Friston, KJ;
Parr, T;
de Vries, B;
(2017)
The graphical brain: belief propagation and active inference.
Network Neuroscience
, 1
(4)
pp. 381-414.
10.1162/NETN_a_00018.
Preview |
Text
Friston VoR netn_a_00018.pdf Download (2MB) | Preview |
Abstract
This paper considers functional integration in the brain from a computational perspective. We ask what sort of neuronal message passing is mandated by active inference—and what implications this has for context-sensitive connectivity at microscopic and macroscopic levels. In particular, we formulate neuronal processing as belief propagation under deep generative models. Crucially, these models can entertain both discrete and continuous states, leading to distinct schemes for belief updating that play out on the same (neuronal) architecture. Technically, we use Forney (normal) factor graphs to elucidate the requisite message passing in terms of its form and scheduling. To accommodate mixed generative models (of discrete and continuous states), one also has to consider link nodes or factors that enable discrete and continuous representations to talk to each other. When mapping the implicit computational architecture onto neuronal connectivity, several interesting features emerge. For example, Bayesian model averaging and comparison, which link discrete and continuous states, may be implemented in thalamocortical loops. These and other considerations speak to a computational connectome that is inherently state dependent and self-organizing in ways that yield to a principled (variational) account. We conclude with simulations of reading that illustrate the implicit neuronal message passing, with a special focus on how discrete (semantic) representations inform, and are informed by, continuous (visual) sampling of the sensorium.
Type: | Article |
---|---|
Title: | The graphical brain: belief propagation and active inference |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1162/NETN_a_00018 |
Publisher version: | https://doi.org/10.1162/NETN_a_00018 |
Language: | English |
Additional information: | Copyright © 2017 Massachusetts Institute of Technology Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license (https://creativecommons.org/licenses/by/4.0/). |
Keywords: | Bayesian, Neuronal, Connectivity, Factor graphs, Free energy, Belief propagation, Message passing |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Imaging Neuroscience |
URI: | https://discovery.ucl.ac.uk/id/eprint/1574278 |
Archive Staff Only
View Item |