Brandon, NJ;
Jovanovic, JN;
Smart, TG;
Moss, SJ;
(2002)
Receptor for activated C kinase-1 facilitates protein kinase C-dependent phosphorylation and functional modulation of GABA(A) receptors with the activation of G-protein-coupled receptors.
J NEUROSCI
, 22
(15)
6353 - 6361.
Preview |
PDF
receptor.pdf Available under License : See the attached licence file. Download (404kB) |
Abstract
GABA(A) receptors are the principal sites of fast synaptic inhibition in the brain. These receptors are hetero-pentamers that can be assembled from a number of subunit classes: alpha(1-6), beta(1-3), gamma(1-3), delta(1), epsilon, theta, and pi, but the majority of receptor subtypes is believed, however, to be composed of alpha, beta, and gamma2 subunits. A major mechanism for modulating GABA(A) receptor function occurs via the phosphorylation of residues within the intracellular domains of receptor subunits by a range of serine/ threonine and tyrosine kinases. However, how protein kinases are targeted to these receptors to facilitate functional modulation remains unknown. Here we demonstrate that the receptor for activated C kinase (RACK-1) and protein kinase C (PKC) bind to distinct sites on GABA(A) receptor beta subunits. Although RACK-1 is not essential for PKC binding to GABAA receptor beta subunits, it enhances the phosphorylation of serine 409, a residue critical for the phospho-dependent modulation of GABA(A) receptor function in the beta1 subunit by anchored PKC. Furthermore, RACK-1 also enhances GABA(A) receptor functional modulation in neurons by a PKC-dependent signaling pathway with the activation of muscarinic acetylcholine receptors (mAChRs). This PKC-dependent modulation of neuronal GABAA receptors was mirrored by an increase in the phosphorylation of GABA(A) receptor beta subunits with the activation of mAChRs.Our results suggest a central role for RACK-1 in potentiating PKC-dependent phosphorylation and functional modulation of GABA(A) receptors. Therefore, RACK-1 will enhance functional cross talk between GABA(A) receptors and G-protein-coupled receptors and therefore may have profound effects on neuronal excitability.
Type: | Article |
---|---|
Title: | Receptor for activated C kinase-1 facilitates protein kinase C-dependent phosphorylation and functional modulation of GABA(A) receptors with the activation of G-protein-coupled receptors |
Open access status: | An open access version is available from UCL Discovery |
Publisher version: | http://www.jneurosci.org/content/22/15/6353.full.p... |
Language: | English |
Additional information: | This work is available to the public to copy, distribute, or display under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported license. |
Keywords: | GABA(A) receptor, protein kinase C, receptor for activated C kinase, muscarinic receptor phosphorylation, cross talk, GST fusion protein, A RECEPTOR, BETA-SUBUNIT, INTRACELLULAR DOMAINS, CORTICAL-NEURONS, TYROSINE KINASES, ION CHANNELS, RACK1, SITES, EXPRESSION, INTERACTS |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Neuro, Physiology and Pharmacology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy > Pharmacology |
URI: | https://discovery.ucl.ac.uk/id/eprint/83637 |
Archive Staff Only
View Item |