UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Mutant Parkin Impairs Mitochondrial Function and Morphology in Human Fibroblasts

Grunewald, A; Voges, L; Rakovic, A; Kasten, M; Vandebona, H; Hemmelmann, C; Lohmann, K; ... Klein, C; + view all (2010) Mutant Parkin Impairs Mitochondrial Function and Morphology in Human Fibroblasts. PLOS ONE , 5 (9) , Article e12962. 10.1371/journal.pone.0012962. Green open access

[thumbnail of 168834.pdf]
Preview
PDF
168834.pdf

Download (695kB)

Abstract

Background: Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD). The mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved in respiratory chain function and mitochondrial dynamics. More recent publications also described a link between Parkin and mitophagy.Methodology/Principal Findings: In this study, we investigated the impact of Parkin mutations on mitochondrial function and morphology in a human cellular model. Fibroblasts were obtained from three members of an Italian PD family with two mutations in Parkin (homozygous c.1072delT, homozygous delEx7, compound-heterozygous c.1072delT/delEx7), as well as from two relatives without mutations. Furthermore, three unrelated compound-heterozygous patients (delEx3-4/duplEx7-12, delEx4/c.924C>T and delEx1/c.924C>T) and three unrelated age-matched controls were included. Fibroblasts were cultured under basal or paraquat-induced oxidative stress conditions. ATP synthesis rates and cellular levels were detected luminometrically. Activities of complexes I-IV and citrate synthase were measured spectrophotometrically in mitochondrial preparations or cell lysates. The mitochondrial membrane potential was measured with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide. Oxidative stress levels were investigated with the OxyBlot technique. The mitochondrial network was investigated immunocytochemically and the degree of branching was determined with image processing methods. We observed a decrease in the production and overall concentration of ATP coinciding with increased mitochondrial mass in Parkin-mutant fibroblasts. After an oxidative insult, the membrane potential decreased in patient cells but not in controls. We further determined higher levels of oxidized proteins in the mutants both under basal and stress conditions. The degree of mitochondrial network branching was comparable in mutants and controls under basal conditions and decreased to a similar extent under paraquat-induced stress.Conclusions: Our results indicate that Parkin mutations cause abnormal mitochondrial function and morphology in non-neuronal human cells.

Type: Article
Title: Mutant Parkin Impairs Mitochondrial Function and Morphology in Human Fibroblasts
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pone.0012962
Publisher version: http://dx.doi.org/10.1371/journal.pone.0012962
Language: English
Additional information: © 2010 Grünewald et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This work was supported by grants from the German Research Foundation (GR 3731/1-1), the Fritz Thyssen Foundation, the Boehringer Ingelheim Foundation, the German Academic Exchange Service, the EU Grant GENEPARK (EU-LSHB-CT-2006-037544), the Deutsches Bundesministerium für Bildung und Forschung (Nationales Genomforschungsnetz plus, PNP-01GS08135-3), the Volkswagen Foundation, the Hermann and Lilly Schilling Foundation, the Hilde Ulrichs Foundation for Parkinson Disease Research, the Australian Brain Foundation and the Medical Faculty of the University of Lübeck. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Keywords: COMPLEX I DEFICIENCY, DISEASE, PINK1, DROSOPHILA, MUTATIONS, MITOPHAGY, MICE, PATHOGENESIS, DYSFUNCTION, PATHOLOGY
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Movement Neurosciences
URI: https://discovery.ucl.ac.uk/id/eprint/168834
Downloads since deposit
145Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item