UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Browse by UCL people

Group by: Type | Date
Number of items: 6.

Article

De, Suparna; Moss, Harry; Johnson, Jon; Li, Jenny; Pereira, Haeron; Jabbari, Sanaz; (2022) Engineering a machine learning pipeline for automating metadata extraction from longitudinal survey questionnaires. IASSIST Quarterly , 46 (1) 10.29173/iq1023. Green open access
file

Huang, J; Howie, B; McCarthy, S; Memari, Y; Walter, K; Min, JL; Danecek, P; ... Soranzo, N; + view all (2015) Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nature Communications , 6 (811) 10.1038/ncomms9111. Green open access
file

Walter, K; Min, JL; Huang, J; Crooks, L; Memari, Y; McCarthy, S; Perry, JRB; ... Zhang, W; + view all (2015) The UK10K project identifies rare variants in health and disease. Nature , 526 (7571) pp. 82-90. 10.1038/nature14962. Green open access
file

Wang, Zeqiang; Wang, Yuqi; Zhang, Haiyang; Wang, Wei; Qi, Jun; Chen, Jianjun; Sastry, Nishanth; ... De, Suparna; + view all (2024) ICDXML: enhancing ICD coding with probabilistic label trees and dynamic semantic representations. Scientific Reports , 14 (1) , Article 18319. 10.1038/s41598-024-69214-9. Green open access
file

Book chapter

De, S; Jangra, S; Agarwal, V; Johnson, J; Sastry, N; (2023) Biases and Ethical Considerations for Machine Learning Pipelines in the Computational Social Sciences. In: Ethics in Artificial Intelligence: Bias, Fairness and Beyond. (pp. 99-113). Springer Nature: Singapore. Green open access
file

Conference item

De, Suparna; Moss, Harry; Jabbari, Sanaz; Johnson, Jon; Periera, Haeron; Li, Jennie; (2021) Engineering a Machine Learning Pipeline for Automating Metadata Extraction from Longitudinal Survey Questionnaires. Presented at: European DDI Conference, Paris, France. Green open access
file

This list was generated on Sat Jan 31 04:51:41 2026 GMT.