Schaefer, N;
Berger, A;
van Brederode, J;
Zheng, F;
Zhang, Y;
Leacock, S;
Littau, L;
... Villmann, C; + view all
(2017)
Disruption of a structurally important extracellular element in the glycine receptor leads to decreased synaptic integration and signaling resulting in severe startle disease.
The Journal of Neuroscience
, 37
(33)
pp. 7948-7961.
10.1523/JNEUROSCI.0009-17.2017.
Preview |
Text
Harvey_7948.full.pdf - Published Version Download (4MB) | Preview |
Abstract
Functional impairments or trafficking defects of inhibitory glycine receptors (GlyRs) have been linked to human hyperekplexia/startle disease and autism spectrum disorder. We found that lack of synaptic integration of GlyRs, together with disrupted receptor function is responsible for a lethal startle phenotype in a novel spontaneous mouse mutant shaky, caused by a missense mutation Q177K located in the extracellular β8-β9 loop of the GlyR α1 subunit. Recently, structural data provided evidence that the flexibility of the β8-β9 loop is crucial for conformational transitions during opening and closing of the ion channel and represents a novel allosteric binding site in cys-loop receptors. We identified the underlying neuropathological mechanisms in male and female shaky mice through a combination of protein biochemistry, immunocytochemistry and both in vivo and in vitro electrophysiology. Increased expression of the mutant GlyR α1Q177K subunit in vivo was not sufficient to compensate for a decrease in synaptic integration of α1Q177Kβ GlyRs. The remaining synaptic heteromeric α1Q177Kβ GlyRs had decreased current amplitudes with significantly faster decay times. This functional disruption reveals an important role for the GlyR α1 subunit β8-β9 loop in initiating rearrangements within the extracellular-transmembrane GlyR interface and that this structural element is vital for inhibitory GlyR function, signaling and synaptic clustering.
Type: | Article |
---|---|
Title: | Disruption of a structurally important extracellular element in the glycine receptor leads to decreased synaptic integration and signaling resulting in severe startle disease |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1523/JNEUROSCI.0009-17.2017 |
Publisher version: | http://doi.org/10.1523/JNEUROSCI.0009-17.2017 |
Language: | English |
Additional information: | Copyright © 2017 Schaefer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
Keywords: | glycine receptor, startle disease, β8-β9 loop, hydrogen bond network, fast decay, shaky |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy |
URI: | https://discovery.ucl.ac.uk/id/eprint/1566591 |




Archive Staff Only
![]() |
View Item |