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Abstract

We introduce a kernel-based goodness-of-fit
test for censored data, where observations
may be missing in random time intervals:
a common occurrence in clinical trials and
industrial life-testing. The test statistic is
straightforward to compute, as is the test
threshold, and we establish consistency un-
der the null. Unlike earlier approaches such
as the Log-rank test, we make no assump-
tions as to how the data distribution might
differ from the null, and our test has power
against a very rich class of alternatives. In
experiments, our test outperforms competing
approaches for periodic and Weibull hazard
functions (where risks are time dependent),
and does not show the failure modes of tests
that rely on user-defined features. Moreover,
in cases where classical tests are provably
most powerful, our test performs almost as
well, while being more general.

1 Introduction

Survival analysis is a branch of statistics focused on
the study of time-to-event data, usually called survival
times. This type of data usually appears in applica-
tions such as industrial life-testing, death times of pa-
tients in clinical trials or duration of unemployment
in a population. An important characteristic of this
type of data is that survival times may be censored,
meaning that we do not observe the actual value of
a survival time but a bound for it. For instance, it is
not uncommon that in a clinical trial, the actual death
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time of a patient is only known to be within an interval
of time.

Arguably, the most common type of censoring is in-
dependent right-censoring which occurs when, instead
of observing the actual survival time, say X, we ob-
serve a lower bound T for it, i.e., we observe T and
we know that X > T . Other less common types of
censoring mechanisms are independent left and inter-
val censoring. Respectively, left and interval censoring
arise when we observe either an upper bound T instead
of the failure time X or an interval (Tl, Tu) ⊆ R+ in
which the failure time X falls. A reasonable assump-
tion we make is that the censoring mechanisms are
non-informative about the distribution of the survival
times X. We will provide a more extensive description
of our setting and terminology in Section 2.

While in most statistical/machine-learning applica-
tions the cornerstone for analysing data is the distri-
bution function, in survival analysis the main objects
of study are the hazard function and the survival func-
tion. For a survival time X with density f and distri-
bution F , its survival function S is defined by 1 − F ,
and its hazard function λ by f/S. While the survival
S(t) function gives us the probability a patient sur-
vives up to time t, the hazard λ(t) function is the in-
stant risk of death given that she has survived until
time t. Additionally, we define the cumulative hazard
function by Λ(t) =

∫ t
0
λ(x)dx. It can be checked that

S(t) = e−Λ(t) and thus S and λ are in a 1-1 correspon-
dence.

The hazard function is extremely important in ap-
plications, and different families of hazard functions
give rise to different problems in the area. Exam-
ples of important families are proportional hazards,
which in a clinical trial may represent treatments with
constant benefit/dis-benefit over time (when compared
with the baseline), and crossing hazards, representing
treatments that may have a negative impact at the
beginning but long-term benefits, e.g. chemotherapy,
among other behaviours. Distinguishing between dif-
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ferent hazard functions is a fundamental problem in
survival analysis.

In this paper, we study goodness of fit, i.e. the problem
of testing the null hypothesis H0 : λ = λ0, or alterna-
tively, H0 : S = S0, where λ0 and S0 denote some
specified hazard and survival functions in the setting
of independent right censoring.

A few methodologies have been proposed to attack
this problem. The Log-rank test is the most pop-
ular among practitioners. This test is based on the
simple idea of comparing the cumulative hazard func-
tion under the null against the empirical cumulative
hazard function. Among the good properties of this
test, we have that the Log-rank test is the most pow-
erful test for proportional hazard alternatives. Unfor-
tunately, when the true relationship of the hazards is
time-dependent it may lead to wrong decisions, i.e. low
power [1]. An option to increase the power of Log-rank
tests against time-dependent alternatives is to consider
weighted Log-rank tests. These tests have been exten-
sively studied [9, 18, 16]; see [1, 22] for details. By
choosing an appropriate weight function, the weighted
Log-rank test can be tailored to be optimal under spe-
cific alternatives, at the expense of reduced perfor-
mance against other alternatives. Modern approaches
attempt to increase overall test power by consider-
ing the combination of several weighted Log-rank tests
into a single test-statistic, e.g. [6, 8, 12]. Nonetheless,
weight-based approaches require us to hand-design the
weight functions in advance, in anticipation of a par-
ticular set of alternatives. Moreover, the amount of
data required by the test grows with the number of
weights chosen.

As an alternative to log-rank tests, there exist a num-
ber of Chi-squared tests under censoring [25], [2] and
[17], where the space is first partitioned, and the em-
pirical probability of uncensored events is then com-
pared in chi squared distance with its expectation (the
latter requiring an estimate of the censoring distribu-
tion). See [1] and [13] for more detail.

Yet another approach, described in [3] is based on
defining a kernel density estimate for the survival func-
tion, i.e. for S = 1−F (obtained using a slightly mod-
ified Kaplan Meier procedure), with the test statistic
then defined as the squared difference between this
density estimate and the model density. Since this pro-
cedure relies on density estimation as an intermediate
step, it has been found to be relatively data-inefficient,
compared with more direct tests (see e.g. the recent
discussion in [12]). We have independently confirmed
this issue in our own experiments.

In the present work, we propose a new goodness of
fit test for censored data, based on distances between

probability distribution embeddings in a reproducing
kernel Hilbert space (RKHS) [7, Chapter 4], [29]. A
particular challenge arises due to the unknown cen-
soring distribution: correcting for this directly using
e.g. a Kaplan-Meier estimate of the survival time [21]
leads to a more complex estimator when compared to
the uncensored case, making standard tasks as boot-
strapping or computing limiting distributions very dif-
ficult. Indeed, in this setting, naively applying the
Kaplan-Meier estimator together with standard ker-
nel test [5, 32] would lead to a potential incorrectly
calibrated test.

Instead, we construct a sample mapping that requires
no such correction, which we describe in Section 3. We
emphasise that our approach does not require evalua-
tion nor integration of the hazard function under the
null, which can be challenging. In Section 4 we de-
fine a test statistic for these transformed data based
on the maximum mean discrepancy [14], which is the
RKHS distance between two distribution embeddings.
The resulting test statistic is a simple V-statistic, and
hence the test threshold can readily be obtained using
a wild bootstrap procedure.

In Section 6, we illustrate the performance of our
model for a number of use-cases, both for proportional
hazards (where the classical Log-rank test is provably
most powerful) and for time-varying hazards, includ-
ing periodic and Weibull hazard functions. In the case
of proportional hazards, we perform almost as well as
the most powerful model, despite our test being more
general; in the case of periodic hazards, we greatly
outperform alternative approaches and in the case of
Weibull hazards we also outperform alternative ap-
proaches.

2 Problem setting

We briefly explain the setting of censored data, and
associated challenges. Let X1, . . . , Xn be a ran-
dom sample from a continuous distribution of inter-
est F on R+ and, independent from this sample,

consider C1, . . . , Cn
i.i.d.∼ G from a nuisance distri-

bution G. The data we observe correspond to the
pairs (T1,∆1), . . . (Tn,∆n), where T = min{X,C} and
∆ = 1{T = X}. This data-framework corresponds to
independent right censoring.

Given this data, the task of estimating the cumula-
tive distribution function F = 1 − S of the failure
times can not be solved by using the empirical dis-
tribution. Indeed, the empirical estimator given by
Hn(x) =

∑
Ti≤x

1
n approximates the distribution of

the minimum of X and C, i.e., H = 1−(1−F )(1−G).
Alternatively, if we drop all the observations that we
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know are censored, that is, where ∆i = 0 and thus
Ti = min{Xi, Ci} = Ci, the empirical distribution
H1
n(x) =

∑
Ti≤x,∆i=1

1
n approximates the function

H1(x) =
∫ x

0
(1 − G(t))dF (t). The lack of natural

empirical-type estimators for F takes out of compe-
tition all the testing approaches which heavily rely on
them.

The non-parametric maximum likelihood estimator of
F under independent right censoring is the Kaplan-
Meier estimator [21], defined as F̄n(x) =

∑n
T[i:n]≤xWi,

where Wi =
∆[i:n]

n

∏i−1
j=1

(
1 +

1−∆[j:n]

n−j

)
, T[i:n] denotes

the i-th order statistic of the sample {Ti}ni=1, and ∆[i:n]

is its corresponding censoring indicator. In the partic-
ular case in which all the observations are uncensored,
the Kaplan-Meier estimator simplifies to the empirical
estimator F̄n(x) = F̂n(x) =

∑
Xi≤x

1
n . An immedi-

ate drawback of the Kaplan-Meier estimator is that it
can not be written as the sum of independent random
variables (note that Wi depends explicitly on the first
i data points), and all statistical approaches based on
this estimator must address this.

3 Construction of a null distribution

Consider the independent right-censoring scheme. Un-
der the null hypothesis H0 : F = F0, it holds F0(Xi) ∼
U(0, 1), then testing the null hypothesis is equivalent
to test for H0 : FF−1

0 = Funif , where Funif denotes
the uniform distribution function on (0, 1). Notice
that since we have right censored data we do not
observe the failure time Xi but instead we observe
Ti = min(Xi, Ci). Nevertheless, since F0 is increas-
ing (it is a distribution function), it holds F0(Ti) =
F0(min{Xi, Ci}) = min{F0(Xi), F0(Ci)}, and thus the
indicator function ∆i is consistent with the order of
F0(Xi) and F0(Ci). Then, we transform our initial
problem into testing whether {F0(Xi)}ni=1 follows a
uniform distribution based on the right censored data
{Ui,∆i}ni=1, with Ui = F0(Ti). For left and interval
censoring the same argument applies.

Up to this point, we have just transformed our prob-
lem to test for uniformity, but we still need to deal
with the censored data. We overcome this problem by
introducing an estimator of the distribution function
FF−1

0 , based on the censored data {Ui,∆i}ni=1 which
can be written as the sum of independent random vari-
ables, and which is unbiased under the null hypothesis.
The form of this estimator allows us to use the clas-
sical theory of U-statistics to derive the asymptotic
distributions related to our test approach.

For right censored data, whenever ∆i = 1, we know
that Ui = F0(Xi) which is exactly the random variable
we are interested in. Then, by following the approach

of the empirical distribution, we put a point mass of
size 1/n on Ui. Otherwise, if ∆i = 0 then Ui = F0(Ci).
From this event, the only information we can deduce
is F0(Xi) > F0(Ci). To reflect our lack of informa-
tion, we distribute the weight 1/n associated to Ui
uniformly on (Ui, 1) . The estimate we just described
corresponds to

F̃ (x) =
1

n

∑
Ui≤x

∆i + (1−∆i)
x− Ui
1− Ui

. (1)

It is clear that this estimator can be generalized to
deal with left and interval censoring by distributing the
weights associated to these censored random variables
uniformly over their corresponding intervals: in the
case of left censoring, uniformly on the interval (0, Ui);
and for interval censoring, uniformly on (Ui,l, Ui,u),
where Ui,l and Ui,u denote a lower an upper limit for
the true value F0(Xi). The next proposition, whose
proof is deferred to the supplementary material, es-
tablishes that our estimator is unbiased.

Proposition 3.1. Under the null hypothesis, the esti-
mator F̃ , based on the data {Ui,∆i}ni=1, is an unbiased
estimator of the uniform distribution function Funif .

4 A kernel-based test

In defining a statistic for testing goodness of fit for cen-
sored data, we make use of kernel distribution embed-
dings: that is, embeddings of probability measures to
a reproducing kernel Hilbert space (RKHS) [7, Chap-
ter 4], [29]. The distance between distribution em-
beddings is denoted the maximum mean discepancy
(MMD) [14].

Goodness of fit can be tested using the MMD between
the model and sample: this is the approach in [5, 32],
bearing in mind the equivalence of distance and kernel-
based measures of divergence [27].1 This approach is
inappropriate for our setting, given the censoring. In-
stead, we will use as our statistic the MMD between
a uniform distribution and the sample-based distribu-
tion introduced in eq. (1).

We begin with the reproducing kernel Hilbert space
(H, 〈·, ·〉H) of functions from [0, 1] → R, with kernel
K : [0, 1] × [0, 1] → R such that K(·, x) ∈ H for all
x ∈ [0, 1], and f(x) = 〈f(·),K(·, x)〉H for each f ∈ H
and x ∈ [0, 1]. The mean embedding of a probability
measure P on the RKHS H is µP (·) = EP (K(·, X)),
where the expectation is to be understood in terms of

1We note that an alternative approach is to modify the
RKHS using a Stein operator, yielding a class of functions
with zero expectation under the model: [10, 24]. Yet an-
other approach would be to define a Fisher statistic be-
tween the model and sample in an RKHS [15, 4].
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the Bochner integral. In particular, µP is well-defined
whenever EP (

√
K(X,X)) < ∞, which is guaranteed

under the following assumption:

Assumption 4.1. There exists a constant M ≥ 1
such that |K(x, y)| ≤M for all x, y ∈ [0, 1].

For a sufficiently rich RKHS, mean embeddings are in-
jective, and uniquely represent their respective proba-
bility measures [30]: such RKHS are called character-
isitc. The exponentiated quadratic kernel used in the
present work satisfies this property.

We base our test on the maximum mean discrepancy
between the uniform distribution Funif and FF−1

0 , i.e.,
MMD(Funif , FF

−1
0 ) := ‖µFF−1

0
− µunif‖H, where we

use the estimator F̃ of equation (1) for FF−1
0 .

We now proceed to study the asymptotics of
MMD(Funif , F̃ (x)). As we will see, the main advan-
tage of our goodness-of-fit estimator is that it can be
expressed as the sum of independent random variables,
and thus it allows us to use standard machinery from
the theory of U-statistics [28] in deriving the asymp-
totic properties of our statistic.

From the definition of the kernel mean embedding and
by the reproducing kernel property, it holds that

MMD(Funif , F̃ )2 = ‖µunif − µF̃ ‖
2
H

=

∫ 1

0

∫ 1

0

K(x, y)(dx− dF̃ (x))(dy − dF̃ (y)).(2)

Recall the definition of F̃ (x) =
∑n
i=1 hUi,∆i

(x),

where hUi,∆i(x) =
1{Ui≤x}

n

(
∆i + (1−∆i)

x−Ui

1−Ui

)
, then

dF̃ (x) is given by

dF̃ (x) =
1

n

n∑
i=1

1{Ui<x}
1−∆i

1− Ui
dx+ ∆iδUi

(x),(3)

where δU (x) denotes a delta measure on U . Based
on the reproducing kernel K, we define the U -statistic
kernel J : ([0, 1]× {0, 1})2 → R as

J((u, δ), (u′, δ′)) =
∫ 1

0

∫ 1

0
K(x, y)(dx− dhu,δ(x))

(dy − dhu′,δ′(y)). (4)

Note that the U-statistic kernel J : R×{0, 1} → R de-
pends neither on F0 nor on the censoring distribution
G; i.e., its implementation is distribution free, there-
fore it need only be computed once. By contrast, as
we will see in Section 5, Log-rank and Pearson tests
require us to evaluate and integrate the hazard func-
tion λ0 = f0/(1 − F0), which may be not trivial as
λ0 may not be easily computable. Moreover, since the
test statistic depends explicitly on the function λ0, it
needs to be recomputed for each different hypothesis.

Proposition 4.2. Denote by Q0 and Qa the distribu-
tion of the pair (U,∆) under the null and alternative
hypotheses, respectively. Then, under assumption 4.1
and ε > 0, it holds

PQ0

(∣∣MMD2 −EQ0(MMD2)
∣∣ ≥ ε) ≤ exp

{
− ε2n

32M

}
where MMD2 = MMD2(F̃ , Funif) and EQ0(MMD2) ≤
4M/n. The same result holds when replacing Q0 by Qa,

and Funif by the mean measure E(F̃ ), respectively.

Proposition 4.3. The MMD2(Funif , F̃ ) can be writ-
ten as a V -statistic of degree 2 in the product space of
survival-times and censoring-indicators. In particular

MMD2(Funif , F̃ ) =
1

n2

n∑
i=1

n∑
j=1

J((Ui,∆i), (Uj ,∆j)), (5)

where J is the U -statistic kernel defined in equation
(4). Moreover, under the null hypothesis, an unbiased
estimate of MMD2(Funif , FF

−1
0 ) corresponds to the

U -statistic

MMD2
U (Funif , F̃ ) =

(
n

2

)−1∑
i<j

J((Ui,∆i), (Uj ,∆j)). (6)

Lemma 4.4. Under the null hypothesis and under as-
sumption 4.1, it holds

nMMD2(Funif , F̃ )
D→ Y + EQ0

(J(U,∆), (U,∆)), (7)

where Y =
∑∞
j=1 λj(ξ

2
j − 1) and ξj are independent

normal random variables with zero mean and unit vari-
ance. Moreover, λj are the eigenvalues of the linear
transformation T : ([0, 1] × {0, 1}, Q0) → L2([0, 1] ×
{0, 1}, Q0) given by

(Tg)(u, δ) = EQ0
(J((U,∆), (u, δ))g(U,∆)),

where Q0 denotes the joint distribution of the pair
(U,∆) under the null hypothesis.

Corollary 4.5. Under the null hypothesis

nMMD2
U (Funif , F̃ )

D→ Y , with Y defined as in Lemma
4.4. Under the alternative, when EQa(F̃ ) 6= Funif ,√
nMMD2

U (Funif , F̃ ) is asymptotically normal.

Notice that a possible failure regime for our test oc-
curs when F̃ → Funif for F 6= F0 and G(x) 6= δ0(x)
(extreme censoring). Nevertheless by analysing the ex-
pected value of F̃ (u), see E(Zu) in the supplementary
material, this situation seems very unlikely. Indeed,
we conjecture that under the alternative, the map from
censoring distributions to our estimator, i.e., G → F̃
is injective, thus only G(.) = δ0(.) (all censored) makes
F̃ (x) = x. We support our conjecture from our exten-
sive experiments.
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Although we have an expression for the asymptotic
distribution of our test statistic, the parameters of this
distribution are hard to compute. Instead, we propose
to use the wild bootstrap to approximate the rejection
regions of our test statistic under the null hypothesis.
Specifically, we can re-sample from the distribution of
our statistic MMD(Funif , F̃n) by repeatedly sampling

1

n2

n∑
i=1

n∑
j=1

WiWjJ((Ui,∆i), (Uj ,∆j)), (8)

where {Wi}ni=1 is a sequence of independent random
variables with zero mean (to preserve the degeneracy
property) and variance one. It was proved in [11] that
(8) has the same limit distribution as our test-statistic
MMD(Funif , F̃n).

Algorithm 1: Wild bootstrap.

Input: data {Ui,∆i}ni=1

1 Consider W1, . . . ,Wn a random sample with
E(Wi) = 0 and Var(W2

i ) = 1
2 Return MMDB

k =
1
n2

∑n
i=1

∑n
j=1WiWjJ((Ui,∆i), (Uj ,∆j))

Given a nominal α value, the rejection region
can be approximated by using a bootstrap sample
{MMDB

k }Nk=1, as shown in Algorithm 1.

5 Competing approaches

5.1 Pearson-type goodness-of-fit: This approach,
due to Akritas [2], considers the partition of the sample
space of the random variables (Ti,∆i), for ∆ ∈ {0, 1},
into k cells, and studies the distribution of the k-
dimensional vector of observed minus expected fre-
quencies. Let Aj = [aj−1, aj) with j = 1, . . . , k and
0 = a0 < a1 < . . . < ak−1 < ak = ∞. We define the
observed frequencies as N1,j =

∑n
i=1 1{Ti ∈ Aj ,∆i =

1} and the expected frequencies as p1,j =
∫
Aj

(1 −
G)dF0. Observe that the expected frequencies depend
on the unknown censoring distribution G, thus they
are estimated by replacing the distribution G by the
estimate Ĝ = 1−(1−Ĥ)/(1−F0), where Ĥ is the em-
pirical distribution of the minimum T = min{X,C}.
Estimators for the expected frequencies are then given
by p̂1,j =

∫
Aj

(1− Ĝ)dF0 =
∫
Aj

(1− Ĥ)dΛ0. Under the

null hypothesis H0 : F = F0, where F0 is a specified
continuous function, the Pearson-type statistic corre-
sponds to

∑k
j=1(N1j − np̂1j)

2/(np̂1j), whose asymp-

totic distribution is χ2
k.

Implementation: For the Pearson test, “Pearson” in
the tables, we consider k = 4 cells, each of them ac-
cumulating 0.25 probability under the null hypothesis.

The reason for using k = 4 cells is due to the trade-off
between the number of data points required and the
number of cells used: as the number of cells increases
more data is needed to achieve the correct level of the
test (i.e. Type-I error). We found that for k = 4, the
test is competitive even though the Type-I error is a
little bit overestimated for small sample sizes (30, 50
data points).

5.2 Log-rank test and Weighted Log-rank tests:
Arguably, the Log-rank test is the most commonly-
used statistical test for comparing survival curves. The
test is performed by comparing differences of area as
Z =

∫∞
0
Y (t)d(Λ(t) − Λ0(t)), where Y (t) denotes the

so-called risk function, given by Y (t) =
∑n
i=1 1{Ti ≥

t}. The true cumulative hazard function, Λ, is esti-
mated by the non-parametric Nelson-Aalen estimator.
From the theory of counting processes [13], Z is asymp-
totically normal under appropriate scaling.

Weighted Log-rank tests generalize the classical Log-
rank test, by considering an extra weight function W
when comparing areas, giving the more general statis-
tic Z(W ) =

∫∞
0
W (t)Y (t)d(Λ(t)− Λ0(t)).

Implementation: We consider weighted Log-rank
tests, “LR1” and “LR2” in the tables, with weight
functions W1(t) = 1 and W2(t) = Y (t), respectively
(Y (t) risk function). Observe that Z(W1) is the clas-
sical Log-rank test. The second statistic Z(W2) corre-
sponds to the so-called Gehan-Breslow test [1].

5.3 Combined Log-rank tests: These tests auto-
mate the procedure of choosing weight functions to
create a more flexible test with broader power. We de-
scribe here the approach of [12]. A vector of weighted
Log-rank tests Z = (Z(ω1 ◦ F̂n), . . . , Z(ωk ◦ F̂n)) is de-
fined, with weight functions ω1, . . . , ωk. The ω′is are

continuous and of bounded variation, and F̂n is the
Kaplan-Meier estimator. A combined-Log-rank test-
statistic is computed as Sn = ZᵀΣ̂+Z, where Σ̂ is the
empirical covariance matrix of Z, and Σ+ represents
the pseudo-inverse of Σ. Under some regularity condi-
tions it is shown that Sn → χ2

k as n grows to infinity.

Implementation: We consider four different func-
tions for the combined Log-rank test, denoted as
“WLR” in the tables. These functions correspond to i)
the constant weight function, ω1(t) = 1, which weights
all time points equally, ii) an early weight function,
ω2(t) = t(1 − t)3, which gives more weights to de-
partures of the null at early times, iii) a central weight
function, ω3(t) = (1−t)t, giving more weight at central
times, iv) and a crossing weight function ω4(t) = 1−2t,
which has a sign switch at t = 1/2.

5.4 Kernel test: In the approach of [3], a modi-
fied Kaplan-Meier estimate of the density was used
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for goodness of fit testing. As noted already in [12],
however, the procedure suffers from low test power at
reasonable sample sizes, which we have also confirmed
independently (see Appendix, Section 2). For this rea-
son, our experiments in the next section will focus on
the chi-squared and log-rank approaches.

Implementation Code by the authors.

6 Experiments

For our MMD-based test, we choose the kernel to be
Kl(x, y) = exp{−(x − y)2/l2}. For the length-scale
parameter, we either use l = 1 (for simple settings), or

(for more complex settings) l̂n computed by taking the
median of the pair-wise differences of survival times,
without making a distinction between censored or un-
censored time points. For the estimation of the rejec-
tion regions, we implement wild bootstrap as described
in Algorithm 1. In particular, we consider three dif-

ferent sets of random variables {Wi}ni=1: i)Wi
i.i.d.∼

N(0, 1), ii) Wi ∼ Multinomial(n, 1/n, . . . , 1/n) − 1

and iii) Wi
i.i.d.∼ Rademacher. Each test is denoted by

“MW1”, “MW2” and “MW3” in the tables.

In all our experiments, we consider the null hypothesis
to be H0 : λ(t) = 1, or alternatively H0 : S(t) = e−t.
Then, as the data for different experiments is very sim-
ilar under the null (we just vary the censoring distri-
bution), we only show results in the main body for the
estimated Type-I error for our first experiment: par-
allel hazards. These results are presented in Tables 1.
(See sections 3,4 and 5 of the supplementary material
for the remaining tables)

Type-I error; Censoring 30%; Fixed length-scale 1
α MW1 MW2 MW3 Pearson LR1 LR2 WLR
Sample size n = 30
10 % 10.10 11.70 10.20 14.50 11.15 11.10 19.65
5 % 5.10 6.55 4.85 8.70 5.90 6.60 13.65
1 % 1.15 2.05 1.10 3.05 1.60 1.30 6.30
Sample size n = 200
10 % 9.35 9.55 9.45 9.80 10.05 9.80 11.40
5 % 4.90 4.85 4.75 5.65 5.10 5.10 6.85
1 % 1.15 1.35 1.20 1.30 1.25 1.30 1.80

Table 1: Estimated Type-I error, α ∈ {10%, 5%, 1%}.
Sample size n = 30, 200. Censoring percentage 30%.
Fixed-length-scale 1

From table 1, we can observe that all the tests achieve
the correct level for larger sample sizes, i.e. n = 200.
For small sample sizes, i.e. n = 30, the Pearson test
and the combined Log-rank test have a wrong level
(in red in the tables); thus, the measured performance
of these tests under the alternative is not meaning-
ful. This may be due to incomplete convergence of
the test statistics, since the associated thresholds are
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Figure 1: Power related to the family of parallel hazard
alternatives λθ(t) = θ. The null is recovered for θ = 1.

based on asymptotic results. In the case of the Pear-
son test, the test-statistic uses a plug-in estimator Ĝ
of the censoring distribution G, making the testing
procedure more complex. Similarly, for the combined
Log-rank tests (WLR) the more weight functions we
consider, the more complex is our testing procedure
and thus, the more data we need.

6.1 Proportional hazard functions

In this experiment, we consider testing the family of
alternatives λθ(t) = θ where θ ∈ {0.5 + 0.05k; k =
1, . . . , 30} against the null hypothesis H0 : λ(t) = 1.
We consider the censoring distribution G(t) = 1−e−γt,
where γ is such that it generates a censoring percent-
age of 30% and 50% for each combination of alterna-
tive. The level of the test is fixed at α = 0.05, and we
consider a sample size n ∈ {30, 50, 100, 200}. Each ex-
periment considers N = 2000 independent repetitions.

It is a well-known that the log-rank test is the most
powerful against proportional hazards alternatives.
The aim of our first experiment is thus to compare
our test performance to a test that we know is opti-
mal. Results are shown in Figure 1.

Overall, our test performs strongly (across all wild
bootstrap distributions), despite being more general:
for the case of 30 data point our test is quite com-
petitive, and when we observe 100 data points, the
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Figure 2: Top row: hazard function λθ(t) = 1− cos(θ1πt)
for θ1 ∈ {0.5, 1, 3}. Bottom row: corresponding cumulative
distribution. In pink: exponential distribution (null).

tests behave almost equally. Recall that θ = 1 repre-
sents the null hypothesis, so the closer to 1 we are, the
harder it is for the test to discriminate from the null.
See Section 3 of the supplementary material for a ta-
ble with the numerical values, more sample sizes and
combination of parameters, and other competitors.

6.2 Time-dependent hazard functions

In this section, we consider time-dependent hazard al-
ternatives, which describe a risk that varies over time.
Examples include clinical treatment that becomes less
effective over time, or seasonal trends in selling pat-
terns. We consider two particular instances of time-
dependent hazard functions: i) periodic hazard func-
tions and ii) Weibull hazard functions.

Periodic hazards: Periodic hazard functions arise in
scenarios exhibiting periodic patterns, including fail-
ure of machines in industrial life-testing, consumer be-
haviour, and labour market participation among other
scenarios: see [26] for discussion.

We consider the family of hazards functions given
by λθ(t) = 1 − θ2 cos(θ1πt), with θ = (θ1, θ2) such
that θ2 < 1 and θ1 ∈ R. The null hypothesis is
given by H0 : λ(t) = 1 (equivalently, θ2 = 0), and
we consider the alternatives λθ(t) with θ2 = 1 and
θ1 ∈ {0.5, 0.7, 0.9, 1, 1.5, 3}. In Figure 2, we show ex-
amples of hazards and their corresponding c.d.f. for
different parameters of θ. Notice that as the frequency
parameter θ1 increases, the alternative distribution
functions Fθ appears closer to the null distribution
function F0(t) = 1− exp{−t}, shown in pink.

In tables 2 and 3 we show the results of our experi-
ments for sample size n = 30 and n = 200, respec-
tively. Our test strongly outperforms the other tests,

Periodic hazard function
Sample size n=30; Cens. param. γ = 1/2; Adaptive length-scale
α MW1 MW2 MW3 Pearson LR1 LR2 WLR

θ = (0.5, 1)
10 % 99.95 99.95 99.95 99.40 89.65 99.95 62.15
5 % 99.95 99.95 99.95 96.95 74.50 99.80 44.60
1 % 99.75 99.80 99.75 76.80 31.25 94.20 17.30
θ = (1, 1)
10 % 98.60 99.05 98.60 87.35 16.20 62.80 31.35
5 % 95.50 96.25 95.30 73.60 8.05 39.55 21.55
1 % 82.00 83.75 82.40 42.05 0.80 6.55 10.30
θ = (3, 1)
10 % 23.40 25.80 23.40 20.00 8.95 5.35 19.35
5 % 13.40 15.65 13.60 12.70 4.55 2.20 13.60
1 % 4.00 5.60 4.10 4.90 0.95 0.25 6.70

Table 2: Power (from 0% to 100%) under different alter-
natives θ for the Periodic hazards experiment. Sample size
30. Censoring Parameter 1/2. Adaptive length-scale.

Periodic hazard functions
Sample size n=200; Cens. param. γ = 1/2; Adaptive length-scale

MW1 MW2 MW3 Pearson LR1 LR2 WLR
θ = (0.5, 1)
10 % 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 % 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1 % 100.00 100.00 100.00 100.00 100.00 100.00 100.00
θ = (1, 1)
10 % 100.00 100.00 100.00 100.00 83.00 100.00 100.00
5 % 100.00 100.00 100.00 100.00 71.00 100.00 99.95
1 % 100.00 100.00 100.00 100.00 39.95 100.00 99.30
θ = (3, 1)
10 % 98.20 98.35 98.30 44.70 10.70 21.85 44.35
5 % 89.75 89.95 89.85 31.70 4.95 11.40 31.45
1 % 48.90 48.00 47.85 14.20 1.00 2.35 12.85

Table 3: Power (from 0% to 100%) under different alter-
natives θ for the Periodic hazards experiment. Sample size
200. Censoring Parameter 1/2. Adaptive length-scale.

and is able to discriminate the alternative from the
null in the first two cases, while in the third case
(θ = (3, 1)) it has the better overall result for both
sample sizes. These results also confirm that periodic
hazards with high frequencies present a more challeng-
ing task. We note moreover from Table 2 that Pear-
son and WLR tests (in red) do not have the correct
level for 30 samples (see Section 4 of the supplemen-
tary material), and thus their reported power might
be over-optimistic. In Section 4 of the supplementary
material we include more sample sizes and more pa-
rameters, which achieve similar results.

Weibull hazards: Weibull models are popular in sur-
vival analysis and reliability problems where there is
either an increasing or decreasing hazard rate. This is
due to their flexibility, despite only being parametrised
by two values. Weibull hazards have been used to
model failure of composite materials, and fracture
strength of glass among other examples, see [23].

The Weibull hazard function is given by λθw(t) =
θw1/θw2(t/θw2)θw1−1, where θw = (θw1, θw2) ∈ R2

+.
In particular, θw2 denotes the scale parameter which
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Figure 3: Top row: hazard λθw (t) = θw1(t)θw1−1, for
θw1 ∈ {0.5, 1.5, 3}. Bottom row: The corresponding cdf.

has an proportional effect on the hazard function, and
θw1 is the shape parameter.

For θw1 < 1 we have a decreasing hazard, for θw1 > 1
we have an increasing hazard, and for θw1

= 1 we
recover a constant hazard representing the exponen-
tial distribution. The null hypothesis occurs when
θw = (1, 1). In figure 3 we show three different Weibull
hazard functions (and their corresponding survival
functions) with three types of behaviour: decreasing
hazard, increasing concave, and increasing convex.

In tables 4 and 5 we show the result of our experiment
for sample sizes n = 30 and 200. Our test again yields
the best performance. It also noticeable that Log-rank
performs extremely poorly, which is a well-known fail-
ure mode for such hazards.

Weibull hazard functions
Sample size n = 30; Censoring 30%; Adaptive length-scale

MW1 MW2 MW3 Pearson LR1 LR2 WLR
θw = (0.5, 1)
10 % 67.20 70.70 67.30 70.25 28.55 71.30 70.55
5 % 52.30 56.10 52.15 60.15 20.45 65.15 63.70
1% 21.95 29.40 21.95 42.05 9.60 51.80 52.55

θw = (1.5, 1)
10 % 45.35 48.20 45.50 52.20 3.65 8.45 33.40
5 % 32.50 35.80 32.05 40.80 1.55 3.45 24.10
1% 12.70 15.05 12.35 21.10 0.05 0.25 11.55

θw = (3, 1)
10 % 100.00 100.00 100.00 100.00 0.05 43.40 99.55
5 % 100.00 100.00 100.00 100.00 0.00 16.30 99.00
1% 99.80 99.95 99.85 99.90 0.00 0.45 96.20

Table 4: Power (from 0% to 100%) under different alter-
natives θw1 for the Weibull hazards experiment. Sample
size 30. Censoring percentage 30%. Adaptive length-scale.

We remark that we should again treat the Pearson and
WLR results with caution for sample size 30 as they
given an incorrect Type-1 error. See tables in Section
5 of the supplementary material to see the later and
more experiments with different parameters.

Weibull hazard functions
Sample size n = 200; Censoring 30%; Adaptive length-scale

MW1 MW2 MW3 Pearson LR1 LR2 WLR
θw = (0.5, 1)
10 % 100.00 100.00 100.00 100.00 46.05 99.95 99.95
5 % 100.00 100.00 100.00 100.00 36.80 99.90 99.95
1% 100.00 100.00 100.00 100.00 20.90 99.30 99.60

θw = (1.5, 1)
10 % 99.95 100.00 99.95 100.00 6.10 72.65 98.85
5 % 99.90 99.85 99.90 100.00 2.75 56.50 96.85
1% 98.70 98.95 98.65 99.80 0.45 22.40 88.35

θw = (3, 1)
10 % 100.00 100.00 100.00 100.00 2.15 100.00 100.00
5 % 100.00 100.00 100.00 100.00 0.20 100.00 100.00
1% 100.00 100.00 100.00 100.00 0.00 100.00 100.00

Table 5: Power (from 0% to 100%) under different alterna-
tives θw1 for the Weibull hazards experiment. Sample size
200. Censoring percentage 30%. Adaptive length-scale.

7 Discussion

We have presented a novel testing procedure for
goodness-of-fit for right-censored data, based on the
MMD distance between a transformation of the ob-
served variables and the uniform distribution. Being
based on kernels, it is not necessary to specify features
in advance (as for the weighted log-rank test): rather,
we take advantage of the infinite dictionary of features
provided implicitly by the kernel. Our approach has
several advantages: First, it is simple to implement,
since we only need to be able to evaluate the distribu-
tion F0 in the survival times Ti to generate the data
{F0(Ti),∆i}, and we do not need to know/evaluate
F−1

0 . Second, the U-statistic kernel J : R×{0, 1} → R
of equation (4) is distribution free, and need be com-
puted/tabulated only once. Third, being a U-statistic,
the asymptotic analysis is straightforward, as is the
bootstrap approach for the test threshold.

We emphasize that extensions to other type of censor-
ing (left and interval) are straightforward, as our test
depends on censoring only through the estimate F̃ , in
which the mass of a censored interval is distributed
uniformly over such an interval.

Further improvements in the performance of our test
might be achieved by a better choice of kernel function
for the problem at hand. In the case of the maximum
mean discrepancy on uncensored data, test power is
improved by choosing a kernel to optimise the ratio
of the statistic to its variance [31]. Adaptive linear-
time test statistics may also be constructed for two-
sample [19] and Stein goodness-of-fit [20] tests, where
the features are again chosen to maximise test power.
It would be of interest to extend these ideas to the
present setting.
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