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Abstract

While likelihood-based inference and its variants provide a statistically efficient and widely
applicable approach to parametric inference, their application to models involving intractable
likelihoods poses challenges. In this work, we study a class of minimum distance estima-
tors for intractable generative models, that is, statistical models for which the likelihood is
intractable, but simulation is cheap. The distance considered, maximum mean discrepancy
(MMD), is defined through the embedding of probability measures into a reproducing kernel
Hilbert space. We study the theoretical properties of these estimators, showing that they are
consistent, asymptotically normal and robust to model misspecification. A main advantage
of these estimators is the flexibility offered by the choice of kernel, which can be used to
trade-off statistical efficiency and robustness. On the algorithmic side, we study the geometry
induced by MMD on the parameter space and use this to introduce a novel natural gradient
descent-like algorithm for efficient implementation of these estimators. We illustrate the rel-
evance of our theoretical results on several classes of models including a discrete-time latent
Markov process and two multivariate stochastic differential equation models.

1 Introduction

Consider an open subset X ⊂ Rd and denote by P(X ) the set of Borel probability measures on
this domain. We consider the problem of learning a probability measure Q ∈ P(X ) from identi-
cally and independently distributed (IID) realisations {yj}mj=1

IID
∼ Q. We will focus on parametric

inference with a parametrised family PΘ(X ) = {Pθ ∈ P(X ) : θ ∈ Θ}, for an open set Θ ⊂ Rp
i.e. we seek θ∗ ∈ Θ such that Pθ∗ is closest to Q in an appropriate sense. If Q ∈ PΘ(X ) we
are in the M-closed setting, otherwise we are in the M-open setting. When Pθ has a density p(·|θ)
with respect to the Lebesgue measure, then a standard approach is to use the maximum likelihood
estimator (MLE):

θ̂MLE
m = arg max

θ∈Θ

1

m

m∑
j=1

log p(yj |θ).
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For complex models, a density may not be easily computable, or even exist and so the MLE need
not be available. In some cases it is possible to approximate the likelihood; see for example pseudo
likelihood [Besag, 1974], profile likelihood [Murphy and van der Vaart, 2000] and composite
likelihood [Varin et al., 2011] estimation. It is sometimes also possible to access likelihoods in
un-normalised forms i.e. p(y|θ) = p̄(y|θ)/C(θ) where the constant C(θ) is unknown. This
class of models is known as un-normalised models, or doubly-intractable models in the Bayesian
literature, and a range of exact and approximate methods have been developped for this case; see
for example the Markov chain Monte Carlo (MCMC) algorithms of Murray et al. [2006], Moller
et al. [2006] or the score-based and ratio-based approaches of Hyvärinen [2006, 2007], Gutmann
and Hyvarinen [2012].

However, for many models of interest in modern statistical inference, none of the methods
above can be applied straightforwardly and efficiently due to the complexity of the likelihoods
involved. This is most notably the case for intractable generative models, sometimes also called
implicit models or likelihood-free models; see Mohamed and Lakshminarayanan [2016] for a re-
cent overview. Intractable generative models are parametric families of probability measures for
which it is possible to obtain realisations for any value of the parameter θ ∈ Θ, but for which
we do not necessarily have access to a likelihood or approximation thereof. These models are
used throughout the sciences, including in the fields of ecology [Wood, 2010], population ge-
netics [Beaumont et al., 2002] or astronomy [Cameron and Pettitt, 2012]. They also appear in
machine learning as black-box models; see for example generative adversarial networks (GANs)
[Goodfellow et al., 2014] and variational auto-encoders [Kingma and Welling, 2014].

Given a Borel probability space (U ,F ,U), we will call generative model any probability mea-
sure which is the pushforward G#

θ U of the probability measure U with respect to a measurable
parametric map Gθ : U → X called the generator. To generate n independent realisations from
the model, we produce IID realisations {ui}ni=1

IID
∼ U and apply the generator to each of these sam-

ples: xi = Gθ(ui) for i = 1, . . . , n. While it is straightforward to generate samples from these
models, a likelihood function need not be available, given that an associated positive density may
not be computable or even exist. We therefore require alternatives to the MLE.

The estimators studied in this paper fall within the class of minimum divergence/distance
estimators [Pardo, 2005, Basu et al., 2011]. These are estimators minimising some notion of
divergence D : P(X ) × P(X ) → R+ (or an approximation thereof) between an empirical
measure Qm = 1

m

∑m
j=1 δyj (where δyj denotes a Dirac measure at yj), obtained from the data

{yj}mj=1
IID
∼ Q, and the parametric model:

θ̂Dm = argmin
θ∈Θ

D(Pθ||Qm) (1)

If Qm was absolutely continuous with respect to Pθ, maximising the likelihood would correspond
to minimising the Kullback-Leibler (KL) divergence which, given P1,P2 ∈ P(X ), is defined as
DKL(P1||P2) :=

∫
X log(dP1/dP2)dP1, where dP1/dP2 is the Radon-Nikodym derivative of P1

with respect to P2. This approach to inference is useful for models with complicated or intractable
likelihood, since the choice of divergence can be adapted to the class of models of interest.

In previous works, minimum distance estimators for generative models have been considered
based on the Wasserstein distance and its Sinkhorn relaxation; see Bassetti et al. [2006], Frogner
et al. [2015], Montavon et al. [2016], Genevay et al. [2018], Frogner and Poggio [2018], Sanjabi
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et al. [2018]. These have the advantage that they can leverage extensive work in the field of opti-
mal transport. In a Bayesian context, similar ideas are used in approximate Bayesian computation
(ABC) methods Marin et al. [2012], Lintusaari et al. [2017] where synthetic data sets are simulated
from the model then compared to the true data using some notion of distance. There, significant
work has been put into automating the choice of distance [Fearnhead and Prangle, 2011], and the
use of the Wasserstein distance has also recently been studied [Bernton et al., 2019].

In this paper, we shall investigate the properties of minimal divergence estimators based on
an approximation of maximum mean discrepancy (MMD). Such estimators have already been
used extensively in the machine learning literature with generators taking the form of neural net-
works [Dziugaite et al., 2015, Li et al., 2015, 2017, Sutherland et al., 2017, Arbel et al., 2018,
Bińkowski et al., 2018, Romano et al., 2018, dos Santos et al., 2019] where they are usually called
MMD GANs, but can be used more generally. Our main objective in this paper is to present
a general framework for minimum MMD estimators, to study their theoretical properties and to
provide an initial discussion of the impact of the choice of kernel. This study brings insights into
the favourable empirical results of previous work in MMD for neural networks, and demonstrate
more broadly the usefulness of this approach for inference within the large class of intractable
generative models of interest in the statistics literature. As will be discussed, this approach is
significantly preferable to alternatives based on the Wasserstein distance for models with expen-
sive generators as it comes with significantly stronger generalisation bounds and is more robust in
several scenarios. Our detailed contributions can be summarised as follows:

1. In Section 2, we introduce the MMD metric, minimum MMD estimators, and the statisti-
cal Riemannian geometry the metric induces on the parameter space Θ. Through this, we
rephrase the mimimum divergence estimator problem in terms of a gradient flow, thus ob-
taining a stochastic natural gradient descent method for finding the estimator θ∗ which can
significantly reduce computation cost as compared to stochastic gradient descent.

2. In Section 3, we focus on the theoretical properties of minimum MMD estimators and as-
sociated approximations. We use the information geometry of MMD to demonstrate gener-
alisation bounds and statistical consistency, then prove that the estimator is asymptotically
normal in the M-closed setting. These results give us necessary assumptions on the genera-
tor for the use of the estimators. We then analyse the robustness properties of the estimator
in the M-open setting, establishing conditions for qualitative and quantitative robustness.

3. In Section 4 we study the efficiency and robustness of minimum MMD estimators based on
Gaussian kernels for classes of isotropic Gaussian location and scale models. We demon-
strate the effect of the kernel lengthscale on the efficiency of the estimators, and demonstrate
a tradeoff between (asymptotic) efficiency and robustness. For high-dimensional problems,
we demonstate that choosing the lengthscale according to the median heuristic provides an
asymptotic variance independent of dimensionality. We also extend our analysis to mixtures
of kernels, providing insights on settings often considered in machine learning applications.

4. In Section 5, we perform numerical simulations to support the theory detailed in the pre-
vious sections, demonstrating the behaviour of minimum MMD estimators for a number
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of examples including estimation of unknown parameters for the g-and-k distribution, in a
stochastic volatility model and for two systems of stochastic differential equations.

2 The Maximum Mean Discrepancy Statistical Manifold

We begin by formalising the notion of MMD and introduce the corresponding minimum MMD
estimators. We then use tools from information geometry to analyse these estimators, which leads
to a stochastic natural gradient descent algorithm for efficient implementation.

2.1 Maximum Mean Discrepancy

Let k : X × X → R be a Borel measurable kernel on X , and consider the reproducing ker-
nel Hilbert space Hk associated with k (see Berlinet and Thomas-Agnan [2004]), equipped with
inner product 〈·, ·〉Hk and norm ‖·‖Hk . Let Pk(X ) be the set of Borel probability measures µ
such that

∫
X
√
k(x, x)µ(dx) < ∞. The kernel mean embedding Πk(µ) =

∫
X k(·, y)µ(dy),

intepreted as a Bochner integral, defines a continuous embedding from Pk(X ) into Hk. The
mean embedding pulls-back the metric on Hk generated by the inner product to define a pseudo-
metric on Pk(X ) called the maximum mean discrepancy MMD : Pk(X ) × Pk(X ) → R+, i.e.,
MMD(P1||P2) = ‖Πk(P1)−Πk(P2)‖Hk . The squared-MMD has a particularly simple expression
that can be derived through an application of the reproducing property (f(x) = 〈f, k(·, x)〉Hk ):

MMD2(P1||P2) :=
∥∥∥∫
X
k(·, x)P1(dx)−

∫
X
k(·, x)P2(dx)

∥∥∥2

Hk

=

∫
X

∫
X
k(x, y)P1(dx)P1(dy)− 2

∫
X

∫
X
k(x, y)P1(dx)P2(dy)

+

∫
X

∫
X
k(x, y)P2(dx)P2(dy),

thus providing a closed form expression up to calculation of expectations. The MMD is in fact
a integral probability pseudo-metric [Muller, 1997, Sriperumbudur et al., 2012, Sriperumbudur,
2016] since it can be expressed as:

MMD(P1||P2) = sup
‖f‖Hk≤1

∣∣∣∣∫
X
f(x)P1(dx)−

∫
X
f(x)P2(dx)

∣∣∣∣ .
Integral probability metrics are prominent in the information-based complexity literature where
they correspond to the worst-case integration error [Dick et al., 2013, Briol et al., 2019]. If Πk is
injective then the kernel k is said to be characteristic [Sriperumbudur et al., 2010]. In this case
MMD becomes a metric on Pk (and hence a statistical divergence). A sufficient condition for k to
be characteristic is that k is integrally strictly positive definite, i.e.

∫
X
∫
X k(x, y)P(dx)P(dy) = 0

implies that P = 0 for all P ∈ Pk. On X = Rd, Sriperumbudur et al. [2010] showed that the
Gaussian and inverse multiquadric kernels are both integrally strictly positive definite. We shall
assume this condition holds throughout the paper, unless explicitly stated otherwise.
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2.2 Minimum MMD estimators

This paper proposes to use MMD in a minimum divergence estimator framework for inference in
intractable generative models. Given an unknown data generating distribution Q and a parametrised
family of model distributions PΘ(X ), we consider a minimum MMD estimator:

θ̂m = arg min
θ∈Θ

MMD2(Pθ||Qm), (2)

where Qm(dy) = 1
m

∑m
i=1 δyi(dy), and {yi}ni=1

IID
∼ Q. In the following we will use Qm to de-

note both the random measure Qm and the measure Qm(ω), and we shall assume that PΘ(X ) ⊂
Pk(X ). Several existing methodologies fall within this general framework, including kernel scor-
ing rules [Eaton, 1982] and MMD GANs [Dziugaite et al., 2015, Li et al., 2015]. For analogous
methodology in a Bayesian context, see kernel ABC [Fukumizu et al., 2013, Park et al., 2015].

In general, the optimisation problem will not be convex and the minimiser θ̂m will not be
computable analytically. If the generator Gθ is differentiable with respect to θ with a computable
Jacobian matrix, the minimiser will be a fixed point of the equation θ̇ = −∇θMMD2(Pθ||Qm)
where ∇θ = (∂θ1 , . . . , ∂θp). Assuming that the Jacobian ∇θGθ is U-integrable then the gradient
term can be written as

∇θMMD2(Pθ||Qm) = 2

∫
U

∫
U
∇1k(Gθ(u), Gθ(v))∇θGθ(u)U(du)U(dv)

− 2

m

m∑
j=1

∫
U
∇1k(Gθ(u), yj)∇θGθ(u)U(du),

where ∇1k corresponds to the partial derivative with respect to the first argument. In practice
it will not be possible to compute the integral terms analytically. We can introduce a U-statistic
approximation for the gradient as follows:

Ĵθ(Qm) = =
2
∑

i 6=i′ ∇θGθ(ui)∇1k(Gθ(ui), Gθ(ui′))

n(n− 1)
−

2
∑m

j=1

∑n
i=1∇θGθ(ui)∇1k(Gθ(ui), yj)

nm
,

where {ui}ni=1
IID
∼ U. This is an unbiased estimator in the sense that E[Ĵθ(Qm)] = ∇θMMD2(Pθ||Qm),

where the expectation is taken over the independent realisations of the u′is. This allows us to use a
stochastic gradient descent (SGD) [Dziugaite et al., 2015, Li et al., 2015]: starting from θ̂(0) ∈ Θ,
we iterate:

(i) Sample {ui}ni=1
IID
∼ U and set xi = Gθ̂(k−1)(ui) for i = 1, . . . , n.

(ii) Compute θ̂(k) = θ̂(k−1) − ηkĴθ̂(k−1)(Qm).

where (ηk)k∈N is a step size sequence chosen to guarantee convergence (see [Robbins and Monro,
1985]) to the minimiser in Equation 2. For large values of n, the SGD should approach θ̂m, but
this will come at significant computational cost. Let X ⊆ Rd and Θ ⊆ Rp. The overall cost of
the gradient descent algorithm isO

(
(n2 + nm)dp

)
per iteration. This cost is linear in the number

of data points m, but quadratic in the number of simulated samples n. It could be made linear in
n by considering approximations of the maximum mean discrepancy as found in Chwialkowski
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et al. [2015]. In large data settings (i.e. m large), subsampling elements uniformly at random from
{yj}mj=1 may lead to significant speed-ups.

Clearly, when the generator Gθ and its gradient ∇θGθ are computationally intensive, letting
n grow will become effectively intractable, and it will be reasonable to assume that the number
of simulations n is commensurate or even smaller than the sample size. To study the behaviour
of minimum MMD estimators when synthetic data is prohibitively expensive, we consider the
following minimum divergence estimator: θ̂n,m = argminθ∈Θ MMD2

U,U (Pnθ ||Qm) based on a
U-statistic approximation of the MMD:

MMD2
U,U (Pnθ ||Qm) =

∑
i 6=i′ k(xi, xi′)

n(n− 1)
−

2
∑m

j=1

∑n
i=1 k(xi, yj)

mn
+

∑
j 6=j′ k(yj , yj′)

m(m− 1)
.

where Pnθ = 1
n

∑n
i=1 δxi for some {xi}ni=1

IID
∼ Pθ. This estimator is closely related to the method

of simulated moments [Hall, 2005] and satisfies E[MMD2
U,U (Pnθ ||Qm)] = MMD2(Pθ||Q), thus

providing an unbiased estimator of the square distance between Pθ and Q. While the estimator
θ̂n,m is not used in practice (since we re-sample from the generator at each gradient iteration),
it is an idealisation which gives us insights into situations where the gradient descent cannot be
iterated for a large numbers of steps relative to the observed data-set size, and so we cannot appeal
on the law of large numbers.

2.3 The Information Geometry induced by MMD

The two estimators θ̂m and θ̂n,m defined above are flexible in the sense that the choice of kernel and
kernel hyperparameters will have a significant influence on the geometry induced on the space of
probability measures. This section studies this geometry and develops tools which will later give
us insights into the impact of the choice of kernel on the generalisation, asymptotic convergence
and robustness of the corresponding estimators.

Let PΘ(X ) be a family of measures contained in Pk(X ) and parametrised by an open subset
Θ ⊂ Rp. Assuming that the map θ → Pθ is injective, the MMD distance between the elements
Pθ and Pθ′ in Pk induces a distance between θ and θ′ in Θ. Under appropriate conditions this
gives rise to a Riemmanian manifold structure on Θ. The study of the geometry of such statistical
manifolds lies at the center of information geometry [Amari, 1987, Barndorff-Nielsen, 1978].
Traditional information geometry focuses on the statistical manifold induced by the Kullback-
Leibler divergence over a parametrised set of probability measures. This yields a Riemmanian
structure on the parameter space with the metric tensor given by the Fisher-Rao metric. A classic
result due to Cencov [2000] characterises this metric as the unique metric invariant under a large
class of transformations (i.e. embeddings via Markov morphisms, see [Campbell, 1986, Montúfar
et al., 2014]).

In this section, we study instead the geometry induced by MMD. To fix ideas, we shall con-
sider a generative model distribution of the form Pθ = G#

θ U for θ ∈ Θ, where (U ,F ,U) is an
underlying Borel measure space. We assume that (i) Gθ(·) is F-measurable for all θ ∈ Θ; (ii)
G·(u) ∈ C1(Θ) for all u ∈ U ; (iii) ‖∇θGθ(·)‖ ∈ L1(U), for all θ ∈ Θ. Suppose additionally that
the kernel k has bounded continuous derivatives over X × X . Define the map J : Θ → Hk to
be the Bocher integral J(θ) = Πk(Pθ). By [Hájek and Johanis, 2014, Theorem 90], assumptions
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(i)-(iii) imply that the map J is Fréchet differentiable and

∂θiJ(θ)(·) =

∫
U
∇2k( · , Gθ(u))∂θiGθ(u)U(du).

The map J induces a degenerate-Riemannian metric g(θ) on Θ given by the pull-back of the
inner product on Hk. In particular its components in the local coordinate-system are gij(θ) =
〈∂θiJ(θ), ∂θjJ(θ)〉Hk for i, j ∈ {1, . . . , p}. By [Steinwart and Christmann, 2008, Lemma 4.34],
it follows that for i, j ∈ {1, . . . , p},

g(θ) =

∫
U

∫
U
∇θGθ(u)>∇2∇1k(Gθ(u), Gθ(v))∇θGθ(v)U(du)U(dv), (3)

where ∇1∇2k(x, y) = {∂xi∂yjk(x, y)}i,j=1,...,d. The induced metric tensor is in fact just the
information metric associated to the MMD-squared divergence (see A.1). Further details about
the geodesics induced by MMD can be found in Appendix A.2. This information metric will
allow us to construct efficient optimisation algorithm and study the statistical properties of the
minimum MMD estimators.

2.4 MMD Gradient Flow

Given the loss function L(θ) = MMD2(Pθ||Qm), a standard approach to finding a minimum
divergence estimator is via gradient descent (or in our case stochastic gradient descent). Gradient
descent methods aim to minimise a function L by following a curve θ(t), known as the gradient
flow, that is everywhere tangent to the direction of steepest descent of L. This direction depends
on the choice of Riemannian metric g on Θ, and is given by −∇gL where ∇gL denotes the
Riemannian gradient (or covariant derivative) of L.

A particular instance of gradient descent, based on the Fisher Information metric, was de-
veloped by Amari and collaborators [Amari, 1998]. It is a widely used alternative to standard
gradient descent methods and referred to as natural gradient descent. It has been successfully
applied to a variety of problems in machine learning and statistics, for example reinforcement
learning [Kakade, 2002], neural network training [Park et al., 2000], Bayesian variational infer-
ence methods [Hoffman et al., 2013] and Markov chain Monte Carlo [Girolami and Calderhead,
2011]. While the classical natural gradient approach is based on the Fisher information matrix
induced by the KL divergence, information geometries arising from other metrics on probabilities
have also been studied in previous works, including those arising from optimal transport metrics
[Chen and Li, 2018, Li and Montufar, 2018] and the Fisher divergence [Karakida et al., 2016].

As discussed above, a gradient descent method can be formulated as an ordinary differential
equation for the gradient flow θ(t) which solves θ̇(t) = −∇gL(θ(t)) for some specified initial
conditions. In local coordinates the Riemannian gradient can be expressed in terms of the stan-
dard gradient ∇θ, formally ∇g = g−1(θ)∇θ, so we have θ̇(t) = −g−1(θ)∇θL(θ). This flow
can be approximated by taking various discretisations. An explicit Euler discretisation yields the
scheme: θ(k) = θ(k−1) − ηkg−1(θ(k−1))∇θL(θ(k−1)). Under appropriate conditions on the step-
size sequence (ηk)k∈N this gradient descent scheme will converge to a local minimiser of L(θ).
Provided that∇θL(θ) and the metric tensor are readily computable, the Euler discretisation yields
a gradient scheme analogous to those detailed in [Amari, 1987, 1998].
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For the MMD case, we cannot evaluate g from Equation (3) exactly since it contains intractable
integrals against U. We can however use a similar approach to that used for the stochastic gradient
algorithm and introduce a U-statistic approximation of the intractable integrals:

gU (θ) =
1

n(n− 1)

∑
i 6=j
∇θGθ(ui)>∇2∇1k(Gθ(ui), Gθ(uj))∇θGθ(uj),

where {ui}ni=1 are IID realisations from U. We propose to perform optimisation using the follow-
ing natural stochastic gradient descent algorithm: starting from θ̂(0) ∈ Θ, we iterate

(i) Sample {ui}ni=1
IID
∼ U and set xi = Gθ̂(k−1)(ui) for i = 1, . . . , n.

(ii) Compute θ̂(k) = θ̂(k−1) − ηkgU
(
θ̂(k−1)

)−1
Ĵθ̂(k−1) (Qm).

The experiments in Section 5 demonstrate that this new algorithm can provide significant compu-
tational gains. This could be particularly impactful for GANs, where a large number of stochastic
gradient descent are currently commonly used. The approximation of the inverse metric ten-
sor does however yield an additional computational cost due to the inversion of a dense matrix:
O(((n2 + nm)p2d + p3)) per iteration. When the dimension of the parameter set Θ is high, the
calculation of the inverse metric at every step can hence be prohibitive. The use of online methods
to approximate g−1 sequentially without needing to compute inverses of dense matrices can be
considered as in [Ollivier, 2018], or alternatively, approximate linear solvers could also be used to
reduce this cost.

In certain cases, the gradient of the generator ∇θGθ may not be available in closed form,
precluding exact gradient descent inference. An alternative is the method of finite difference
stochastic approximation [Kushner and Yin, 2003] can be used to approximate an exact descent
direction. Alternatively, one can consider other discretisations of the gradient flow. For example,
a fully implicit discretisation yields the following scheme [Jordan et al., 1998]:

θ(k) = arg min
θ∈Θ

L(θ) +
1

2η
MMD2(Pθ||Pθ(k−1)), (4)

where η > 0 is a step-size. Therefore the natural gradient flow can be viewed as a motion towards
a lower value ofL(θ) but constrained to be close (in MMD) to the previous time-step. The constant
η controls the strength of this constraint, and thus can be viewed as a step size. The formulation
allows the possibility of a natural gradient descent approach being adopted even if ∇θL and g
are not readily computable. Indeed, (4) could potentially be minimised using some gradient-free
optimisation method such as Nelder-Mead.

2.5 Minimum MMD Estimators and Kernel Scoring Rules

Before concluding this background section, we highlight the connection between our minimum
MMD estimators and scoring rules [Dawid, 2007]. A scoring rule is a function S : X×P(X )→ R
such that S(x,P) quantifies the accuracy of a model P upon observing the realisation x ∈ X (see
[Gneiting and Raftery, 2007] for technical conditions). We say a scoring rule is strictly proper if∫
X S(x,P1)P2(dx) is uniquely minimised when P1 = P2. Any strictly proper scoring rule induces
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a divergence of the form DS(P1||P2) =
∫
X S(x,P1)P2(dx) −

∫
X S(x,P2)P2(dx). These diver-

gences can then be used to obtain minimum distance estimators: θ̂Sm = argminθ∈ΘDS(Pθ||Qm) =
argminθ∈Θ

∑m
j=1 S(yj ,Pθ). One way to solve this problem is by setting the gradient in θ to zero;

i.e. solving
∑m

j=1∇θS(yj ,Pθ) = 0, called estimating equations.
The minimum MMD estimators θ̂m in this paper originate from the well-known kernel scor-

ing rule [Eaton, 1982, Dawid, 2007, Zawadzki and Lahaie, 2015, Steinwart and Ziegel, 2017,
Masnadi-Shirazi, 2017], which takes the form

S(x,P) = k(x, x)− 2

∫
X
k(x, y)P(dy) +

∫
X

∫
X
k(y, z)P(dy)P(dz).

This connection between scoring rules and minimum MMD estimators will be useful for the-
oretical results in the following section. Whilst the present paper focuses on minimum MMD
estimators for generative models, our results also have implications for kernel scoring rules.

3 Behaviour of Minimum MMD estimators

The two estimators θ̂n and θ̂n,m defined above are flexible in the sense that the choice of kernel
and kernel hyperparameters will have a significant influence on the geometry induced on the space
of probability measures. This choice will also have an impact on the generalisation, asymptotic
convergence and robustness of the estimators, as will be discussed in this section.

3.1 Concentration and Generalisation Bounds for MMD

In this section we will restrict ourselves to the case where X ⊂ Rd and Θ ⊂ Rp for d, p ∈ N.
Given observations {yi}mi=1

IID
∼ Q, it is clear that the convergence and efficiency of θ̂m and θ̂n,m in

the limit of large n and m will depend on the choice of kernel k as well as the dimensions p and
d. As a first step, we obtain estimates for the out-of-sample error for each estimator, in the form
of generalization bounds.

The necessary conditions in this proposition are quite natural. They are required to ensure
the existence of θ̂m and θ̂n,m, and reclude models which are unidentifiable over a non-compact
subset of parameters, i.e. models for which there are minimising sequences θ̂m of MMD(Pθ||Qm)
which are unbounded. While these assumptions must be verified on a case-by-case basis, for most
models we would expect these conditions to hold immediately.

Assumption 1. 1. For every Q ∈ Pk(X ), there exists c > 0 such that the set {θ ∈ Θ :
MMD(Pθ||Q) ≤ infθ′∈Θ MMD(Pθ′ ||Q) + c}, is bounded.

2. For every n ∈ N and Q ∈ Pk(X ), there exists cn > 0 such that the set {θ ∈ Θ :
MMD(Pnθ ||Q) ≤ infθ′∈Θ MMD(Pθ′ ||Q) + cn}, is almost surely bounded.

Theorem 1 (Generalisation Bounds). Suppose that the kernel k is bounded, and that Assumption
1 holds, then with probability at least 1− δ,

MMD
(
Pθ̂m

∣∣∣∣Q) ≤ inf
θ∈Θ

MMD(Pθ||Q) + 2

√
2

m
sup
x∈X

k(x, x)

(
2 +

√
log

(
1

δ

))
,
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and

MMD
(
Pθ̂n,m

∣∣∣∣Q) ≤ inf
θ∈Θ

MMD(Pθ||Q) + 2

(√
2

n
+

√
2

m

)√
sup
x∈X

k(x, x)

(
2 +

√
log

(
2

δ

))
.

All proofs are deferred to Appendix B. An immediate corollary of the above result is that the
speed of convergence in the generalisation errors decreases as n−

1
2 and m−

1
2 with the rates being

independent of the dimensions p and d, and the properties of the kernel. Indeed, if the kernel
is translation invariant, then k(x, x) will reduce to the maximum value of the kernel. A similar
generalisation result was obtained in Dziugaite et al. [2015] for minimum MMD estimation of
deep neural network models. While the bounds are of the same form, Theorem 1 only requires
minimal assumptions on the smoothness of the kernel. Moreover, all the constants in the bound are
explicit, demonstrating clearly dimensional dependence. Assumption 1 is required to guarantee
the existence of at least one minimiser, whereas this is implicitly assumed in Dziugaite et al.
[2015]. The key result which determines the rate is the following concentration inequality.

Lemma 1 (Concentration Bound). Assume that the kernel k is bounded and let P be a probabil-
ity measure on X ⊆ Rd. Let Pn be the empirical measure obtained from n independently and
identically distributed samples of P. Then with probability 1− δ, we have that

MMD(P||Pn) ≤

√
2

n
sup
x∈X

k(x, x)

(
1 +

√
log

(
1

δ

))
.

See also [Gretton et al., 2009, Theorem 17] for an equivalent bound. We can compare this
result with [Fournier and Guillin, 2015, Theorem 1] on comparing the rate of convergence of
Wasserstein-1 distance (denoted W1) to the empirical measure, which implies that for d > 2 and
q sufficiently large, with probability 1 − δ we have W1(P||Pn) ≤ CM

1/q
q (P)δ−1n−1/d, where

Mq(µ) :=
∫
X |x|

qµ(dx) and C is a constant depending only on the constants p, q and d. This sug-
gests that generalisation bounds analogous to Theorem 1 for Wasserstein distance would depend
exponentially on dimension, at least when the distribution is absolutely continuous with respect
to the Lebesgue measure. For measures support on a lower dimensional manifold, this bound
has been recently tightened, see Weed and Bach [2017] and also Weed and Berthet [2019]. For
Sinkhorn divergences, which interpolate between optimal transport and MMD distance Genevay
et al. [2018] this curse of dimensionality can be mitigated Genevay et al. [2019] for measures on
bounded domains.

3.2 Consistency and Asymptotic Normality

With additional assumptions, we can recover a classical strong consistency result.

Proposition 1 (Consistency). Suppose that Assumption 1 holds and that there exists a unique
minimiser θ∗ ∈ Θ such that MMD(Pθ∗ ||Q) = infθ∈Θ MMD(Pθ||Q). Then limm→∞ θ̂m = θ∗ and
limm,n→∞ θ̂m,n = θ∗ as n,m→∞, almost surely.

Theorem 1 provides fairly weak probabilistic bounds on the convergence of the estimators
θ̂m and θ̂n,m in terms of their MMD distance to the data distribution Q. Proposition 1 provides
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conditions under which these bounds translate to convergence of the estimators, however it is not
clear how to extract quantitative information about the speed of convergence, and the efficiency
of the estimator in general. A classical approach to this is to establish the asymptotic normality of
the estimators and characterise the efficiency in terms of the asymptotic variance. We do this now,
assuming that we are working in the M -close setting, i.e. assuming that Q = Pθ∗ for some θ∗.

Theorem 2 (Central Limit Theorems). Suppose that Q = Pθ∗ for some θ∗ ∈ Θ and that the
conclusions of Proposition 1 hold. Suppose that:

1. There exists an open neighbourhood O ⊂ Θ of θ∗ such that Gθ is three times differentiable
in O with respect to θ.

2. The information metric g(θ) is positive definite at θ = θ∗.

3. There exists a compact neighbourhoodK ⊂ O of θ∗ such that
∫
U supθ∈K

∥∥∇(i)Gθ(u)
∥∥U(du) <

∞ for i = 1, 2, 3 where ∇(i) denotes the mixed derivatives of order i and ‖·‖ denotes the
spectral norm.

4. The kernel k(·, ·) is translation invariant, with bounded mixed derivatives up to order 2.

Then as k →∞:
√
m
(
θ̂m − θ∗

)
d−→ N (0, C),

where d−→ denotes convergence in distribution. The covariance matrix is given by the Godambe
matrix C = g(θ∗)−1Σg(θ∗)−1 where

Σ =

∫
U

(∫
U

(
∇1k(Gθ∗(u), Gθ∗(v))∇θGθ∗(u)−M

)
U(du)

)⊗2

U(dv)

and

M =

∫
U

∫
U
∇1k(Gθ∗(u), Gθ∗(v))∇θGθ∗(u)U(du)U(dv).

Here, A⊗B denotes the tensor product and A⊗2 := A⊗A. Furthermore, suppose that:

5 The kernel k(·, ·) has bounded mixed derivatives up to order 3.

6 The indices satisfy n = nk, m = mk where nk/(nk +mk)→ λ ∈ (0, 1),

Then, as k →∞,

√
nk +mk

(
θ̂n,m − θ∗

)
d−→ N (0, Cλ),

where Cλ = (1/(1− λ)λ)C.
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We remark that the asymptotic covariance Cλ is minimised when λ = 1/2, that is, when
the number of samples n generated from the model equals that of the data m (at which point
Cλ = 4C). This means that it will be computationally inefficient to use n much larger than m.
We note that the variance also does not depend on any amplitude parameter of the kernel, or any
location parameters in U. To the best of our knowledge, there are no known analogous result for
minimum Wasserstein or Sinkhorn estimators (except a one-dimensional result for the minimum
Wasserstein estimator in the supplementary material of [Bernton et al., 2019]).

Theorem 2 raises the question of efficiency of the estimator. The Cramer-Rao bound provides
a lower bound on the variance of any unbiased estimator for Pθ, and it is well-known that it is
attained by maximum likelihood estimators. The following result is an adaptation of the Cramer-
Rao bound in Godambe [1960] for our estimators, which are biased.

Theorem 3 (Cramer-Rao Bounds). Suppose that the CLTs in Theorem 2 hold and that the data
distribution Q satisfies Q = Pθ∗ , where Pθ∗ =G#

θ∗U is assumed to have density p(x|θ∗). Fur-
thermore, suppose that the MMD information metric g(θ∗) and the Fisher information metric
F (θ) =

∫
X ∇θ log p(x|θ)∇θ log p(x|θ)>Pθ(dx) are positive definite when θ = θ∗. Then the

asymptotic covariances C and Cλ of the estimator θ̂m and θ̂n,m satisfy the Cramer-Rao bound,
i.e. C − F (θ∗)−1 and Cλ − F (θ∗)−1 are non-negative definite.

The results above demonstrate that we cannot expect our (biased) estimators to outperform
maximum likelihood in the M-closed case. The efficiency of these estimators is strongly de-
termined by the choice of kernel, in particular on the kernel bandwidth l. The following result
characterises the efficiency as l→∞.

Proposition 2 (Efficiency with Large Lengthscales). Suppose that k is a radial basis kernel, i.e.
k(x, y) = r(|x − y|2/2l2), where lims→0 r

′(s) < ∞ and lims→0 r
′′(s) < ∞. Let C l and C lλ

denote the asymptotic variance as a function of the bandwidth l of θ̂m and θ̂n,m respectively. Then

lim
l→∞

C l = (∇θM(θ))† V (θ) (∇θM(θ))†> , (5)

where M(θ) and V (θ) are the mean and covariance of p(x|θ) respectively and A† denotes the
Moore-Penrose inverse ofA. As a result, liml→∞C

l
λ = (1/(1−λ)λ) (∇θM(θ))† V (θ) (∇θM(θ))†>.

In general, the minimum MMD estimators may not achieve the efficiency of maximum like-
lihood estimators in the limit l → ∞, however in one dimension, the limiting covariance in
Equation 5 is a well known approximation for the inverse Fisher information [Jarrett, 1984, Stein
and Nossek, 2017], which is optimal.

Before concluding this section on efficiency of minimum MMD estimators, we note that the
asymptotic covariances C and Cλ of Theorem 2 could be used to create confidence intervals for
the value of θ∗ (only for the M-closed case). Although these covariances cannot be estimated
exactly since they depend on θ∗ and contain intractable integrals, they can be approximated using
the generator at the current estimated value of the parameters.

3.3 Robustness

This concludes our theoretical study of the M-closed case and we now move on to the M-open
case. A concept of importance to practical inference is robustness when subjected to corrupted
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data [Huber and Ronchetti, 2009]. As will be seen below, minimum MMD estimators have very
favourable robustness properties for this case.

Our first objective is to demonstrate qualitative robustness in the sense of Hampel [1971].
More specifically, given some parametrized probability measure Pθ, we show that if two measures
Q1 and Q2 are close in Prokhorov metric, then the distributions of the minimum distance estima-
tors θ̂im ∈ argminθ∈Θ MMD2(Pθ||Qm

i ) and θ̂in,m ∈ argminθ∈Θ MMD2(Pnθ ||Qm
i ) for i = 1, 2 are

respectively close.

Theorem 4 (Qualitative Robustness). Suppose that (i) ∀Q ∈ Pk(X ) there exists a unique θQ such
that infθ∈Θ MMD(Pθ||Q) = MMD(PθQ ||Q) and (ii) ∀ε > 0, ∃δ > 0 such that ‖θ − θQ‖ ≥ ε
implies that MMD(Pθ||Q) > MMD(PθQ ||Q) + δ. Then θ̂m is qualitatively robust in the sense of
Hampel [1971].

Additionally, suppose that for any empirical measure Un on n points, that (i’) ∀Q ∈ Pk(X )

there exists a unique θQ such that infθ∈Θ MMD(G#
θ U

n||Q) = MMD(G#
θQ
Un||Q) and (ii’) ∀ε > 0,

∃δ > 0 such that ‖θ − θQ‖ ≥ ε implies that MMD(G#
θ U

n||Q) > MMD(G#
θQ
Un||Q) + δ. Then

∃N such that θ̂n,m is qualitatively robust for n ≥ N .

The result above characterises the qualitative robustness of the estimators, but does not provide
a measure of the degree of robustness which can be used to study the effect of corrupted data on the
estimated parameters. An important quantity used to quantify robustness is the influence function
IF : X × PΘ(X ) → R where IF(z,Pθ) measures the impact of an infinitesimal contamination
of the data generating model Pθ in the direction of a Dirac measure δz located at some point
z ∈ X . The influence function of a minimum distance estimator based on a scoring rule S is
given by [Dawid and Musio, 2014]: IFS(z,Pθ) := (

∫
X ∇θ∇θS(x,Pθ)Pθ(dx))−1∇θS(z,Pθ).

The supremum of the influence function over z ∈ X is called the gross-error sensitivity, and if it
is finite, we say that an estimator is bias-robust [Hampel, 1971]. We can use the connection with
kernel scoring rules to study bias robustness of our estimators.

Theorem 5 (Bias Robustness). The influence function corresponding to the maximum mean dis-
crepancy is given by IFMMD(z,Pθ) = g−1(θ)∇θ MMD(Pθ, δz). Furthermore, suppose that ∇1k
is bounded and

∫
U ‖∇θGθ(u)‖U(du) <∞, then the MMD estimators are bias-robust.

Note that the conditions for this theorem to be valid are less stringent than assumptions re-
quired for the CLT in Theorem 2. As we shall see in the next section, there will be a trade-off
between efficiency and robustness as the kernel bandwidth is varied. We shall demonstrate this
through the influence function.

Overall, these results demonstrating the qualitative and bias robustness of minimum MMD
estimators provides another strong motivation for their use. For complex generative model, it
is common to be in the M-open setting; see for example all of the MMD GANs applications
in machine learning where neural networks are used as models of images. Although it is not
realistically expected that neural networks are good models for this, our robustness results can
help explain the favourable experimental results observed in that case. Note that, to the best of our
knowledge, the robustness of Wasserstein and Sinkhorn estimators has not been studied.
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4 The Importance of Kernel Selection: Gaussian Models

As should be clear from the previous sections, the choice of kernel will strongly influence the
characteristics of minimum MMD estimators, including (but not limited to) the efficiency of the
estimators, their robustness to misspecification and the geometry of the loss function. In this sec-
tion, we highlight some of these consequences for two particular models: a location and scale
model for a Gaussian distribution. These models are illustrative problems for which many quanti-
ties of interest (such as the asymptotic variance and influence function) can be computed in closed
form, allowing for a detailed study of the properties of minimum MMD estimators.

4.1 Kernel Selection in the Literature

A number of approaches for kernel selection have been proposed in the literature, most based on
radial basis kernels of the form k(x, y; l) = r(‖x − y‖/l), for some function r : R → R≥0.
We now highlight each of these approaches, and later discuss the consequences of our theoretical
results in the case of Gaussian location and scale models.

Dziugaite et al. [2015] proposed to set the lengthscale using the median heuristic proposed
in Gretton et al. [2008] for two-sample testing with MMD, and hence picked their lengthscale
to be

√
median(‖yi − yj‖22/2) where {yj}mj=1 is the data. This heuristic has previously been

demonstrated to lead to high power in the context of two-sample testing for location models in
Ramdas et al. [2015], Reddi et al. [2015]. See also Garreau et al. [2017] for an extensive investi-
gation. Li et al. [2015], Ren et al. [2016], Sutherland et al. [2017] have demonstrated empirically
that a mixture of squared-exponential kernels yields good performance, i.e. a kernel of the form
k(x, y) =

∑S
s=1 γsk(x, y; ls) where γ1, . . . , γS ∈ R+ and the lengthscales l1, . . . , lS > 0 are

chosen to cover a wide range of bandwidth. The weights can either be fixed, or optimised; see
Sutherland et al. [2017] for more details. As the sum of characteristic kernels is characteristic (see
Sriperumbudur et al. [2010]) this is a valid choice of kernel.

Another approach orginating from the use of MMD for hypothesis testing consists of studying
the asymptotic distribution of the test statistics, and choose kernel parameters so as to maximise
the power of the test. This was for example used in [Sutherland et al., 2017]. A similar idea
could be envisaged in our case: we could minimise the asymptotic variance of the CLT obtained
in the previous section. Unfortunately, this will not be tractable in general since computing the
asymptotic variance requires knowing the value of θ∗, but an approximation could be obtained
using the current estimate of the parameter.

Finally, recent work [Li et al., 2017] also proposed to include the problem of kernel selection
in the objective function, leading to a minimax objective. This renders the optimisation problem
delicate to deal with in practice [Bottou et al., 2017]. The introduction of several constraints
on the objective function have however allowed significant empirical success [Arbel et al., 2018,
Bińkowski et al., 2018]. We do not consider this case, but it will be the subject of future work.

4.2 Gaussian Location Model

To focus ideas we shall focus on a Gaussian location model for a d-dimensional istropic Gaussian
distribution N (θ, σ2Id×d) with unknown mean θ ∈ Rd and known standard deviation σ > 0.
In this case, we take U = X = Rd, U is a standard Gaussian distribution N (0, σ2Id×d) and
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Gθ(u) = u + θ. The derivative of the generator is given by ∇θGθ(u) = Id×d. Although this is
of course a fairly simple model which could be estimated by MLE, it will be useful to illustrate
some of the important points for the implementation of MMD estimators. In the first instance, we
consider the M-closed case where the data consists of samples {yj}mj=1

IID
∼ Q where Q = Pθ∗ and

the kernel is given by k(x, y; l) = φ(x; y, l2), where φ(x; y, l2) is the probability density function
of a Gaussian N (y, l2Id×d).

Proposition 3 (Asymptotic Variance for Gaussian Location Models). Consider the minimum
MMD estimator for the location θ of a Gaussian distribution N (θ, σ2Id×d) using a Gaussian
kernel k(x, y) = φ(x; y, l2), then the estimator θ̂m has asymptotic variance given by

C = σ2((l2 + σ2)(3σ2 + l2))−
d
2
−1(l2 + 2σ2)d+2Id×d. (6)

The Fisher information for this model is given by 1/σ2Id×d, and so in the regime l → ∞ we
recover the efficiency of the MLE, so that the Cramer-Rao bound in Theorem 3 is attained. On the
other hand, for finite values of l, the minimum MMD estimator will be less efficient than the MLE.
For l → ∞, the asymptotic variance is O(1) with respect to d, but we notice that the asymptotic
variance is O(αd+2) as l → 0, where α = 2/

√
3 ≈ 1.155 > 1. This demonstrates a curse of

dimensionality in this regime. This transition in behaviour suggests that there is a critical scaling
of l with respect to d which results in asymptotic variance independent of dimension.

Proposition 4 (Critical Scaling for Gaussian Location Models). Consider the minimum MMD
estimator for the location θ of a Gaussian distribution N (θ, σ2Id×d) using a single Gaussian
kernel k(x, y) = φ(x; y, l2) where l = dα. The asymptotic variance is bounded independently of
dimension if and only α ≥ 1/4.

As previously mentioned, it has been demonstrated empirically that choosing the bandwidth
according to the median heuristic results in good performance in the context of MMD hypothesis
tests [Reddi et al., 2015, Ramdas et al., 2015]. These works note that the median heuristic yields
l = O(d1/2), which lies within the dimension independent regime in Proposition 4. Our CLT
therefore explains some of the favourable properties of this choice.

Clearly, the choice of lengthscale can have a significant impact on the efficiency of the esti-
mator, but it can also impact other aspects of the problem. For example, the loss landscape of the
MMD, and hence our ability to perform gradient-based optimisation, is severely impacted by the
choice of kernel. This is illustrated in Figure 1 (top left) in d = 1, where choices of lengthscale
between 5 and 25 will be preferable for gradient-based optimisation routines since they avoid large
regions where the loss function will have a gradient close to zero. Using a mixture of kernels with
a range of lengthscale regimes could help avoid regients of near-zero gradient and hence be gener-
ally desirable for the gradient-based optimization. A third aspect of the inference scheme which is
impacted by the lengthscale is the robustness. We can quantify the influence of the kernel choice
on robustness using the influence function. Similar plots for different classes of kernels can be
found in the Appendix in Figures 8, 9 and 10.

Proposition 5 (Influence Function for Gaussian Location Models). Consider the MMD estimator
for the location θ of a Gaussian model N (θ, σ2Id×d) based on a Gaussian kernel k(x, y) =
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φ(x; y, l2). Then the influence function is given by:

IFMMD(Pθ, z) = 2

(
l2 + 2σ2

l2 + σ2

) d
2

+1

exp

(
− ‖z − θ‖

2
2

2(l2 + σ2)

)
(z − θ).

Note that the asymptotic variance (6) is minimised by taking l arbitrarily large. Despite this,
in practice we do not want to choose l to be larger than necessary as this will poorly influence the
robustness of the estimator. Clearly, for the location model, we see that l controls the sensitivity of
our estimators. For every finite l, we have the following uniform bound for the influence function

sup
z∈Rd

|IFMMD(Pθ∗ , z)| = 2e−1/2
√
l2 + σ2

(
l2 + 2σ2

l2 + σ2

) d
2

+1

.

Taking l → ∞ we have IFMMD(Pθ∗ , z) → (θ∗ − z), thus losing robustness in the limit. As with
asymptotic variance, the sensitivity will depend exponentially on dimension when l is small. Con-
trary to intuition, the uniform influence function minimum will not be attained when l approaches
zero, but rather at an intermediate point, when l2 = dσ2, after which the influence to contami-
nation will increase as l → ∞. The middle plot in Figure 1 (top) illustrates the effect of kernel
bandwidth on robustness. The figure plots the l1 error between the estimated parameter θ̂m (for
n) based on a polluted data sample Q(dx) = (1 − ε)φ(x; 0, 1)dx + εδz, for some z ∈ Rd where
ε = 0.2. While the estimator is qualitatively robust, for higher kernel bandwidths, the estimator
will undergo increasingly large excursions from θ∗ = 0 as the position of the contaminent point
z moves to infinity. The second plot demonstrates the behaviour of the estimators as the pollution
strength ε is increased from 0 to 1 and z = (10, . . . , 10)>. We observe that for small kernel band-
widths, the estimator undergoes a rapid transition around ε = 0.5. However, as the lengthscale
is increased the estimator becomes increasingly sensitive to distance sample points to the extent
that the error grows linearly with respect to ε. Interestingly, additional experiments presented in
Figure 11 of the Appendix indicate that Wasserstein-based estimators may not be robust.

4.3 Gaussian Scale Model

The second model we consider is a d-dimensional isotropic Gaussian distributionN (µ, exp(2θ)Id×d)
with known location parameter µ ∈ Rd. Since the asymptotic variance does not depend on any
location parameters of U, we will assume without loss of generality that the base measure U is a
d-dimensional Gaussian with mean zero and identity covariance matrix, and that Gθ : Rd → Rd
is defined by Gθ(u) = exp(θ)u. For simplicity, we assume that we are in the M-closed situation,
where the true data distribution Q is given by Pθ∗ and the kernel is k(x, y; l) = φ(x; y, l2). For
this model, the conclusions in terms of efficiency, robustness and loss landscape are similar to
those of the Gaussian location model. For example, we can once again compute the asymptotic
variance of the CLT:

Proposition 6 (Asymptotic Variance for Gaussian Scale Models). Consider the minimum MMD
estimator for the scale θ of a Gaussian distribution N (µ, exp(θ)Id×d) using a Gaussian RBF
kernel k(x, y; l) = φ(x; y, l2). The asymptotic variance of the minimum MMD estimator θ̂m
satisfies C l = g−1(θ∗)Σg−1(θ∗) where the metric tensor at θ∗ satisfies

g(θ∗) = (2π)−d/2
(
l2 + 2e2θ∗

)−d/2
d2K

(
d, l, e2θ∗

)
,
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Figure 1: Gaussian location and scale models - Performance of the Gaussian RBF kernel (for
n,m large). The top plots refer to the Gaussian location model, whilst the bottom plots refer to
the Gaussian scale model. Left: Comparison of the loss landscape for various lengthscale values
in d = 1. Center: Robustness problem with varying location x for the Dirac but threshold fixed
to ε = 0.2 in d = 1. Right: Robustness problem with varying threshold but fixed location for the
Dirac at x = 10 in d = 1.

for a K(d, l, s) is bounded with respect to d, l, and s and K(d, 0, s) = 1
4(1 + 2d−1); and

Σ = (2π)−dd2e4θ∗
(
eθ
∗

+ l2
)−2

(
C1

(
l2 + 3e2θ∗

)−d/2 (
l2 + e2θ∗

)−d/2
+ C2

(
l2 + 2e2θ∗

)−d)
,

where C1 and C2 are bounded uniformly with respect to the parameters. Asymptotically, the
asymptotic variance behaves as C l ∼ (2/

√
3)d/d2 for l� 1 and C l ∼ l4/d2 for l� 1.

This result indicates that the asymptotic variance grows exponentially with dimension as l
small. In the other extreme, for l going to infinity results in an asymptotic variance which is
bounded independent of dimension. In fact, the following result characterises the choice of length-
scale required for dimension independent efficiency.

Proposition 7 (Critical Scaling for Gaussian Scale Models). Consider the minimum MMD esti-
mator for the scale θ of a Gaussian distribution N (µ, exp(θ)Id×d) with a single Gaussian kernel
k(x, y) = φ(x; y, l2) where l = dα. The asymptotic variance is bounded independently of dimen-
sion if and only if α ≥ 1/4.

This scaling is the same as for the Gaussian location model, indicating that a more general
result on critical scaling for MMD estimators may exists. We reserve this issue for future work.
Once again, we notice (Figure 1, bottom left) that the choice of lengthscale has a significant impact
on the loss landscape. However, an interesting point is that values of the lengthscale which render
the loss landscape easily amenable to gradient-based optimisation are different in the two cases.
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Figure 2: Gaussian location model - Efficiency and Robustness for a Mixture of Kernels. Asymp-
totic variance and gross sensitivity for minimum MMD estimators of the Gaussian location
model as a function of l1 and l2 for a mixture of squared exponential kernels: k(x, y) =
exp(−‖x− y‖22/2l21) + exp(−‖x− y‖22/2l22).

Numerical experiments clearly indicate that the choice of lengthscale may need to be adapted
based on the parameters of interest. The lengthscale has, once again, a significant impact on the
robustness of the estimator, as demonstrated in the following result.

Proposition 8 (Influence Function for Gaussian Scale Models). Consider the minimum MMD
estimator for the scale θ of a Gaussian model N (µ, exp(θ)Id×d) based on a single Gaussian
kernel k(x, y) = φ(x; y, l2). The influence function associated with this estimator is:

IFMMD(Pθ, z) =

(
l2 + 2e2θ∗

l2 + e2θ∗

) d
2

+2 (
l2 + e2θ∗ − z2

)
d(d+ 2)e2θ∗

exp

(
− z2

2 (l2 + e2θ∗)

)
.

In particular, for every finite l we have that

sup
z∈Rd

|IFMMD(Pθ∗ , z)| =
4e−3/2

(
l2 + 2e2θ∗

)
d(d+ 2)e2θ∗

(
l2 + 2e2θ∗

l2 + e2θ∗

) d
2

+1

,

independently of z, so that l controls the sensitivity of the estimator. Once again, we see exponen-
tial dependence on dimension for l small, with the minimum uniform influence at an intermediate
point, with the dependence increasing as l→∞.

4.4 Using Mixtures of Gaussian Kernels

In Li et al. [2015], Ren et al. [2016], Sutherland et al. [2017] it was observed empirically that using
mixtures of distributions offers advantageous performance compared to making single choices. In
particular, it circumvents issues arising from gradient descent due to vanishing gradients, which
can occur if the lengthscale of the kernel chosen to be too small, as can be seen in Figure 1. While
multiple kernels offer advantage for gradient descent, we aim to understand where mixture kernels
offer any advantages in terms of asymptotic efficiency and robustness. Focusing on the Gaussian
location model case, we have the following result.
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Proposition 9 (Efficiency and Robustness with Mixture Kernels for Gaussian Location). Consider
the minimum MMD estimator for the location of a Gaussian distribution N (θ, σ2Id×d) using a
Gaussian mixture kernel k(x, y) =

∑S
s=1 γsφ(x; y, l2s). Then the minimimum MMD estimator has

asymptotic variance given by

σ2

∑S
s=1

∑S
s′=1 γsγs′

(
(l2s + σ2)(l2s′ + σ2) + σ2(2σ2 + l2s + l2s′)

)− d
2
−1(∑S

s=1 γs(l
2
s + 2σ2)−

d
2
−1
)2 Id×d. (7)

Furthermore, the influence function is given by:

IFMMD(z,Pθ) =
2
∑S

s=1 γs(l
2
s + σ2)−

d
2
−1 exp

(
− ‖z−θ‖

2
2

2(l2s+σ2)

)
(z − θ)∑S

s=1 γs(l
2
s + 2σ2)−

d
2
−1

.

In Figure 2 we plot the log asymptotic variance and log gross sensitivity for the Gaussian
location model based on a mixture kernel composed of two Gaussian kernels with lengthscales
l1 and l2. What is interesting to note that there are choices of (l1, l2) which give rise to higher
efficiency and robustness than their individual counterparts. Indeed, for example, choosing l1 =
0.8 then the asymptotic variance will be minimised when l2 ≈ 0.6, although this choice will
reduce bias-robustness. This figure appears to support the claim that mixture kernels can also
provide increased performance beyond assisting gradient descent, and merits further investigation.

5 Numerical Experiments

In this final section, we examine the impact of the choice of kernel on several applications. In
particular, we highlight the importance of working with estimators which are robust to model
misspecification. We start with two applications which are popular test-beds for inference for
intractable generative models: the g-and-k distribution and a stochastic volatility model. We then
move on to a problem of parameter inference for systems of stochastic differential equations,
where we consider a parameter-prey model and a multiscale model. These examples allow us to
demonstrate the advantage of our natural gradient descent algorithm, and the favourable robustness
properties of the estimators.

5.1 G-and-k distribution

A common synthetic model in the literature on generative models is the g-and-k distribution [Bern-
ton et al., 2019, Prangle, 2017]. For this model, we only have access to the quantile function
Gθ : [0, 1]→ R (also called inverse cumulative distribution function) given by:

Gθ(u) := a+ b

(
1 + 0.8

(
1− exp(−cΦ−1(u; 0, 1)

)(
1 + exp(−cΦ−1(u; 0, 1)

)) (1 + (Φ−1(u; 0, 1))2
)k

Φ−1(u; 0, 1)

where Φ−1(u; 0, 1) refers to the u’th quantile of the standard normal distribution. The parameter
of interest is θ = (θ1, θ2, θ3, θ4) where θ1 = a controls location, θ2 = b controls scale, θ3 = c
controls skewness and θ4 = exp(k) controls kurtosis. Although this is a model defined on a
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Figure 3: Inference for the parameters of the g-and-k distribution using a maximum mean dis-
crepancy estimator. Left & Center: Several runs of a stochastic gradient descent (light blue, light
red and light green) and a stochastic natural gradient descent (dark blue, dark red and dark green)
algorithm on the MMD loss function with Gaussian RBF kernel with lengthscale l = 2. The black
dot corresponds to the minimiser. Right: Estimate of the MMD loss function around the minimum
as a function of θ4 for a Gaussian RBF kernel with varying choices of lengthscales and a mixture
of all the Gaussian kernels.

one-dimensional space, the four parameters allow for a very flexible family of distributions. A
rescaling of the last parameter is used to avoid instabilities. Since the quantile function is available,
we can easily simulate from this model using inverse transform sampling.

We study the behaviour of the MMD estimators for this model in Figure 3. For the left and
center plots, we used both stochastic gradient descent and stochastic gradient descent with pre-
conditioner to obtain an estimate of θ̂m. We used a constant step-size for both algorithms (tuned
for good performance) and ran each algorithm for 500 iterations. The data is of size m = 30000
but we used minibatches of size 200, the simulated data was of size n = 200, the kernel was
Gaussian RBF with lengthscale l = 2 and θ∗ = (3, 1, 1,− log(2)). The large number of data
points is used to guarantee that the minimiser can be recovered. We notice that both the stochastic
gradient descent and stochastic natural gradient descent are able to recover θ∗1 and θ∗2 for a variety
of initial conditions in the neighbourhood of the minimiser. On the other hand, as observed in
the center plot, the stochastic gradient descent algorithm is very slow for θ∗3 and θ∗4, whereas the
natural stochastic gradient descent algorithm is able to recover both of these parameters in a small
number of steps. This clearly highlights the advantage of the rescaling of the parameter space
provided by the preconditionner based on the geometry induced by the information metric.

We also plot the MMD loss function as a function of θ4 in the neighborhood of θ∗. The
estimator is sensitive to the choice of lengthscale: in the case where we use a Gaussian RBF
kernel, a lengthscale smaller of equal to l = 0.1 or greater or equal to l = 10 led to a loss function
which is flat on a wide range of the space. In those cases, it will be difficult to obtain an accurate
estimate of the parameter due to the noise in our estimates of the gradient. On the other hand, a
lengthscale of l = 1 allows us to provide more accurate results. Furthermore, the use of a mixture
of all of these kernels also allows us to obtain accurate results without having to manually tune the
choice of lenghtscale.
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5.2 Stochastic Volatility Model with Gaussian and Cauchy Noise

Our second model is a stochastic volatility model [Kim et al., 1998], popular in the econometrics
literature as a model of the returns on assets over time. The model can be simulated from by
sampling the first hidden variable h1 ∼ N (0, σ2/(1− φ2)) representing the initial volatility, then
following the following set of equations:

ht = φht−1 + ηt, ηt ∼ N (0, σ2),

yt = εtκ exp(0.5ht), εt ∼ N (0, 1).

where yt is the mean corrected return on holding an asset at time t, and ht the log-volatility at time
t. The {yt}Tt=1 are observed data and {ht}Tt=1 are unobserved latent variables. This is therefore
a generative model with parameters (φ, κ, σ), which we reparameterised with θ1 = log((1 +
φ)/(1 − φ)), θ2 = log κ, θ3 = log(σ2) to avoid numerical issues so that we want to recover θ =
(θ1, θ2, θ3). The data dimension is d = T and the parametric dimension is p = 3. The likelihood
of these models is usually not available in closed form due to the presence of latent variables
and hence given by p(y1, . . . , yT |θ) =

∫
p(y1, . . . , yT |h1, . . . , hT , θ)p(h1, . . . , hT |θ)dh1 . . . dhT

which is a high-dimensional intractable integral. Alternative approaches based on quasi-likelihood
estimation or expectation-maximisation can be considered, but the approximation obtained may
be unreliable. Furthermore, it may be preferable to make use of minimum MMD estimators since
these will allow for robust inference, which is not the case for alternative approaches.

In our experiments, we choose T = 30 and considered inference with minimum MMD estima-
tors with Gaussian kernels. Initially, we considered the M-closed case and generated m = 20000
data points for θ∗ = (0.98, 0.65, 0.15), which we then tried to infer by minimising the MMD loss
function with a wide range of kernels. For the experimental results, we used stochastic gradient
descent and stochastic natural gradient descent with minibatches of size 2000, and used n = 45.
Results in Figure 4 (top) demonstrate that our natural gradient algorithm is able to recover the
parameters in around five thousand iterations whereas the gradient descent algorithm isn’t close to
convergence after 30000 steps. Note that even though the dimension d = 30, the parameter space
has dimension p = 3 so that the additional computational cost of the preconditioner is negligeable
for this problem (and completely dwarfed by the cost of the generator).

We then considered the M-open case, and introduced misspecification by simulating the εt val-
ues using IID realisations of a Cauchy distribution with location parameter 0 and scale parameter√

2/π. This distribution has the same median as the Gaussian distribution, and their probability
density functions match at that point, but the Cauchy has much fatter tails. The results of these
experiments are available in Figure 4, and in each case we repeated the experiments with 4 differ-
ent stepsize choices and plot the best result. In the well-specified case, we notice that the natural
gradient descent algorithm is able to take advantage of the local geometry of the problem and
converges to θ∗ in a small number of iterations. Further experiments with a larger range of kernels
is available in Appendix D.3, but the mixture kernel tended to work best.

In the misspecified case, we notice (as expected) that while none of the minimum MMD
estimators is able to recover the true value of θ∗, but that the inferred results remain stable, i.e.
close to the truth. The choice of kernel has a clear impact on the output. For Gaussian RBF
kernels with lengthscales l = 1 or l = 5, the loss function is too flat for gradient descent and we
are not able to move much from the initial parameter. For larger values of the lengthscale (e.g.

21



Figure 4: Inference for stochastic volatility models. Top: Well-specified case - Gradient descent
and natural gradient descent on the MMD loss function with a mixture of Gaussian RBF kernels
with lengthscales 1, 5, 10, 20, 40. Bottom: Misspecified case - Gradient descent on the MMD loss
function with a variety of kernels including a Gaussian RBF kernel with lengthscales 1, 5, 10, 20,
as well as a mixture of all these kernels and a Gaussian RBF kernel with lengthscale l = 40.

l = 10, 20, 40) and for the mixture kernel, we are able to use gradient-based optimisation but that
it demonstrates increased sensitivity to model mispecification. We note that the single Gaussian
RBF kernels with large lengthscale are able to learn θ∗1 well in the sense that there is negligeable
bias as compared to θ∗2 and θ∗3. This is likely due to the improvement in bias robustness expected
for kernels with large lengthscale.
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5.3 Inference for Systems of Stochastic Differential Equations

For our third set of experiments, we use minimum MMD estimation to infer the initial condition
and parameters for coupled systems of stochastic differential equations (SDEs). In general, will
will consider a d-dimensional Itô stochastic differential equation of the form

dXt = b(Xt; θ1) dt+ σ(Xt; θ1) dWt, (8)

where b : Rd × Θ → Rd, σ : Rd × Θ → Rd×k, Wt is a k dimensional standard Brownian
motion and with initial value X0 = θ2 and where (θ1, θ2) ∈ Θ is a vector of unknown parameters
to be determined. We assume that for each θ there is a unique solution to (8) which depends
continuously on the initial condition.

For any fixed θ, provided we can simulate X(t), at points 0 = t0 < t1 < . . . < tK = T , then
we can consider the generative model defined by Pθ = G#

θ U, where U is the Wiener path measure
for a k dimensional standard Wiener process on C[0, T ] and Gθ = Oθ ◦ Iθ, where Iθ : C[0, T ]→
C[0, T ] is the Itô map, transforming the Wiener process to the solution X(·) of the SDE. Here, Oθ
is an observation operator, for example mapping w ∈ C[0, T ] to (w(t1), . . . , w(tK)) or any other
smooth functional of the path which depends smoothly on θ. Note that it is trivial to incorporate
observational noise and volatility parameters into the observation operator.

To perform MMD gradient descent for this model we must calculate the gradient of the forward
map with respect to the parameters θ. Pathwise derivatives of the solution of (8) with respect to
initial conditions and coefficient parameters are well established [Kunita, 1997, Gobet and Munos,
2005, Friedman, 2012] and are detailed in the following result; see also Tzen and Raginsky [2019]
for a similar result arising in a similar context.

Proposition 10. [Kunita, 1997, Theorem 2.3.1] Suppose that the drift b(x; θ1) and diffusion tensor
σ(x; θ1) are Lipschitz with Lipschitz derivatives with respect to x and θ1. Then the pathwise
derivative of Xt with respect to the parameters θ1 is given by the solution of the Ito process,

d (∇θ1Xt) = (∇xb(Xt; θ1)∇θ1Xt +∇θ1b(Xt; θ1)) dt+ (∇xσ(Xt; θ)∇θ1Xt +∇θ1σ(Xt; θ1)) dWt

with initial condition∇θ1X0 = 0 and the derivative of Xt with respect to θ2 is given by

d (∇θ2Xt) = (∇xb(Xt; θ1)∇θ2Xt) dt+ (∇xσ(Xt; θ)∇θ2Xt) dWt,

where∇θ2X0 = I . In particular, given a differentiable function F of Xt0 , . . . , XtK ,

∇θiE [F (Xt0 , . . . , XtK )] = E

[
K∑
k=1

∇xkF (Xt0 , . . . , XtK )∇θiXtk

]
, for i = 1, 2.

Before moving on to the experiments, we note that Abbati et al. [2019] proposed an alternative
method, performing Gaussian process-based gradient matching for ODEs and SDEs with additive
noise, by using MMD to fit a GP process inferred from the data to the SDE. However, the approach
we propose permits parametric estimation for more general SDEs and noise models.
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Figure 5: Inference for the initial conditions of a Lotka-Volterra model with noisy dynamics.
Left: n = 100 realisations from the coupled stochastic differential equations for several initial
conditions. Right: n = 100 realisations used for inference, including 90 realisations from the
correct model and 10 which are corrupted.

5.3.1 Noisy Lotka-Volterra Model with Unknown Initial Conditions

As an example, we consider the stochastic Lotka-Volterra model [Volterra, 1926], which consists
of a pair of nonlinear differential equations describing the evolution of two species through time:

d

(
X1,t

X2,t

)
=

[(
1
0

)
θ11X1,t +

(
−1
1

)
θ12X1,tX2,t +

(
0
−1

)
θ13X2,t

]
dt

+

(
1
0

)√
θ11X1,tdW

(1)
t +

(
−1
1

)√
θ12X1,tX2,tdW

(2)
t +

(
0
−1

)√
θ13X2,tdW

(3)
t ,

where the initial conditions θ2 = (X1,0, X2,0) are unknown, but the parameters θ1 = (θ11, θ12, θ13)
governing the dynamics are known. While exact sampling methods for diffusions exist, see Beskos
and Roberts [2005], for simplicity we shall employ an inexact Euler-Maruyama discretisation,
choosing the step size sufficiently small to ensure stability of the discretisation. We choose the
“true” initial condition to be deterministic with value θ∗2 = (X1,0, X2,0). We fix a-priori the
time horizon to T = 1 and the parameters governing the equation to θ1 = (θ11, θ12, θ13) =
(5, 0.025, 6). In this case, p = 2, d = 2 and n tends to be small (in the tens or hundreds). We
consider the case where n = 50.

Typical realisations for the system of coupled stochastic differential equations can be found
in Figure 5 (left) for several values of the initial conditions. As we would expect, the closer
the initial conditions, the closer the realisations of stochastic differential equations will be. This
clearly motivates the use of minimum MMD estimators. We are particularly interested interested
in the behaviour of the estimators as a proportion of the data is corrupted. In particular, we will
consider the problem of inferring initial conditions θ∗2 = (100, 120) given realisations from this
model which are corrupted by realisations from the model initialised at θ†2 = (50, 50). Realisations
are provided in Figure 5 (right) for the case with 10% misspecification.

We expect this type of misspecification to lead to severe issues for non-robust inference al-
gorithms, but the bias robustness of minimum MMD estimators allows us to provide reasonable
estimates of the parameter. This can be seen in Figure 6 (left) where we plot estimates provided
by MMD estimators for θ22 as a function of natural gradient steps for various proportion levels of
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Figure 6: Inference for the initial conditions of a Lotka-Volterra model with corrupted observa-
tions based on m = 100 realisations and n = 50 simulated data. Each color correspond to a
different percentage of corrupted observations. Left: Stochastic gradient descent steps for mini-
mum Sinkhorn estimator with l2 cost and ε = 1 regularisation. Right: Stochastic gradient descent
steps for minimum MMD estimator with Gaussian RBF kernel and lengthscale l = 30.

corruption. This is compared to the Sinkhorn algorithm of Genevay et al. [2018]. As can be seen,
the MMD estimator can recover the truth for a large proportion of corrupted samples whereas
Wasserstein-based estimators are very sensitive to corrupted data.

5.3.2 Parametric Inference for a System of SDEs with Multiple Scales

We consider a second example where we observe realisations of the following two-dimensional
multiscale system

dXε
t =

(√
θ12

ε
Y ε
t + θ11X

ε
t

)
dt, dY ε

t = − 1

ε2
Y ε
t dt+

√
2

ε
dWt, (9)

where Wt is a standard Brownian motion, 0 < ε � 1 is a small length-scale parameter, θ1 =
(θ11, θ12) are unknown parameters governing the dynamics, and the initial conditions θ2 are
known. Such systems arise naturally in atmosphere/ocean science [Majda et al., 2001], materi-
als science [Weinan, 2011] and biology [Erban et al., 2006], and the inference of such stochastic
multiscale systems has been widely studied, see [Pavliotis and Stuart, 2007, Krumscheid, 2018].

The process Y ε
t is an Ornstein-Uhlenbeck process with vanishing autocorrelation controlled

by ε. Formally, in the limit of ε → 0 it will behave as the derivative of Brownian motion. One
can formulate minimum MMD problem for estimating the parameters θ11 and θ12, appealing
to Proposition 10 to compute the MMD gradient. However, a direct approach which involves
integrating the SDEs in (9) multiple times is computationally infeasible, due to the fact that the
simulation step-size would need to be commensurate to the small scale parameter ε. This motivates
us to use a coarse grained model for estimating the unknown parameters. As ε → 0, the process
Xε
· will converge weakly in C[0, T ] to a process X ·, given by the solution of the Itô SDE:

dXt = θ11Xt +
√

2θ12 dWt, t ∈ [0, T ], (10)
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Figure 7: Inference for the parameters of a two-scale stochastic process using a coarse grained
model. The plots show the convergence of the estimators to the truth values (dashed-lines) as the
number of gradient descent steps increase, for data coming from (9).

see [Pavliotis and Stuart, 2008, Chapter 11]. As the coefficients of this SDE do not depend on the
small scale parameter, we are able to generate realisations far more efficiently than for (9). We
consider the minimum MMD estimator for θ11 and θ12 using (10) as a model. This introduced
model misspecification of an interesting nature: for ε small, the path measures associated with (9)
and (10) on C[0, T ] will be close with respect to the Levy-Prokhorov metric (which metrizes weak
convergence) but not with respect to stronger divergences such as total variation or KL divergence.
Indeed, the KL divergence between both measures will diverge as ε → 0. As MMD induces a
coarser topology than the Levy-Prokhorov metric, we expect that the MMD estimators will be
robust with respect to this misspecification for ε small, whereas maximum likelihood estimators
are known to be biased in this case [Pavliotis and Stuart, 2007].

Suppose that we observe 100 realisations of (9) at discrete times 0.1, 0.2, . . . , 1.0 over a time
horizon of T = 1 with known initial conditions θ2 = (1.0, 0.0) with true values of the parameters
given by θ∗1 = (−1/2,

√
1/2). We construct a minimum MMD estimator for θ1 using the coarse

grained SDEs as a model. In this case, p = 2, d = 1. To simulate the coarse-grained model, we
use an Euler-Maruyama discretisation with a step-size of 10−2. We use natural gradient descent
to minimise MMD, generating n = 100 synthetic realisations of the coarse SDE (10) per gradient
step. In Figure 7 we plot the natural gradient descent trajectory for the estimators of θ1 for ε =
1, 0.5, 0.1, respectively. For ε = 1, where we anticipate the misspecification to be high, the
minimum MMD estimator converges to the true value of θ11, but fails to recover the θ12 parameter
(though remains within an order of magnitude). Taking ε smaller we observe that the accuracy
of the estimators increases, indicating that the MMD estimators capture the weak convergence of
{Xε

t , t ∈ [0, T ]} to {Xt , t ∈ [0, T ]}. We also note however that the volatility in the estimator for
parameter θ11 is increasing as ε decreases, which suggests that the size of the simulated data (and
perhaps also the size of the minibatches) must be increased as ε goes to 0 to maintain a constant
mean square error.
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6 Conclusion

This paper studied a class of statistical estimators for models for which the likelihood is unknown,
but for which we can simulate realisations given parameter values. Our estimators are based on
minimising U-statistic approximations of the maximum mean discrepancy squared. We provided
several results on their asymptotic properties and robustness, as well as a novel natural-gradient
descent algorithm for efficient implementation. As demonstrated first in our theory, then later
in the experiments, the choice of reproducing kernel allows for great flexibility and can help us
trade-off statistical efficiency with robustness.

This methodology clearly provides a rigorous approach to parametric estimation of complex
black-box models for which we can only evaluate the forward map and its gradient. The natural
robustness properties of these estimators make them a clear candidate for fitting models to engi-
neering systems which are subject to intermittent sensor failures. Our theory also provides insights
into the behaviour of MMD estimators for neural networks such as MMD GANs.

There are several directions in which this work could be extended. Firstly, we note this
methodology can be readily applied to other continuum models such as ordinary differential equa-
tions and (stochastic) partial differential equations with noisy parameters. In these cases, adjoint
based methods can be exploited to reduce the cost of computing gradients.

A second direction which is promising relates to model reduction or coarse graining, where
a complex, very expensive model is replaced by a series of smaller models which are far cheaper
to simulate. We believe that minimum MMD based estimators are an excellent candidate for
effecting these coarse graining approaches thanks to their robustness properties.

Finally, we note that a drawback of this methodology is the poor scaling as a function of
data-size. Indeed, the cost of computing MMD grows quadratically with data-size. This clearly
motivates a second direction of research involving the use of cheaper approximate estimators for
maximum mean discrepancy, such as [Chwialkowski et al., 2015].
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M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton. Demystifying MMD GANs. In
International Conference on Learning Representation, 2018.

L. Bottou, M. Arjovsky, D. Lopez-Paz, and M. Oquab. Geometrical insights for implicit generative
modeling. Braverman Readings in Machine Learning: Key Ideas from Inception to Current
State, pages 229–268, 2017.

F-X. Briol, C. J. Oates, M. Girolami, M. A. Osborne, and D. Sejdinovic. Probabilistic integration:
A role in statistical computation? (with discussion). Statistical Science, 34(1):1–22, 2019.

D. Burago, I. Burago, and S. Ivanov. A Course in Metric Geometry. American Mathematical
Society, 2001.

E. Cameron and A. N. Pettitt. Approximate Bayesian Computation for astronomical model anal-
ysis: A case study in galaxy demographics and morphological transformation at high redshift.
Monthly Notices of the Royal Astronomical Society, 425(1):44–65, 2012.

L. L. Campbell. An extended Cencov characterization of the information metric. Proceedings of
the American Mathematical Society, 98(1):135–141, 1986.

N. N. Cencov. Statistical Decision Rules and Optimal Inference. Number 53. American Mathe-
matical Society, 2000.

Y. Chen and W. Li. Natural gradient in Wasserstein statistical manifold. arXiv:1805.08380, 2018.
K. Chwialkowski, A. Ramdas, D. Sejdinovic, and A. Gretton. Fast two-sample testing with an-

alytic representations of probability measures. In Advances in Neural Information Processing
Systems, pages 1981–1989, 2015.

A. Cuevas. Qualitative robustness in abstract inference. Journal of Statistical Planning and Infer-
ence, 18(3):277–289, 1988.

A. P. Dawid. The geometry of proper scoring rules. Annals of the Institute of Statistical Mathe-

28



matics, 59(1):77–93, 2007.
A. P. Dawid and Monica Musio. Theory and applications of proper scoring rules. Metron, 72(2):

169–183, 2014.
J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: The quasi-Monte Carlo way.

Acta Numerica, 22(April 2013):133–288, 2013.
C. N. dos Santos, Y. Mroueh, I Padhi, and P. Dognin. Learning implicit generative models by

matching perceptual features. arXiv:1904.02762, 2019.
B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, and R. G. Burns. Modern Geometry - Methods and

Applications. Part I: The Geometry of Surfaces, Transformation Groups, and Fields. Springer.
R. M. Dudley. Real Analysis and Probability. Chapman and Hall/CRC, 2018.
G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks via Maxi-

mum Mean Discrepancy optimization. In Uncertainty in Artificial Intelligence, 2015.
M. L. Eaton. A method for evaluating improper prior distributions. Statistical Decision Theory

and Related Topics III, pages 329–352, 1982.
R. Erban, I. G. Kevrekidis, and H. G. Othmer. An equation-free computational approach for ex-

tracting population-level behavior from individual-based models of biological dispersal. Phys-
ica D: Nonlinear Phenomena, 215(1):1–24, 2006.

P. Fearnhead and D. Prangle. Constructing summary statistics for approximate Bayesian computa-
tion: semi-automatic ABC. Journal of the Royal Statistical Society B: Statistical Methodology,
74(3):419–474, 2011.

N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical
measure. Probability Theory and Related Fields, 162(3-4):707–738, 2015.

A. Friedman. Stochastic Differential Equations and Applications. Courier Corporation, 2012.
C. Frogner and T. Poggio. Approximate inference with Wasserstein gradient flows.

arXiv:1806.04542, 2018.
C. Frogner, C. Zhang, H. Mobahi, M. Araya-Polo, and T. Poggio. Learning with a Wasserstein

loss. In Advances in Neural Information Processing Systems, pages 2053–2061, 2015.
K. Fukumizu, L. Song, and A. Gretton. Kernel Bayes’ rule: Bayesian inference with positive

definite kernels. Journal of Machine Learning Research, 14:3753–3783, 2013.
D. Garreau, W. Jitkrittum, and M. Kanagawa. Large sample analysis of the median heuristic.

arXiv:1707.07269, 2017.
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Supplementary Material for “Statistical Inference for
Generative Models with Maximum Mean Discrepancy”

The supplementary materials are structured as follows. Section A provides further discussion
on the geometry induced by MMD on parametric families of probability distributions, and in
particular derives the corresponding metric tensor, gradient flow and geodesics. Section B contains
all the proofs of results in the paper, including asymptotic results and results on robustness. Section
C contains the derivation of important quantities for the Gaussian models. Finally, Section D
contains further details on the numerical experiments.

A Geometry of the MMD Statistical Manifold

In this appendix we complement Section 2 and provide additional details on the Riemmanian
manifold induced by the MMD metric.

A.1 Identification of the Information Metric Tensor

Identifying Pθ as the pushforward G#
θ U, we have:

MMD2(Pα||Pβ) =

∫
U

∫
U
k(Gα(u), Gα(v))U(du)U(dv)− 2

∫
U

∫
U
k(Gα(u), Gβ(v))U(du)U(dv)

+

∫
U

∫
U
k(Gβ(u), Gβ(v))U(du)U(dv)

Taking the derivative with respect to α and β, and noticing that:

∂βk∂αjk(Gα(u), Gβ(v)) =
∑
l,i

∂2l∂1ik(Gα(u), Gβ(v))∂αjG
i
α(u)∂βkG

l
β(v)

=
(
∇αGα(u)>∇2∇1k(Gα(u), Gβ(v))∇βGβ(v)

)
jk

which yields the expression for the information metric associated to the MMD2 divergence.
Let H be a Hilbert space viewed as a Hilbert manifold. As usual we identify the tangent spaces
TpH ∼= H, and the Riemannian metric is m(f, g) = 〈f, g〉 for any f, g ∈ H. Let Ψ : S → H
be a differentiable injective immersion (i.e., its derivative is injective), from a finite-dimensional
manifold S. Then Ψ induces a Riemannian structure on S given by the pull-back Riemannian
metric g = Ψ∗m. If xi are local coordinates on S, and ∂xi is the associated local basis of vector
fields, then the components of g are defined by

gij = g(∂xi , ∂xj ) = m
(
dΨ(∂xi), dΨ(∂xj )

)
,

where dΨ : TS → TH is the differential/tangent map (here TS denotes the tangent bundle of S,
or, roughly, the set of vectors tangent to S). When S is an open subset of Rn, since the Frechet
partial derivative∇xjΨ(x) is the derivative of the function t 7→ Ψ(x1, . . . , xj−1, t, xj+1, . . . , xn),
of the curve t 7→ (x1, . . . , xj−1, t, xj+1, . . . , xn) is precisely the curve tangent to the vector ∂xj |x,
we have∇xjΨ = dΨ(∂xj ) (see [Lang, 2012] page 28). Hence gij = m

(
∇xiΨ,∇xjΨ

)
.
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Note that if Ψ is not an immersion, the pullback Riemannian metric will in general just be a
degenerate quadratic form rather than a positive definite one.

Let S be a statistical manifold, i.e., x ∈ S is associated to a probability measure Px (we
assume the map x 7→ Px is a bijection). We can define a divergence on S by D

(
Pα, Pβ

)
=

‖Ψ(α)−Ψ(β)‖2, which is the pull-back of the square-metric (f, g) 7→ ‖f −g‖2 onH induced by
the inner product. The corresponding information metric has components Iij in a local coordinate
chart given by

Iij = − ∂

∂αk∂βj
D
(
p(α), p(β)

)
|α=β=θ = 2∂βj∂αk〈Ψ(α),Ψ(β)〉|α=β=θ.

Suppose now thatHk is a RKHS, and Ψ is defined as the mean-embedding. Then

〈Ψ(α),Ψ(β)〉 =

∫
X

∫
X
k(x, y)Pα(dx)Pβ(dy).

In particular if the measures in S can be written as either Pα = G#
α µ, or Pα(dx) = pα(x)µ(dx)

for some fixed measure µ, then ∂βj∂αk〈Ψ(α),Ψ(β)〉|α=β=θ = 〈∂θjΨ(θ), ∂θkΨ(θ)〉 and we re-
cover the pullback Riemannian metric.

A.2 Geodesics of the MMD metric

The following result summarises the properties of the geodesics induced by the MMD metric on
Pk.

Proposition 11 (The MMD Information Metric). Suppose that k is a characteristic kernel with
a bounded continuous derivative and that assumptions (i)-(iv) stated above hold. If the matrix
g(θ) = (gij(θ))i,j=1,...,p is positive definite on Θ, then the MMD metric on Pk induces a Rieman-
nian geometry (Θ, g) on Θ. The metric induced on Θ is given by

d2
MMD(θ|θ′) = inf

θ(t)∈C1(0,1)

[∫ 1

0
θ̇(t)>g(θ)θ̇(t)dt : θ(0) = θ, θ(1) = θ′

]
, (11)

for all θ, θ′ ∈ Θ. Geodesics in (Θ, g) are given by infimisers by (11) and satisfy the following
system of ODEs Dubrovin et al.:

θ̇(t)− g−1(θ(t))S(t) = 0

Ṡ(t)− 1

2
S(t)>∇θg(θ(t))−1S(t) = 0.

(12)

Sufficient conditions for g being positive definite need to be verified on a case by case basis.
Since (Pk,MMD) is a length space [Papadopoulos, 2014, Burago et al., 2001], it follows imme-
diately that geodesics in this metric is via teleportation of mass, i.e. a geodesic connecting P1 and
P2 in Pk is defined by Pt = (1 − t)P1 + tP2, t ∈ [0, 1]. This will not be the case for (Θ, g) as
geodesics θ(t) must be constrained to ensure that Pθ(t) ∈ PΘ.

B Proofs of Main Results

In this appendix, we give the proofs of all lemmas, propositions and theorems in the main text.
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B.1 Proof of Theorem 1

Before moving on to Theorem 1, we show the following result, which proves that the there is a
uniform bound between the different versions of the MMD discrepancy. First, for convenience
we define the following approximation to MMD between a measure P and a empirical measure
Qm(dy) = 1

m

∑m
i=1 δyi(dy):

MMD2
U (P||Qm) =

∫
X

∫
X
k(x, y)P(dx)P(dy)− 2

m

∫
X

m∑
i=1

k(x, yi)P(dx) +
1

m(m− 1)

∑
i 6=i′

k(yi, yi′).

Note that if {yj}mj=1
IID
∼ Q then E[MMD2

U (P||Qm)] = MMD2(P||Q).

Lemma 2. Suppose that k is bounded, then for any two P,Q ∈ Pk(X ) and empirical distribution
Qm = 1

m

∑m
i=1 δyj in Pk(X ) made of independently and identically distributed realisations of Q,

we have:
∣∣MMD2

U (P||Qm)−MMD2(P||Qm)
∣∣ ≤ 2m−1 supx∈X k(x, x) and:

MMD2(P||Q) = E[MMD2(P||Qm)] +m−1

(∫
X

∫
X
k(x, y)Q(dx)Q(dy)−

∫
X
k(x, x)Q(dx)

)
.

Similarly, when computing the MMD squared between Qm and Pn = 1
n

∑n
i=1 δxi ∈ Pk(X ) (made

out of IID realisations from P)
∣∣∣MMD2

U,U (Pn||Qm)−MMD2(Pn||Qm)
∣∣∣ ≤ 2

(
m−1 + n−1

)
supx∈X k(x, x),

and similarly:

MMD2(P||Q) = E[MMD2(Pn||Qm)] +
(
m−1 + n−1

)(∫
X

∫
X
k(x, y)Q(dx)Q(dy)−

∫
X
k(x, x)Q(dx)

)
.

Proof. We see that

MMD2
U (P||Qm)−MMD2(P||Qm)

= (m(m− 1))−1
∑
i 6=j

k(yi, yj)−m−2
m∑
i=1

m∑
j=1

k(yi, yj)

= (m(m− 1))−1(1− (m(m− 1))m−2)
∑
i 6=j

k(yi, yj)−m−2
m∑
i=1

k(yi, yi)

= m−1
(

(m(m− 1))−1
∑
i 6=j

k(yi, yj)−m−1
m∑
i=1

k(yi, yi)
)
.

Since the kernel is bounded, it follows that
∣∣MMD2

U (P||Qm)−MMD2(P||Qm)
∣∣ ≤ 2m−1 supx∈X k(x, x)

as required. The second statement follows in a similar fashion and from the fact that MMD2
U is an

unbiased estimator of MMD2. Similarly for the discrepancy MMD2
U,U :

MMD2
U,U (Pn||Qm)−MMD2(Pn||Qm) = m−1(m(m− 1))−1

∑
i 6=j

k(yi, yj)−m−1
m∑
i=1

k(yi, yi))

+ n−1((n(n− 1))−1
∑
i 6=j

k(xi, xj)− n−1
n∑
i=1

k(xi, xi)),
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so
∣∣∣MMD2

U,U (Pn||Qm)−MMD2(Pn||Qm)
∣∣∣ ≤ 2(m−1 +n−1) supx∈X k(x, x) and the final equa-

tion holds similarly.

We now establish conditions under which a minimiser of the empirical loss always exists.

Lemma 3. Suppose that the kernel k is continuous and bounded and that the map θ → Gθ(u)
continuous for almost every u ∈ U and θ ∈ Θ. Then given n,m ∈ N the following statements
hold.

1. Let ε∗ = infθ∈Θ MMD(Pθ||Qm). Then if for some ε = ε(m,ω) > 0 the set

{θ ∈ Θ : MMD(Pθ||Qm) ≤ ε∗ + ε} ⊂ Θ,

is bounded then arg infθ∈Θ MMD(Pθ||Qm) 6= ∅.

2. Let ε∗ = infθ∈Θ MMD(Pnθ ||Qm), if for some ε = ε(n,m, ω) > 0 the set

{θ ∈ Θ : MMD(Pnθ ||Qm) ≤ ε∗ + ε} ⊂ Θ,

is bounded then arg infθ∈Θ MMD(Pnθ ||Qm) 6= ∅.

Proof. The continuity assumption on Gθ implies that the map θ → MMD(Pθ||Qm) is continuous
from Θ to [0,∞). By definition of the infimum, it follows that {θ ∈ Θ : MMD(Pθ||Qm) ≤ ε∗ + ε} 6=
∅. Moreover, by continuity of the map, the set is closed and bounded in Θ and thus compact in
Θ. The map θ → MMD(Pθ||Qm) therefore will attain its minimum within the set, and so the first
statement follows. The result for the second estimator follows in an analogous fashion.

We now provide the key concentration inequality.

Proof of Lemma 1. Let Fk = {f ∈ Hk : ‖f‖Hk ≤ 1}. By definition, we have MMD(P||Pn) =
supf∈Fk |

∫
X f(x)P(dx) − 1

n

∑n
i=1 f(xi)|. Define h(x1, . . . , xn) = supf∈Fk |

1
n

∑n
i=1(f(xi) −∫

X f(x)P(dx))|. By definition, for all {xi}ni=1, x′i ∈ X ,

|h(x1, . . . , xi−1, xi, xi+1, . . . , xn)− h(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)|

≤ 2n−1 sup
x∈X

k(x, x)1/2.|h(x1, . . . , xi−1, xi, xi+1, . . . , xn)− h(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)|

≤ 2n−1 sup
x∈X

k(x, x)1/2.

By McDiarmid’s inequality [McDiarmid, 1989] we have that for any ε > 0: Pr(MMD(P||Pn)−
E[MMD(P||Pn)] ≥ ε) ≤ exp(−2ε2/4n−1 supx∈X k(x, x)). Setting the RHS to be δ, it follows
that with probability greater than 1− δ,

MMD(P||Pn)− E [MMD(P||Pn)] <
√

2n−1 sup
x∈X

k(x, x) log(1/δ).

From Jensen’s inequality and Lemma 2, we obtain that

E [MMD(P||Pn)] ≤ E[MMD2(P||Pn)]1/2 ≤
√

2n−1 sup
x∈X

k(x, x)1/2,

so that the advertised result holds.
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We now prove Theorem 1:

Proof. From Lemma 2 and the fact that
√
a+ b ≤

√
a+
√
b, we obtain ∀P ∈ Pk(X ), |MMDU (P||Qm)−

MMD(P||Qm)| ≤
√

2m−1 supx∈X k(x, x). In particular, since θ → MMD(Pθ||Qm) is bounded
from below, using the above inequality and the definition of θ̂m, we obtain that:

MMD
(
Pθ̂m

∣∣∣∣Qm
)
≤ MMDU

(
Pθ̂m

∣∣∣∣Qm
)

+
√

2m−1 sup
x∈X

k(x, x)

= inf
θ∈Θ

MMDU (Pθ||Qm) +
√

2m−1 sup
x∈X

k(x, x)

≤ inf
θ∈Θ

MMD(Pθ||Qm) + 2
√

2m−1 sup
x∈X

k(x, x).

We can then write:

MMD
(
Pθ̂m

∣∣∣∣Q)− inf
θ∈Θ

MMD(Pθ||Q)

≤ MMD
(
Pθ̂m

∣∣∣∣Q)−MMD
(
Pθ̂m

∣∣∣∣Qm
)

+ MMD
(
Pθ̂m

∣∣∣∣Qm
)
− inf
θ∈Θ

MMD(Pθ||Q)

≤ MMD
(
Pθ̂m

∣∣∣∣Q)−MMD
(
Pθ̂m

∣∣∣∣Qm
)

+ inf
θ∈Θ

MMD(Pθ||Qm)

− inf
θ∈Θ

MMD(Pθ||Q) + 2
√

2m−1 sup
x∈X

k(x, x).

Since the θ-indexed family MMD(Pθ||·) is uniformly bounded (since k is bounded), and using
that for bounded functions f, g : R → R, | infθ f(θ) − infθ g(θ)| ≤ supθ |f − g| and the reverse
triangle inequality, we further obtain that

MMD
(
Pθ̂m

∣∣∣∣Q)− inf
θ∈Θ

MMD(Pθ||Q)

≤ 2 sup
θ∈Θ
|MMD(Pθ||Q)−MMD(Pθ||Qm)|+ 2

√
2m−1 sup

x∈X
k(x, x)

≤ 2 sup
θ∈Θ

MMD(Q||Qm) + 2
√

2m−1 sup
x∈X

k(x, x).

Applying Lemma 1, with probability 1− δ,

MMD
(
Pθ̂m

∣∣∣∣Q)− inf
θ∈Θ

MMD(Pθ||Q) ≤ 2
√

2m−1 sup
x∈X

k(x, x)(2 +
√

log(1/δ)),

as required. For the second generalisation bound, note that

MMD
(
Pθ̂n,m

∣∣∣∣Q)− inf
θ∈Θ

MMD(Pθ||Q)

≤ MMD
(
Pθ̂n,m

∣∣∣∣Q)−MMD
(
Pn
θ̂n,m

∣∣∣∣Q)+ MMD
(
Pn
θ̂n,m

∣∣∣∣Q)−MMD
(
Pn
θ̂n,m

∣∣∣∣Qm
)

+ MMD
(
Pn
θ̂n,m

∣∣∣∣Qm
)
− inf
θ∈Θ

MMD(Pnθ ||Q) + inf
θ∈Θ

MMD(Pnθ ||Q)− inf
θ∈Θ

MMD(Pθ||Q).
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We can bound the individual terms on the RHS as follows via the triangle inequality,

MMD
(
Pθ̂n,m

∣∣∣∣Q)− inf
θ∈Θ

MMD(Pθ||Q)

≤ MMD
(
Pθ̂n,m

∣∣∣∣Pn
θ̂n,m

)
+ MMD(Qm||Q) + MMD(Pn

θ̂n,m
||Qm)

− inf
θ∈Θ

MMD(Pnθ ||Q) + inf
θ∈Θ

MMD(Pnθ ||Q)− inf
θ∈Θ

MMD(Pθ||Q).

Similarly as above,

MMD
(
Pn
θ̂n,m

∣∣∣∣Qm
)
≤ MMDU,U

(
Pn
θ̂n,m

∣∣∣∣Qm
)

+
√

2 (m−1 + n−1) sup
x∈X

k(x, x)

= inf
θ∈Θ

MMDU,U (Pnθ ||Qm) +
√

2 (m−1 + n−1) sup
x∈X

k(x, x)

≤ inf
θ∈Θ

MMD(Pnθ ||Qm) + 2
√

2 (m−1 + n−1) sup
x∈X

k(x, x).

Similarly we obtain that

MMD
(
Pn
θ̂n,m

∣∣∣∣Qm
)
− inf
θ∈Θ

MMD(Pnθ ||Q)

≤ inf
θ∈Θ

MMD(Pnθ ||Qm)− inf
θ∈Θ

MMD(Pnθ ||Q) + 2
√

2 (m−1 + n−1) sup
x∈X

k(x, x)

≤ sup
θ∈Θ
|MMD(Pnθ ||Qm)−MMD(Pnθ ||Q)|+ 2

√
2 (m−1 + n−1) sup

x∈X
k(x, x)

≤ MMD(Q||Qm) + 2
√

2 (m−1 + n−1) sup
x∈X

k(x, x),

and infθ∈Θ MMD(Pnθ ||Q) − infθ∈Θ MMD(Pθ||Q) ≤ supθ∈Θ MMD(Pnθ ||Pθ). Combining these
inequalities we obtain,

MMD
(
Pθ̂n,m

∣∣∣∣Q)− inf
θ∈Θ

MMD(Pθ||Q)

≤ 2 sup
θ∈Θ

MMD(Pθ||Pnθ ) + 2MMD(Qm||Q) + 2
√

2 (m−1 + n−1) sup
x∈X

k(x, x).

Applying Lemma 1 with probability 1− 2δ,

MMD
(
Pθ̂n,m

∣∣∣∣Q)− inf
θ∈Θ

MMD(Pθ||Q)

≤ 2(
√

2n−1 +
√

2m−1)
√

sup
x∈X

k(x, x)(1 +
√

log(1/δ)) + 2
√

2(m−1 + n−1) sup
x∈X

k(x, x)

≤ 2(
√

2n−1 +
√

2m−1)
√

sup
x∈X

k(x, x)(2 +
√

log(1/δ)).
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B.2 Proof of Proposition 1

Proof. Given m ∈ N define the event

Am =

{∣∣∣∣MMD
(
Pθ̂m

∣∣∣∣Q)− inf
θ′∈Θ

MMD(Pθ′ ||Q)

∣∣∣∣ > 2

√
2

m
sup
x
k(x, x)(2 +

√
2 logm)

}
.

From Theorem 1 (where we have set δ = 1/m2), Q(Am) ≤ 1
m2 , and so

∑
mQ(Am) < ∞. The

Borel Cantelli lemma implies that Q-almost surely, there exists M ∈ N such that for all m ≥M ,

MMD
(
Pθ̂m

∣∣∣∣Q)− inf
θ′∈Θ

MMD(Pθ′ ||Q) ≤ 2

√
2

m
sup
x
k(x, x)(2 +

√
2 logm).

Since the right hand side converges to zero, it follows that MMD(Pθ̂m ||Q)→ infθ′∈Θ MMD(Pθ′ ||Q) =

MMD(Pθ∗ ||Q), Q-almost surely. By assumption (ii), the set {θ̂m}m∈N is bounded almost surely
and thus possesses at least one limit point in Θ. Moreover each subsequence (θ̂nk)k∈N satisfies
MMD(Pθ̂mk ||Q)→ MMD(Pθ∗ ||Q), so that any limit point must equal θ∗, thus establishing almost

sure convergence. The consistency for the estimator θ̂m,n follows in an analogous manner.

B.3 Proof of Theorem 2

Proof. We shall prove the result only for the estimator θ̂n,m since the proof of the central limit
theorem for θ̂m follows in an entirely analogous way. Recall that

MMD2
U,U (Pnθ ||Qm) =

1

n(n− 1)

∑
i 6=j

k(Gθ(ui), Gθ(uj))+

− 2

mn

n∑
i=1

m∑
j=1

k(Gθ(ui), yj) +
1

m(m− 1)

∑
i 6=j

k(yi, yj)

For n,m ∈ N define Fn,m(θ) = Fn,m(θ, ω) by Fn,m(θ) = MMD2
U,U (Pnθ ||Qm). By def-

inition θ̂n,m is a local minimum for Fn,m, so the first order optimality condition implies that
∇θFn,m(θ̂n,m) = 0. Since Θ is open, by applying the mean value theorem to ∇θFn,m we obtain
0 = ∇θFn,m(θ∗) +∇θ∇θFn,m(θ̃)(θ̂n,m − θ∗), where θ̃ lies on the line between θ̂n,m and θ∗. Let
{ui}ni=1 be independently and identically distributed realisations from U. Since Q = G#

θ∗U, there
exist {ũ1, . . . , ũm} which are U distributed and independent from {ui} such that

∇θFn,m(θ∗) =
2

n(n− 1)

∑
i 6=j
∇1k(Gθ∗(ui), Gθ∗(uj))∇θGθ∗(ui)

− 2

nm

n∑
i=1

m∑
j=1

∇1k(Gθ∗(ui), Gθ∗(ũj))∇θGθ∗(ui).

Note that E[∇θFn,m(θ∗)] = 0. We wish to characterise the fluctuations of∇θFn,m(θ∗) as n,m→
∞. Define the U-statistic U1 = (n(n− 1))−1

∑
i 6=j h(ui, uj), where

h(u, v) = ∇1k(Gθ∗(u), Gθ∗(v))∇θGθ∗(u) +∇1k(Gθ∗(v), Gθ∗(u))∇θGθ∗(v),
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and the U-statistic U2 = (nm)−1
∑n,m

i,j=1 g(ui, ũj), where

g(u, v) = 2∇1k(Gθ∗(u), Gθ∗(v))∇θGθ∗(u).

From the calculations above we have ∇θFn,m(θ∗) = U1 − U2. Following van der Vaart
[1998] we make use of the Hajek projection principle to identify U1 − U2 as small perturbation
of a sum of independently and identically distributed random variables, from which a central
limit theorem can be obtained, see also Hoeffding [1948], Lehmann [1951]. To this end, we look
for a projection onto the set of all random variables of the form

∑n
i=1 ĥi(ui) −

∑m
j=1 ĝi(ũj),

where ĥi and ĝi are square-integrable measurable functions. Let M = E[U1] = E[U2], the Hajek
projection principle [van der Vaart, 1998, Chap. 11 & 12] implies that U1 −M has projection
Û1 = 2

n

∑n
i=1 h1(ui), where h1(u) = EXh(u,X) − M . Similarly, U2 − M has projection

Û2 = 1
n

∑n
i=1 g1(ui) + 1

m

∑m
i=1 g2(ũi), where g1(u) = Eg(u, Y )−M and g2(y) = Eg(X, y)−

M . By the central limit theorem for identically and independently distributed random variables,
√
n+m(Û1 − Û2)

d−→ N (0,Σ), where Σ = A+B − 2C and

A = lim
k→∞

4(nk +mk)n
−2
k

nk∑
i=1

Cov[h1(ui)]

= 4λ−1

∫
U

(∫
U

(h(u, v)−M)U(dv)⊗
∫
U

(h(u,w)−M)U(dw)

)
U(du),

where λ is defined in Assumption 4. Similarly,

B = lim
k→∞

(nk +mk/n
2
k)

nk∑
i=1

Cov[g1(ui)] + (mk + nk/m
2
k)

mk∑
i=1

Cov[g2(ũi)]

= λ−1

∫
U

(∫
U

(g(u, v)−M)U(dv)⊗
∫
U

(g(u,w)−M)U(dw)

)
U(du)

+ (1− λ)−1

∫
U

(∫
U

(g(u, v)−M)U(du)⊗
∫
U

(g(w, v)−M)U(dw)

)
U(dv),

C = 2 lim
k→∞

(nk +mk)n
−2
k Cov

[
nk∑
i=1

h1(ui),

nk∑
i=1

g1(ui)

]

= 2λ−1

∫
U

∫
U

(h(u, v)−M)U(dv)⊗
∫
U

(g(u,w)−M)U(dw)U(du),

Substituting the values of g and h we arrive at Σ. We will show that the remainder term Rk =√
nk +mk((U1 − Û1) + (U2 − Û2)) converges to 0 in probability, as k → ∞, which will imply

the desired result, by Slutsky’s theorem. This term has expectation zero for all k ∈ N. Moreover

E[|Rk|]2 ≤ 2(nk +mk)n
−1
k nkTr(Cov[U1 − Û1]) + 2(nk +mk)Tr(Cov[U2 − Û2]).

Using the fact that nk(nk +mk)
−1 → λ as k →∞, and by [van der Vaart, 1998, Theorem 12.3],

the first term converges on the right hand side converges to 0. For the second term, from [van der

41



Vaart, 1998, Theorem 12.6] both (nk +mk)Tr (Cov[U2]) and (nk +mk)Tr(Cov[Û2]) converge to

λ−1Tr

(∫
U

(∫
U

(g(u, v)−M)U(dv)

)⊗2

U(du)

)
(13)

+ (1− λ)−1Tr

(∫
U

(∫
U

(g(u, v)−M)U(du)

)⊗2

U(dv)

)
. (14)

It remains to consider Cov[U2, Û2] which is given by

(nk +mk)E

(n−1
k

nk∑
i=1

g1(ui) +m−1
k

m∑
i=1

g2(ũi)− 2M

)
⊗

(nkmk)
−1

nk,mk∑
i,j=1

g(ui, ũj)−M


= ((nk +mk)n

−1
k )(nk +mk)

−1
nk∑
i=1

E[g1(ui)
⊗2]

+

(
nk +mk

mk

)
1

nk +mk

mk∑
i=1

E[g2(ũi)
⊗2]− 2(nk +mk)M ⊗M,

so that Tr(Cov[U2, Û2]) converges to (13) as k →∞, and so Cov[U2− Û2]→ 0 as required. Now
consider the term Hm,n = ∇θ∇θFn,m(θ̃) in the first order Taylor expansion, where θ̃ lies along
the line between θ∗ and θ̂n,m. We show that ∇θ∇θFn,m(θ̃) converges to g(θ∗) as n,m→∞. To
this end, consider Ha,b

m,n(θ̃)− gab(θ∗), where

Ha,b
m,n(θ) = (n(n− 1))−1∂θa∂θb

∑
i 6=j

k(Gθ(ui), Gθ(uj))− 2(nm)−1∂θa∂θb

n,m∑
i,j=1

k(Gθ(ui), yj).

Then we have that |Ha,b
m,n(θ̃)−gab(θ∗)| ≤ |Ha,b

m,n(θ̃)−gab(θ̃)|+|gab(θ̃)−gab(θ∗)|. Since θ̂n,m → θ∗

almost surely, it follows that θ̃ → θ∗, and so for n,m sufficiently large, θ̃ almost surely lies in the
compact set K. Thus |Ha,b

m,n(θ̃)− gab(θ∗)| ≤ supθ∈K |H
a,b
m,n(θ)− gab(θ)|+ |gab(θ̃)− gab(θ∗)|.

It follows from the assumptions and the dominated convergence theorem that θ → gab(θ) is
continuous on K. By Assumption 3, the first three θ-derivatives of Gθ are bounded in K and so
the conditions of Lemma 4 hold, so that the first term goes to zero in probability. The second
term converges to zero by continuity on K. Since g is assumed to be invertible, there exists
m = m(ω), n = n(ω) after which Hm,n(θ̃) is also invertible, so that by Slutsky’s theorem

√
nk +mk(θ̂n,m − θ∗) = −(Hm,n)−1√nk +mk∇θFn,m(θ∗)

d−→ N (0, g(θ∗)−1Σg(θ∗)−1).

Lemma 4. Let K be a compact set and q1(x, y, θ) = ∂θa∂θbk(Gθ(x), Gθ(y)) and q2(x, y, θ) =
2∂θa∂θbk(Gθ(x), y). Suppose that for θ1, θ2 ∈ K we have, |q1(x, y, θ1) − q1(x, y, θ2)| ≤ (θ1 −
θ2)Q1(x, y) and |q1(x, y, θ1)−q1(x, y, θ2)| ≤ (θ1−θ2)Q2(x, y), where

∫
X
∫
X Q1(x, y)U(dx)U(dy) <

∞ and
∫
X
∫
X Q2(x, y)U(dx)Q(dy) <∞. Then supθ∈K |H

a,b
m,n(θ)−gab(θ)|

p−→ 0 asm∧n→∞.
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Proof. We show that the spaces of functions Q1 = {q1(·, ·, θ) : θ ∈ K} and Q2 = {q2(·, ·, θ) :
θ ∈ K} are Euclidean in the sense of Nolan and Pollard [1987]. Let ε > 0 and let θ1, . . . , θM ∈ K
be centers of an ε–cover of K, where M = diam(K)/ε. Given qi ∈ Qi, i = 1, 2, there exists θk
such that |qi(·, ·, θk) − qi(·, ·, θ)| ≤ εQi(·, ·), and so, given a measure µ on (Θ,B(Θ)) such that
µ(Qi) < ∞ we have µ|qi(·, ·, θk)− qi(·, ·, θ)| ≤ εµ(Qi), therefore N1(ε, µ,Qi) ≤ diam(K)ε−1.
Invoking [Nolan and Pollard, 1987, Theorem 7] for q1 and [Neumeyer, 2004, Theorem 2.9] for q2,
we obtain the required result.

B.4 Proof of Theorem 3

Proof. Define the function

h(x, θ) =2

∫
U

∫
U
∇1k(Gθ(u), Gθ(v))∇θGθ(u)U(du)U(dv)

− 2

∫
U
∇1k(Gθ(u), x)∇θGθ(u)U(du),

which satisfies
∫
X h(x, θ)Pθ(dx) = 0 for all θ ∈ Θ. Differentiating this integral with respect to

θ yields
∫
X ∇θh(x, θ)Pθ(dx) = −

∫
X h(x, θ)⊗∇θp(x | θ)dx, where p(x |θ) is the density of Pθ

with respect to the Lebesgue measure on X .
Let X ∼ Pθ. Consider the covariance of (h(X, θ),∇ log p(X|θ))>, then

Cov(h(X, θ),∇ log pθ(X))>

=

( ∫
X h(x, θ)⊗ h(x, θ)p(x|θ)dx

∫
X h(x, θ)⊗∇ log p(x|θ)p(x|θ)dx∫

X h(x, θ)⊗∇ log p(x|θ)p(x|θ)dx
∫
X ∇ log p(x|θ)⊗∇ log p(x|θ)p(x|θ)dx

)
=

( ∫
X h(x, θ)⊗ h(x, θ)p(x|θ)dx −

∫
X ∇θh(x, θ)p(x|θ)dx

−
∫
X ∇θh(x, θ)p(x|θ)dx F (θ)

)
,

where F (θ) is the Fisher information matrix. Since this is a covariance matrix, the determinant is
non-negative, and so

det(F (θ)) det

(∫
X
h(x, θ)⊗ h(x, θ)Pθ(dx)−

(∫
X
∇θh(x, θ)Pθ(dx)

)
F−1(θ)

(∫
X
∇θh(x, θ)Pθ(dx)

))
≥ 0.

Since the Fisher information is positive at θ = θ∗ this implies that detF (θ) > 0 and so∫
X
h(x, θ)⊗ h(x, θ)Pθ(dx)−

(∫
X
∇θh(x, θ)Pθ(dx)

)
F−1(θ)

(∫
X
∇θh(x, θ)Pθ(dx)

)
is non-negative definite. We note that

∫
X ∇θh(x, θ)p(x)dx = g(θ) is the information metric

associateed with the MMD induced distance and is positive definite at θ = θ∗. It follows that
(1/4)g−1(θ)(

∫
X h(x, θ) ⊗ h(x, θ)Pθ(dx))g−1(θ) − F−1(θ) is non-negative definite at θ = θ∗.

Since∫
X
h(x, θ)⊗ h(x, θ)Pθ(dx) = 4

∫
U

(∫
U
∇1k(Gθ(u), Gθ(v))>∇θGθ(u)U(du)−M

)⊗2

U(dv),
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whereM =
∫
U
∫
U ∇1k(Gθ(u), Gθ(v))U(du)>∇θGθ(u)U(dv) we see that 1

4g
−1(θ)(

∫
X h(x, θ)⊗

h(x, θ)Pθ(dx))g−1(θ) equals the asymptotic variance C for the estimator θ̂m and so C − F−1(θ)
is positive definite when θ = θ∗ giving the advertised intequality.

Now since Cλ = (1/(1 − λ)λ)C � C, it follows that Cλ − F−1(θ) is also positive definite
when θ = θ∗ and the Cramer-Rao bound also holds for the estimator θ̂n,m.

B.5 Proof of Proposition 2

Proof. We have that∇1k(x, y) = ((x−y)/l2)r′(|x−y|2/2l2), and∇1∇2k(x, y) = −l−2r′(|x−
y|2/2l2)− l−4(x− y)2r′′(|x− y|2/2l2)). We first note that the metric tensor g satisfies

l2g(θ)
l2−→∞−−−−→ R

∫
U

∫
U
∇Gθ(u)∇Gθ(v)>U(du)U(dv) = ∇θM(θ)∇θM(θ)>,

where M(θ) =
∫
X xp(x|θ) dx and R = lims→∞ r

′(s). Defining S(θ) =
∫
U |Gθ(u)|2U(du) we

obtain:

l4Σ
l2−→∞−−−−→ R2

∫
U

[(∫
U
∇θG(u) · (Gθ(u)−Gθ(v))U(du)

)

⊗
(∫
U
∇θG(w) · (Gθ(w)−Gθ(v))U(dw)

)]
U(dv)

−R2

(∫
U

∫
U
∇θG(u)(Gθ(u)−Gθ(v))U(du)U(dv)

)⊗2

= R2∇θM(θ) · (V (θ) +M(θ)M(θ))∇θM(θ)> − R2

4

(
∇θ|M(θ)|2

) (
∇θ|M(θ)|2

)>
= R2∇θM(θ) · V (θ)∇θM(θ) +

R2

4

(
∇θ|M(θ)|2

) (
∇θ|M(θ)|2

)> − R2

4

(
∇θ|M(θ)|2

) (
∇θ|M(θ)|2

)>
= R2∇θM(θ) · V (θ)∇θM(θ).

Combining we obtain

lim
l→∞

C l =
(
∇θM(θ) ∇θM(θ)>

)−1
∇θM(θ) · V ∇θM(θ)

(
∇θM(θ) ∇θM(θ)>

)−1

= (∇θM(θ))† V (θ) (∇θM(θ))†> .

B.6 Proof of Theorem 4

Proof. Let ε > 0, and let δ be as in assumption (ii). Suppose that Q1,Q2 ∈ Pk satisfy dBL(Q1,Q2) <
(1 +

√
k(0, 0))δ/2, where dBL denotes the Bounded Lipschitz or Dudley metric [Dudley, 2018].
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By [Sriperumbudur et al., 2010, Theorem 21] it follows that MMD(Q1||Q2) < δ/2. Let θ(1) and
θ(2) be the minimum MMD estimators which exist by assumption (i). By the triangle inequality:

MMD(Pθ(2) ||Q1) ≤ MMD(Pθ(2) ||Q2) + MMD(Q1||Q2) ≤ MMD(Pθ(2) ||Q2) + δ/2.

Suppose that
∣∣θ − θ(2)

∣∣ > ε, then:

MMD(Q1||Pθ) ≥ MMD(Q2||Pθ)−MMD(Q1||Q2) ≥ MMD(Q2||Pθ)− δ/2
> MMD(Q2||Pθ(2)) + δ/2 ≥ MMD(Q1||Pθ(2))

This implies that θ(1) must be in the ball {θ : |θ − θ(2)| < ε}, i.e. that |θ(1) − θ(2)| < ε as
required. This implies that the map T : Pk → Θ defined by T (Q) = arg infθ∈Θ MMD2(Pθ||Q)
is continuous with respect to the weak topology on Pk. In particular, for Qm = 1

m

∑m
j=1 δyj ,

since T (Qm) = arg infθ∈Θ MMD2
U (Pθ||Qm), by [Cuevas, 1988, Theorem 2] it follows that the

estimator θ̂m is qualtiatively robust. The proof of that θ̂n,m is eventually qualitatively robust
follows similarly.

B.7 Proof of Theorem 5

Proof. Consider the influence function obtained from the kernel scoring rule: IFMMD(z,Pθ) =(∫
X ∇θ∇θSMMD(x,Pθ)Pθ(dx)

)−1∇θSMMD(z,Pθ). It is straightforward to show that under as-
sumptions (i-iii), both the first and the second term are bounded in z, which directly implies that
the whole influence function is bounded and hence the estimator is bias-robust.

C Gaussian Location and Scale Models

Throughout this section, we will repeatedly use the fact that the product of Gaussian densities can
be obtained in closed form using the following expression:

φ(x;m1, σ
2
1)φ(x;m2, σ

2
2) = φ(m1;m2, σ

2
1 + σ2

2)φ

(
x;
m1σ

2
2 +m2σ

2
1

σ2
1 + σ2

2

,
σ2

1σ
2
2

σ2
1 + σ2

2

)
where we denote by φ(x;m,σ) the density of a d-dimensional Gaussian with mean equals to some
m ∈ R times a vector of ones, and covariance σ2 times a d-by-d identity matrix. Furthermore, we
also use the following identities:

∫
U u
>Auφ(u, 0, σ)du = σTr(A) and

∫
U ‖u‖

4
2φ(u, 0, σ)du =

(d2 + 2d)σ2.

C.1 Gaussian Location Model - Asymptotic Variance in high dimensions

Proof. The generator is given by Gθ(u) = u + θ and U is N (0, σ2Id×d) distributed. Assume
θ∗ is the truth. We wish to compute the asymptotic variance of the estimator θ̂m of θ∗. First, we
observe that the mean term satisfies: M = 0 since k(u, v) = φ(u; v, l2) is symmetric with respect
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to u and v. Consider the term:∫
U
∇θGθ∗(u)∇1k(Gθ∗(u), Gθ∗(v))U(du)

= −
∫
U

(u− v)l−2 exp(−(u− v)2/2l2)(2πl2)−
d
2 exp(−u2/2σ2)(2πσ2)−

d
2 du

= −
∫
U

(u− v)l−2φ(u; v, l2)φ(u; 0, σ2)du

= −
∫
U

(u− v)l−2φ(u; vσ2(l2 + σ2)−1, l2σ2(l + σ2)−1)φ(v; 0, l2 + σ2)du

= −l−2[(vσ2(l2 + σ2)−1 − v)φ(v; 0, l2 + σ2)] = −(l2 + σ2)−1v φ(v; 0, l2 + σ2)

Then, we have:

Σ =

∫
U

[∫
U
∇1k(u, v)U(du)

]
⊗
[∫
U
∇1k(w, v)U(dw)

]
U(dv)

= (l2 + σ2)−2

∫
U
v ⊗ vφ(v; 0, l2 + σ2)φ(v; 0, l2 + σ2)φ(v; 0, σ2)dv

= (l2 + σ2)−2

∫
U
v ⊗ vφ

(
v; 0,

l2 + σ2

2

)
φ(v; 0, 2(l2 + σ2))φ(v; 0, σ2)dv

= (l2 + σ2)−2φ(0; 0, 2(l2 + σ2))φ

(
0; 0,

3σ2 + l2

2

)∫
U
v ⊗ vφ

(
v; 0,

σ2(l2 + σ2)

(3σ2 + l2)

)
dv

= (l2 + σ2)−2(2π)−
2d
2 (2(l2 + σ2))−

d
2

(
3σ2 + l2

2

)− d
2 σ2(l2 + σ2)

(3σ2 + l2)
Id×d

= σ2(2π)−d(l2 + σ2)−
d
2
−1(3σ2 + l2)−

d
2
−1Id×d
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We can compute the metric tensor g(θ∗) similarly:

g(θ∗) =

∫
U

∫
U
∇θGθ∗(u)∇1∇2k(u, v)∇θGθ∗(u)>U(du)U(dv)

=

∫
U

∫
U
∇1∇2k(u, v)φ(u; 0, σ2)φ(v; 0, σ2)dudv

=

∫
U

∫
U
k(u, v)∇φ(u; 0, σ2)⊗∇φ(v; 0, σ2)dudv

=

∫
U

∫
U
k(u, v)u⊗ vσ−4φ(u; 0, σ2)φ(v; 0, σ2)dudv

= σ−4

∫
U

∫
U
φ(v;u, l2)u⊗ vφ(u; 0, σ2)φ(v; 0, σ2)dudv

= σ−4

∫
U

∫
U
φ

(
v;

uσ2

(l2 + σ2)
,

l2σ2

(l2 + σ2)

)
u⊗ vφ(u; 0, l2 + σ2)φ(u; 0, σ2)dudv

=
1

(σ2 + l2)σ2

∫
U
u⊗ uφ(u; 0, l2 + σ2)φ(u; 0, σ2)du

=
1

(σ2 + l2)σ2
φ(0; 0, l2 + 2σ2)

∫
U
u⊗ uφ

(
u; 0,

(l2 + σ2)σ2

l2 + 2σ2

)
du

= (2π)−
d
2 (l2 + 2σ2)−

d
2
−1Id×d.

Combining the results above we get the advertised result.

C.2 Proof of Proposition 4

Proof. The asymptotic variance satisfies

C = σ2((d2α + σ2)(3σ2 + d2α))−
d
2
−1(d2α + 2σ2)d+2 = σ2

(
1 + 4σ2d−2α + 3σ4d−4α

1 + 4σ2d−2α + 4σ4d−4α

)−d/2−1

.

Taking logarithms, we obtain:

logC = 2 log σ −
(
d

2
+ 1

)(
log(1 + 4σ2d−2α + 3d−4ασ4)− log(1 + 4σ2d−2α + 4d−4ασ4)

)
.

By l’Hopital’s rule

lim
d→∞

logC = lim
d→∞

2

(
1 +

d

2

)2 4ασ4

d (6σ6d−2α + 6σ2d2α + d4α + 11σ4)
,

which is converges to σ4 if α = 1/4, converges to 0 if α > 1/4 and converges to infinity if
α < 1/4. The critical scaling C l follows immediately from this.
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C.3 Gaussian Location Model - Asymptotic Variance for estimator with a Mixture
of Gaussian RBF Kernels

Proof. A straightforward calculation yieldsMT =
∑S

s=1 γsM s = 0. Also, g(θ∗) = (2π)−
d
2
∑S

s=1 γs(l
2
s+

2σ2)−
d
2
−1Id×d. Furthermore, we have:

ΣT =

∫
U

[
S∑
s=1

γs

∫
U
∇1ks(u, v)U(du)

]
⊗

[
S∑

s′=1

γs′

∫
U
∇1ks′(w, v)U(dw)

]
U(dv)

=

∫
U

[
S∑
s=1

γs
vφ(v; 0, l2s + σ2)

(l2s + σ2)

][
S∑

s′=1

γs′
vφ(v; 0, l2s + σ2)

(l2s′ + σ2)

]
φ(v; 0, σ2)dv

=

S∑
s=1

S∑
s′=1

γsγs′

(l2s + σ2)(l2s′ + σ2)

∫
U

(v ⊗ v)φ(v; 0, l2s + σ2)φ(v; 0, l2s + σ2)φ(v; 0, σ2)dv

=

S∑
s=1

S∑
s′=1

γsγs′φ(0; 0, 2σ2 + l2s + l2s′)φ

(
0; 0,

(l2s+σ2)(l2
s′+σ

2)

(2σ2+l2s+l2
s′ )

+ σ2

)
(l2s + σ2)(l2s′ + σ2)

×
∫
U

(v ⊗ v)φ

(
v; 0,

σ2(l2s + σ2)(l2s′ + σ2)

(l2s + σ2)(l2s′ + σ2) + σ2(2σ2 + l2s + l2s′)

)
dv

=
S∑
s=1

S∑
s′=1

γsγs′(2π)−d
(
(l2s + σ2)(l2s′ + σ2) + σ2(2σ2 + l2s + l2s′)

)− d
2

(l2s + σ2)(l2s′ + σ2)

×
(

σ2(l2s + σ2)(l2s′ + σ2)

(l2s + σ2)(l2s′ + σ2) + σ2(2σ2 + l2s + l2s′)

)
Id×d

=

S∑
s=1

S∑
s′=1

γsγs′(2π)−dσ2
(
(l2s + σ2)(l2s′ + σ2) + σ2(2σ2 + l2s + l2s′)

)− d
2
−1
Id×d

Combining the above in the formula CT = g(θ∗)−1ΣT g(θ∗)−1 gives the answers.
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C.4 Gaussian Location Model - Robustness with Mixture of Gaussian RBF Kernels

Proof. Following the lines of Proposition 5 we obtain

∇θMMD2
T (Pθ, δz) = ∇θ

S∑
s=1

γs

[∫
U

∫
U
ks(Gθ(u), Gθ(v))U(du)U(dv)− 2

∫
U
ks(Gθ(u), z)U(du)

]

= −2
S∑
s=1

γs

∫
U
∇θks(Gθ(u), z)U(du) = −2

S∑
s=1

γs

∫
U
∇θGθ(u)∇1ks(Gθ(u), z)U(du)

= −2

S∑
s=1

γs

∫
U

(u− (z − θ))
l2s

φ(u, z − θ, l2s)φ(u; 0, σ2)du

= −2

S∑
s=1

γs

∫
U

(u− (z − θ))
l2s

φ(z, θ, l2s + σ2)φ

(
u;

(z − θ)σ2

l2s + σ2
,
l2sσ

2

l2s + σ2

)
du

= 2

S∑
s=1

γsφ
(
z; θ, l2s + σ2

) 1

(l2s + σ2)
(z − θ)

= 2(2π)−
d
2

S∑
s=1

γs(l
2
s + σ2)−

d
2
−1 exp

(
− ‖z − θ‖

2
2

2(l2s + σ2)

)
(z − θ)

We conclude using the derivation of g(θ∗) in the previous proof and using the definition of influ-
ence function.

C.5 Gaussian Scale Model: Asymptotic Variance Calculation for a single Gaussian
kernel

Proof. Clearly,∇θG(u) = eθu. Define s = e2θ∗ , then the metric tensor at θ∗ is given by

g(θ∗) =

∫
U

∫
U
∇θGθ∗(u) · ∇1∇2k(Gθ∗(u), Gθ∗(v))∇θGθ∗(v)U(du)U(dv)

=

∫
U

∫
U
eθ
∗
u · ∇1∇2k(eθ

∗
u, eθ

∗
v)eθ

∗
vU(du)U(dv)

=

∫
U

∫
U
x · ∇1∇2k(x, y)yφ(x; 0, s)φ(y; 0, s)dxdy

=

∫
U

∫
U
∇ · (xφ(x; 0, s)) k(x, y)∇ · (yφ(y; 0, s)) dxdy

=

∫
U

∫
U

(
d− |x|

2

s

)
φ(x; y, l2)

(
d− |y|

2

s

)
φ(x; 0, s)φ(y; 0, s)dxdy

= A1 +A2 +A3,
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where

A1 = d2

∫
U

∫
U
φ(x; y, l2)φ(x; 0, s)φ(y; 0, s)dxdy

= d2

∫
U

∫
U
φ

(
x;

ys

l2 + s
,
l2s

l2 + s

)
φ
(
y; 0, l2 + s

)
φ(y; 0, s)dxdy

= d2

∫
U
φ
(
y; 0, l2 + s

)
φ(y; 0, s)dy

= d2

∫
U
φ

(
y; 0,

(l2 + s)s

l2 + 2s

)
φ(0; 0, l2 + 2s)dy

= d2(2π)−
d
2 (l2 + 2s)

− d
2 .

A2 = −2d

s

∫
U

∫
U
|x|2φ

(
x;

ys

l2 + s
,
l2s

l2 + s

)
φ
(
y; 0, l2 + s

)
φ (y; 0, s) dxdy

= −2d

s

∫
U

(
dl2s

l2 + s
+
|y|2s2

(l2 + s)2

)
φ
(
y; 0, l2 + s

)
φ (y; 0, s) dy

= − 2d

l2 + s

∫
U

(
dl2 +

|y|2s
(l2 + s)

)
φ

(
y; 0,

(l2 + s)s

l2 + 2s

)
φ
(
0; 0, l2 + 2s

)
dy

= − 2d2

l2 + s
(l2 + 2s)−d/2(2π)−d/2

[
l2 +

s2

l2 + 2s

]
.

A3 =
1

s2

∫
U

∫
U
|x|2|y|2φ

(
x;

ys

l2 + s
,
l2s

l2 + s

)
φ
(
y; 0, l2 + s

)
φ(y; 0, s)dydx

=
1

s2

∫
U

(
dl2s

l2 + s
+
|y|2s2

(l2 + s)2

)
|y|2φ

(
y; 0, l2 + s

)
φ(y; 0, s)dy

=
1

s2

∫
U

(
dl2s

l2 + s
+
|y|2s2

(l2 + s)2

)
|y|2φ

(
y; 0,

(l2 + s)s

l2 + 2s

)
φ(0; 0, l2 + 2s)dy

= (2π)−d/2(l2 + 2s)
−d/2

[
d2l2

l2 + 2s
+ (d2 + 2d)

s2

(l2 + 2s)2

]
.

It follows that g(θ∗) = (2π)−d/2(l2 + 2s)
−d/2

d2K(d, l, s), where K(d, l, s) is bounded with
respect to d, l and s and K(d, 0, s) = (1 + 2d−1)/4.
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Now consider the term∫
U
∇1k(Gθ∗(u), Gθ∗(v))∇θGθ∗(u)U(dv)

=

∫
U
∇1k(Gθ∗(x), Gθ∗(y))eθ

∗
xφ(x; 0, 1)dx

=

∫
U
∇1k(x,Gθ∗(y))xφ(x; 0, s)dx

= −
∫
U
k(x,Gθ∗(y))∇ · (xφ(x; 0, s)) dx

= −
∫
U
φ(x;Gθ∗(y), l2)

(
d− |x|

2

s

)
φ(x; 0, s)dx

= −
∫
U

(
d− |x|

2

s

)
φ

(
x;
Gθ∗(y)s

s+ l2
,
sl2

s+ l2

)
φ(Gθ∗(y); 0, s+ l2)dx

= −
(

ds

s+ l2
− |Gθ

∗(y)|2s
(s+ l2)2

)
φ(Gθ∗(y); 0, s+ l2).

Then

M =

∫
U

∫
U
∇1k(Gθ∗(x), Gθ∗(y))∇θGθ∗(x)U(dx)U(dy)

= −
∫
U

(
ds

s+ l2
− |Gθ

∗(y)|2s
(s+ l2)2

)
φ(Gθ∗(y); 0, s+ l2)U(dy)

= −
∫
U

(
ds

s+ l2
− |y|2s

(s+ l2)2

)
φ(y; 0, s+ l2)φ(y; 0, s)dy

= −
∫
U

(
ds

s+ l2
− |y|2s

(s+ l2)2

)
φ

(
y; 0,

(s+ l2)s

l2 + 2s

)
φ
(
0; 0, l2 + 2s

)
dy

= −(2π)−d/2(l2 + 2s)
−d/2 ds

s+ l2

(
1− s

l2 + 2s

)
.

It follows that ∫
U

(∫
U
∇1k(Gθ∗(u), Gθ∗(v))∇θGθ∗(u)U(du)

)2

U(dv)

=

∫
U

(
ds

s+ l2
− |Gθ

∗(y)|2s
(s+ l2)2

)2

φ2(Gθ∗(y); 0, s+ l2)φ(y; 0, 1)dy

=

∫
U

(
ds

s+ l2
− |y|2s

(s+ l2)2

)2

φ2(y; 0, s+ l2)φ(y; 0, s)dy
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Expanding the terms we have∫ (
ds

s+ l2
− |y|2s

(s+ l2)2

)2

φ2(y; 0, s+ l2)φ(y; 0, s)dy

=

∫ (
ds

s+ l2
− |y|2s

(s+ l2)2

)2

φ

(
y; 0,

s+ l2

2

)
φ(y; 0, s)dyφ

(
0; 0, 2(l2 + s)

)
=

∫ (
ds

s+ l2
− |y|2s

(s+ l2)2

)2

φ

(
y; 0,

(s+ l2)s

l2 + 3s

)
dyφ

(
0; 0, (l2 + 3s)/2

)
φ
(
0; 0, 2(l2 + s)

)
=

(
s2d2

(s+ l2)2
− 2

d2s3

(l2 + 3s)(s+ l2)2
+

(d2 + 2d)s2

(s+ l2)2

s2

(l2 + 3s)2

)
φ
(
0; 0, (l2 + 3s)/2

)
φ
(
0; 0, 2(l2 + s)

)
=

d2s2

(s+ l2)2

(
1− 2

s

l2 + 3s
+

(1 + 2d−1)s2

(l2 + 3s)2

)
(2π)−d(l2 + 3s)

−d/2
(l2 + s)

−d/2
.

It follows that

Σ =

∫
U

(∫
U
∇1k(Gθ∗(u), Gθ∗(v))∇θGθ∗(u)U(du)

)2

U(dv)−M2

= (2π)−d
d2s2

(s+ l2)2

[
C1(s, l, d)(l2 + 3s)

−d/2
(l2 + s)

−d/2 − C2(s, l, d)(l2 + 2s)
−d
]
,

where the terms

C1(s, l, d) =

(
1− 2

s

l2 + 3s
+

(1 + 2d−1)s2

(l2 + 3s)2

)
and C2(s, l, d) =

(
1− s

l2 + 2s

)2

,

are bounded uniformly with respect to s, l, d. The asymptotic variance of the estimator θ̂m is then
given by C = g−1(θ∗)Σg−1(θ∗), as stated.

C.6 Proof of Proposition 7

Proof. The asymptotic variance can be written as

C =

(
l2 + 2s

)2 ((
l2 + s

)− d
2
−2 (

l2 + 2s
)d+2 (

l2 + 3s
)− d

2
−2
((
l2 + 2s

)2
+ 2s2/d

)
− 1
)

(d+ 2)2s2
.

Let l = dα, then it is a straightforward calculation to show that the term

E(d) :=

(
1 + s

d2α

1 + 2s
d2α

)−d/2(
1 + 3s

d2α

1 + 2s
d2α

)−d/2
=

(
1 + 4s

d2α
+ 3s2

d4α

1 + 4s
d2α

+ 4s2

d4α

)−d/2
,

converges to 1 if α > 1
4 , s2/2 if α = 1/4 and∞ if α < 1/4. Moreover, the convergence in each

case is exponentially fast. We can express the asymptotic variance as C = (E(d) − 1)B(d) +
B(d)− 1/A(d), where A(d) = ((d+ 2)2s2)/(d2α + 2s)2 and

B(d) =

(
d2α + 2s

)2 ((
d2α + 2s

)2
+ 2s2

d

)
(d2α + s)2 (d2α + 3s)2 =

(
2sd−2α + 1

)2 (
2s2d−4α−1 +

(
2sd−2α + 1

)2)
(sd−2α + 1)2 (3sd−2α + 1)2 ,
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By the mean value theorem, B(d) − 1 is O(d−1−4α). Since 1/A(d) is O(d4α−2), it follows that
(B(d) − 1)/A(d) is O(d−1). It follows that C converges to zero for α > 1/4 and to infinity for
α < 1/4. When α = 1/4 since B(d)/A(d) = O(d−1) it follows that C → 0, completing the
proof.

D Additional Details for Numerical Experiments

In this section, we provide additional details and simulation results for experiments in the paper.

D.1 Gaussian Distributions

In this subsection we extend Figure 1 for the Gaussian location model with different classes of
kernels. In Figure 8 we plot the loss landscape in each case for different dimensions and different
parameter choices. We note that the inverse multiquadric kernel suffers less from vanishing gradi-
ents. In Figure 9 and 10 we compute the error in estimating the parameter of a Gaussian location
model, as a function of the location of the Dirac contamination and the percentage of corrupted
samples. As the estimator is qualitatively robust, this influence will be bounded independently
of this location, but the maximum error will depend strongly on the choice of kernel and kernel
parameters.

Finally, Figure 11 provides plots demonstrating the strong lack of robustness of the Sinkhorn
algorithm as studied in Genevay et al. [2018]. These results demonstrate that this lack of robust-
ness occurs for a large range of regularisation parameter ε. The experiments were performed using
an l2 cost, which is standard in this literature. Other cost functions could potentially be used to
improve the robustness of this estimator, but this is currently an open question.

D.2 G-and-k Distribution

In order to implement MMD estimators, we will need to have access to derivatives of the generator,
which are given as follows: ∂Gθ(u)/∂θ1 = 1 and

∂Gθ(u)

∂θ2
=

(
1 +

4

5

(
1− exp(−θ3z(u)

)(
1 + exp(−θ3z(u)

)) (1 + z(u)2
)θ4z(u)

∂Gθ(u)

∂θ3
=

8

5
θ2

exp(θ3z(u))(
1 + exp(θ3z(u))

)2 (1 + z(u)2
)θ4z(u)2

∂Gθ(u)

∂θ4
= θ2

(
1 + 0.8

(
1− exp(−θ3z(u)

)(
1 + exp(−θ3z(u)

)) (1 + z(u)2
)θ4 log(1 + z(u)2)z(u)

Note that these could also be obtained using automatic differentiation.

D.3 Stochastic Volatility Model

We can see the stochastic volatility model as a generative model with parameters θ = (θ1, θ2, θ3),
which maps a sample u = (u0, u1, . . . , u2T ) which is N (0, I2T×2T ) distributed to a realisa-
tion y = (y1, . . . , yT ) of the stochastic volatility model. Here, εt = ut for t ≥ 1, h1 =
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Figure 8: MMD Loss landscape for the Gaussian location model in dimensions d = 1, 5, 25, 100.
The landscape is plotted for varying choices of kernels including a Gaussian RBF kernel, a Matérn
kernel with smoothness 1

2 or 3
2 and an inverse-multiquadric kernel. For each kernel, we plot the

loss function for varying values of the lengthscale parameter including l = 0.1 (red), l = 0.5
(blue), l = 1 (green), l = 5 (orange), l = 10 (purple), l = 25 (black) and l = 50 (pink).

uT+1

√
σ2/(1− φ2) and ηt = σuT+t for all t ≥ 2. Note that it is possible to go back to the origi-

nal parameterisation using φ = (exp(θ1)− 1)/(exp(θ1) + 1), κ = exp(θ2) and σ = exp(θ3/2).
We can obtain the derivative process as follows: ∂θ1yt = yt(∂θ1ht)/2, ∂θ1h1 = [(exp(θ1/2)−

exp(−θ1/2))/(exp(θ1/2) + exp(−θ1/2))](h1/2), ∂θ1ht = (∂θ1φ)ht−1 + φ(∂θ1ht−1) for t > 1,
∂θ1φ = 2 exp(θ1)/(exp(θ1) + 1)2, ∂θ2yt = yt, ∂θ2ht = 0, ∂θ3yt = yt(∂θ3ht)/2, ∂θ3h1 = h1/2,
∂θ3ht = φ(∂θ3ht−1) + (∂θ3ηt) for t > 1 and ∂θ3ηt = ηt/2.
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Figure 9: Gaussian distribution with unknown mean: Robustness as a function of the location of
the Dirac for varying kernel and kernel lengthscales in dimensions d = 1, 5, 25, 100.

D.4 Stochastic Lotka-Volterra Model

Besides simulating X1,t and X2,t we also required the coupled matrix diffusion process Jt taking
values in R2×2 which satisfies the following SDE:

dJt = JtA(X1,t, X2,t) dt+
3∑
i=1

JtBi(X1,t, X2,t)dWi,t,
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Figure 10: Gaussian distribution with unknown mean: Error in estimator as a function of the
threshold ε for varying kernel and kernel lengthscales in dimensions d = 1, 5, 25, 100.

where

A(x, y) =

(
c1 − c2y c2x
c2y c2x− c3

)
, B1(x, y) =

√
c1

2

(
1√
x

0

0 0

)
,

B2(x, y) =

√
c2

2

 −
√

y
x −

√
x
y√

y
x

√
x
y

 , B3(x, y) =

√
c3

2

(
0 0
0 − 1√

x

)
,

and subject to the initial condition J0 = I2×2.
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Figure 11: Gaussian location models - Performance of Sinkhorn Estimators in d = 1 for varying
values of the regularisation parameter ε. Left: l1 error as a function of the location of the Dirac.
Right: l1 error as a function of the percentage of corrupted data points.

Figure 12: Realisations from the stochastic volatility model. Left: 10 realisations from the as-
sumed model Pθ∗ (i.e. stochastic volatility model with Gaussian noise). Right: Absolute value
of these same realisations and 10 realisations from the data generating process Q (i.e. stochastic
volatility model with Cauchy noise).
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