Fernández, T;
Gretton, A;
(2019)
A maximum-mean-discrepancy goodness-of-fit test for censored data.
In: Chaudhuri, K and Sugiyama, M, (eds.)
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics.
(pp. pp. 2966-2975).
Proceedings of Machine Learning Research: Naha, Okinawa, Japan.
Preview |
Text
Gretton_fernandez19a.pdf - Published Version Download (426kB) | Preview |
Abstract
We introduce a kernel-based goodness-of-fit test for censored data, where observations may be missing in random time intervals: a common occurrence in clinical trials and industrial life-testing. The test statistic is straightforward to compute, as is the test threshold, and we establish consistency under the null. Unlike earlier approaches such as the Log-rank test, we make no assumptions as to how the data distribution might differ from the null, and our test has power against a very rich class of alternatives. In experiments, our test outperforms competing approaches for periodic and Weibull hazard functions (where risks are time dependent), and does not show the failure modes of tests that rely on user defined features. Moreover, in cases where classical tests are provably most powerful, our test performs almost as well, while being more general.
Type: | Proceedings paper |
---|---|
Title: | A maximum-mean-discrepancy goodness-of-fit test for censored data |
Event: | 22nd International Conference on Artificial Intelligence and Statistics |
Open access status: | An open access version is available from UCL Discovery |
Publisher version: | http://proceedings.mlr.press/v89/fernandez19a.html |
Language: | English |
Additional information: | This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Gatsby Computational Neurosci Unit |
URI: | https://discovery.ucl.ac.uk/id/eprint/10076530 |
Archive Staff Only
View Item |