Scott, F.;
(2009)
Modelling the evolution of Arctic melt ponds.
Doctoral thesis , UCL (University College London).
Preview |
PDF
16333.pdf Download (9MB) |
Abstract
During winter the ocean surface at the poles freezes over to form sea ice. Sea ice floats on the ocean surface and has a matrix structure caused by the rejection of salts during freezing. In the summer sea ice melts at its surface creating melt ponds. An accurate estimate of the fraction of the upper sea ice surface covered in melt ponds during the summer melt season is essential for a realistic estimate of the albedo for global climate models. I will present a melt-pond{sea-ice model that simulates the twodimensional (areal) evolution of melt ponds on an Arctic sea-ice surface. This advancements of this model compared to previous models are the inclusion of snow topography, a realistic hydraulic balance and calculation of drainage rates and the incorporation of a detailed one-dimensional thermodynamic model. Water transport across and through the sea-ice surface is described by the major hydraulic processes believed to be present. Thermodynamic processes are modelled using the mushy-layer equations in sea ice, heat diff�usion equations in snow and using assumptions of turbulent heat flux in melt ponds, along with a three-layer two-stream radiation model. The model simulates a section of a sea ice floe considered to be in hydrostatic equilibrium, where edge eff�ects such as the presence of leads are neglected and consists of a grid of cells, each of which can be in one of four possible con�figurations: snow covered ice; bare ice; melt pond covered ice or open water. Eventually, a cluster of adjacent cells each containing melt water may be considered to have formed a melt pond. Lateral and vertical melt water transport is described by Darcy's Law. The model is initialised with ice topographies that represent either �first-year or multiyear sea ice, which are reconstructed from SHEBA ice thickness data using standard statistical methods. The roughness and thickness of the ice and snow surfaces were altered and the sensitivity of the model to the initial data was tested. First-year ice and multiyear ice simulations con�firmed observed diff�erences in individual pond size and depth. Sensitivity studies showed that pond fraction is most sensitive to mean initial snow depth in fi�rst-year ice simulations and reduction of ice permeability in all cases.
Type: | Thesis (Doctoral) |
---|---|
Title: | Modelling the evolution of Arctic melt ponds |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
UCL classification: | UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Earth Sciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/16333 |
Archive Staff Only
View Item |