x, z | ν , ΛΛΛ) (C.10)

∂

∂z
k (x, z | ν , ΛΛΛ) = +ΛΛΛ

−1(x− z) k (x, z | ν , ΛΛΛ) (C.11)

∂
2

∂x∂z
k (x, z | ν , ΛΛΛ) = ΛΛΛ

−1(I− (x− z)(x− z)>ΛΛΛ
−1) k (x, z | ν , ΛΛΛ) (C.12)

With these one can compute all elements of the covariance matrix between observations and

derivative observations of a Gaussian Process with an Exponentiated Quadratic kernel function. Note

that although the derivatives in equations C.10 and C.11 seem anti-symmetric, when we form the

cross-covariance blocks of the joint covariance matrix, we compute ∂

∂x k(x, z) and ∂

∂x k(z, x) as the

blocks. As the (x− z) term also switches sign when we flip the order of kernel inputs, these terms

are indeed transposes of one-another, and the covariance matrix is symmetric as expected.

We can see that the first derivatives of single inputs are D-dimensional vectors, whereas the

second derivative is a D×D matrix, as derivatives of a tensor-valued function with respect to vectors

increase the tensor order of the output by one. Although in the case of single inputs, k(·, ·) returns

a zero-th order tensor, when the inputs are collections of points, the output is a second order tensor,

the ‘kernel matrix’. Therefore I now also define the derivatives for collections of points as the input,

then also describe how one may flatten the resulting tensors to end up with a valid block-structured

covariance matrix describing the joint distribution of observations and derivative observations.

Knm = k (Xdn, Zdm | ν , λλλ d ) (C.13)

Kdxnm =
∂

∂xd
k (Xdn, Zdm | ν , λλλ d )

=−[λλλ−1
d 1nm]� [X	d Z]dnm � [1d k(X, Z)]dnm (C.14)

Kndzm =
∂

∂zd
k (Xdn, Zdm | ν , λλλ d )

= +[λλλ−1
d 1nm]� [X	d Z]dnm � [1d k(X, Z)]dnm (C.15)
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Kdxnd̊zm =
∂

2

∂xd ∂z d̊
k (Xdn, Zdm | ν , λλλ d )

=
[
ΛΛΛ
−1
dd̊ 1nm−λλλ

−1
d �d (Xdn	d Zdm)�nm (X d̊n	 d̊ Z d̊m)� d̊ λλλ

−1
d̊ )
]

dnd̊m

� [1dd̊ k(X, Z)]dnd̊m (C.16)

These equations are now directly implementable in modern computer languages with little ef-

fort, using the appropriate broadcasting operations to form tensors of correct order and size.

The last question is how to flatten these higher order tensors back to second order to form the

block-structured covariance matrix of a Gaussian Process. Let Sdn ∈ RD×N be the N locations of

derivative observations Jdd̊n ∈R
D×D×N, and Zdm the locations of regular observations Udm. In such

a case we obtain the tensors Kzz
mm = kzz , Kzs′

m(dn) = ∇2kzs , Ks′z
(dn)m = ∇1ksz , and Ks′s′

(dn)(d̊n̊) =

∇1∇2kss. The higher order tensors should be flattened as follows to obtain the joint distribution of

regular and derivative observations U1· and J1·· (setting the output dimension in question arbitrarily

to d = 1):



U11

...

U1M

J111

J121

...

J1D1

J112

...

J1DN



=N



0 ,



Kzz
mm Kzs′

m(dn)

Ks′z
(11)1 · · · Ks′z

(11)M Ks′s′
(11)(11) Ks′s′

(11)(21) · · · Ks′s′
(11)(D1) Ks′s′

(11)(12) · · · Ks′s′
(11)(DN)

Ks′z
(21)1 · · · Ks′z

(21)M Ks′s′
(21)(11)

. . .

...

Ks′z
(D1)1 · · · Ks′z

(D1)M Ks′s′
(D1)(11) Ks′s′

(dn)(dn)

Ks′z
(12)1 · · · Ks′z

(12)M Ks′s′
(12)(11)

...
. . .

Ks′z
(DN)1 · · · Ks′z

(DN)M Ks′s′
(DN)(11) Ks′s′

(DN)(DN)




(C.17)

C.3 Expectations with respect to noisy input

Let Z ∈ RD×M be a collection of known inputs and x ∈ RD a noisy input, such that x ∼N (µµµ, ΣΣΣ)

is a random variable distributed according to a multivariate Gaussian with mean µµµ and covariance

ΣΣΣ. As described in chapter 4, this x represents a belief, and we wish to propagate this belief through

a transition function represented by a Gaussian process represented by inducing points, fixed points

and derivative observations around the fixed points. In order to compute our updated belief represen-

tation, we need to calculate the expected mean and the co-variance of the output f (x) with respect

to the noisy input x. These expressions (see equations 4.14 to 4.16) contain various expectations
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of kernel matrices (defined equation 4.10), and in turn require us to calculate expectations of vari-

ous functions involving the kernel function k(·, ·). Fortunately all these expectation are available in

closed form for the Exponentiated Quadratic kernel function, and thus here I state the solutions that

enable us to propagate latent beliefs forward analytically. The superscripts on the resulting tensor

identify what did we take the expectation of, whereas the subscripts denote the correct order and size

of the tensor.

Ek
m = Ex [k (x, Z | ν , λλλ ) ]

= k

(
µµµ, Z

∣∣∣∣∣ |ΛΛΛ|1/2

|ΛΛΛ+ΣΣΣ|1/2 ν , ΛΛΛ+ΣΣΣ

)
(C.18)

Exk
dm = Ex [x k (x, Z | ν , λλλ ) ]

= Ek
m�m

[
(ΛΛΛ−1 +ΣΣΣ

−1)−1
dd̊

(
[ΛΛΛ−1Z]dm�d [ΣΣΣ

−1
µµµ]d

)]
dm

(C.19)

Edk
dm = Ex [∇2 k (x, Z | ν , λλλ ) ]

= λλλ
−1
d �d

(
Exk

dm−Zdm�m Ek
m

)
(C.20)

Ev = Ex [k (x, x | ν , λλλ ) ] = ν (C.21)

Ekk
mm̊ = Ex [k (Z, x | ν , λλλ ) k (x, Z | ν , λλλ ) ]

= k
(

Z, Z
∣∣∣∣ 1

2D/2 ν , 2ΛΛΛ

)
� k

 [Z⊕d Z]dmm̊, µµµ d

∣∣∣∣∣∣∣
|ΛΛΛ|1/2∣∣∣ΛΛΛ

2 +ΣΣΣ

∣∣∣1/2 ν ,
ΛΛΛ

2
+ΣΣΣ

 (C.22)

Exkk
dmm̊ = Ex [x k (Z, x | ν , λλλ ) k (x, Z | ν , λλλ ) ]

= Ekk
mm̊�mm̊

((ΛΛΛ

2

)−1

+ΣΣΣ
−1

)−1((
ΛΛΛ

2

)−1

�d

(
[Z⊕d Z]dmm̊⊕d ΣΣΣ

−1
µµµ

))
dmm̊

(C.23)

Ekdk
m(dm̊) = Ex [k (Z, x | ν , λλλ ) ∇2 k (x, Z | ν , λλλ ) ]

= λλλ
−1
d �d

(
Exkk

dm −Zdm�m Ekk
mm̊

)
(C.24)

Exxkk
dd̊mm̊ = Ex [x x k (Z, x | ν , λλλ ) k (x, Z | ν , λλλ ) ]
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=

Ekk
mm̊

((
ΛΛΛ

2

)−1

+ΣΣΣ
−1

)−1

dd̊


dd̊mm̊

+
[
Exkk

dmm̊�mm̊ Exkk
d̊mm̊

]
dd̊mm̊

(C.25)

Edkdk
(dm)(d̊m̊)

= Ex [∇1 k (Z, x | ν , λλλ ) ∇2 k (x, Z | ν , λλλ ) ]

=
[
λλλ
−1
d λλλ

−1
d̊

]
dd̊

(C.26)

�dd̊

[
Exxkk

dd̊mm̊−Zdm�m Exkk
d̊mm̊−Z d̊m̊�m̊ Exkk

dmm̊ +ZdmZ d̊m̊�mm̊ Ekk
mm̊

]
dd̊mm̊
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