You, J;
Panoiu, NC;
(2017)
Exploiting high-order phase-shift keying modulation and direct-detection in silicon photonic systems.
Optics Express
, 25
(8)
pp. 8611-8624.
10.1364/OE.25.008611.
Preview |
Text
CW-SCh-UPhC-MF.pdf - Accepted Version Download (896kB) | Preview |
Abstract
A computational approach to evaluate the bit-error ratio (BER) in silicon photonic systems employing high-order phase-shift keying (PSK) modulation formats is presented. Specifically, the investigated systems contain a silicon based optical interconnect, namely a strip silicon photonic waveguide or a silicon photonic crystal waveguide, and direct-detection receivers suitable to detect PSK and amplitude-shaped PSK signals. The superposition of a PSK signal and complex additive white Gaussian noise passes through the optical interconnect and subsequently through two detection-branch receivers. To model the signal propagation in the silicon optical interconnects we used a modified nonlinear Schrödinger equation, which incorporates all relevant linear and nonlinear optical effects and the mutual interaction between free-carriers and the optical field. Finally, the BER is calculated by applying a frequency-domain approach based on the Karhunen-Loève series expansion method. Our computational studies of the BER reveal that the optical power, type of PSK modulation, waveguide length, and group-velocity are key factors characterizing the system BER, their influence on BER being more significant in a photonic system with larger nonlinearity. In particular, our analysis shows that the system performance is affected to a much larger extent when the signal propagates in the slow-light regime, despite the fact that this regime allows for a significantly reduced length of optical interconnects.
Archive Staff Only
![]() |
View Item |