Simpson, SH;
Zemanek, P;
Marago, OM;
Jones, PH;
Hanna, S;
(2017)
Optical Binding of Nanowires.
Nano Letters
, 17
(6)
pp. 3485-3492.
10.1021/acs.nanolett.7b00494.
Preview |
Text
nanowirebinding_nl_revised.pdf - Accepted Version Download (2MB) | Preview |
Abstract
Multiple scattering of light induces structured interactions, or optical binding forces, between collections of small particles. This has been extensively studied in the case of microspheres. However, binding forces are strongly shape dependent: here, we turn our attention to dielectric nanowires. Using a novel numerical model we uncover rich behavior. The extreme geometry of the nanowires produces a sequence of stationary and dynamic states. In linearly polarized light, thermally stable ladder-like structures emerge. Lower symmetry, sagittate arrangements can also arise, whose configurational asymmetry unbalances the optical forces leading to nonconservative, translational motion. Finally, the addition of circular polarization drives a variety of coordinated rotational states whose dynamics expose fundamental properties of optical spin. These results suggest that optical binding can provide an increased level of control over the positions and motions of nanoparticles, opening new possibilities for driven self-organization and heralding a new field of self-assembling optically driven micromachines.
Type: | Article |
---|---|
Title: | Optical Binding of Nanowires |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1021/acs.nanolett.7b00494 |
Publisher version: | http://dx.doi.org/10.1021/acs.nanolett.7b00494 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Materials Science, Physics, Optical binding nanowires, Brownian motion, self-organization, nonequilibrium thermodynamics, nonequilibrium steady state, spin-orbit coupling, emergent phenomena, SILICON NANOWIRES, TWEEZERS, NANOSTRUCTURES, MANIPULATION, PARTICLES, NANOTUBES, DYNAMICS, MOMENTUM, FIELDS, TORQUE |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy |
URI: | https://discovery.ucl.ac.uk/id/eprint/1561493 |
Archive Staff Only
View Item |