Briol, F-X;
Barp, A;
Duncan, AB;
Girolami, M;
(2019)
Statistical Inference for Generative Models with Maximum Mean Discrepancy.
ArXiv: Ithaca, NY, USA.
Preview |
Text
1906.05944v1.pdf - Submitted Version Download (2MB) | Preview |
Abstract
While likelihood-based inference and its variants provide a statistically efficient and widely applicable approach to parametric inference, their application to models involving intractable likelihoods poses challenges. In this work, we study a class of minimum distance estimators for intractable generative models, that is, statistical models for which the likelihood is intractable, but simulation is cheap. The distance considered, maximum mean discrepancy (MMD), is defined through the embedding of probability measures into a reproducing kernel Hilbert space. We study the theoretical properties of these estimators, showing that they are consistent, asymptotically normal and robust to model misspecification. A main advantage of these estimators is the flexibility offered by the choice of kernel, which can be used to trade-off statistical efficiency and robustness. On the algorithmic side, we study the geometry induced by MMD on the parameter space and use this to introduce a novel natural gradient descent-like algorithm for efficient implementation of these estimators. We illustrate the relevance of our theoretical results on several classes of models including a discrete-time latent Markov process and two multivariate stochastic differential equation models.
Type: | Working / discussion paper |
---|---|
Title: | Statistical Inference for Generative Models with Maximum Mean Discrepancy |
Open access status: | An open access version is available from UCL Discovery |
Publisher version: | https://arxiv.org/abs/1906.05944v1 |
Language: | English |
Additional information: | This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Statistical Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/10079223 |
Archive Staff Only
View Item |