Kaur, S;
Kempson, IM;
Lindén, JB;
Larsson, M;
Nydén, M;
(2017)
Unhindered copper uptake by glutaraldehyde-polyethyleneimine coatings in an artificial seawater model system with adsorbed swollen polysaccharides and competing ligand EDTA.
Biofouling
, 33
(2)
pp. 184-194.
10.1080/08927014.2017.1284204.
Preview |
Text
Unhindered copper uptake of glutaraldehyde-polyethyleneimine coatings in an artificial seawater_Accepted Manuscript.pdf - Accepted Version Download (2MB) | Preview |
Abstract
Shortly after a surface is submerged in the sea, a conditioning film is generally formed by adsorption of organic molecules, such as polysaccharides. This could affect transport of molecules and ions between the seawater and the surface. An artificial seawater model system was developed to understand how adsorbed polysaccharides impact copper binding by glutaraldehyde-crosslinked polyethyleneimine coatings. Coating performance was also determined when competed against copper-chelating EDTA. Polysaccharide adsorption and copper binding and distribution were investigated using advanced analytical techniques, including depth-resolved time-of-flight secondary ion mass spectroscopy, grazing incidence X-ray absorption near-edge spectroscopy, quartz crystal microbalance with dissipation monitoring and X-ray photoelectron spectroscopy. In artificial seawater, the polysaccharides adsorbed in a swollen state that copper readily penetrated and the glutaraldehyde-polyethyleneimine coatings outcompeted EDTA for copper binding. Furthermore, the depth distribution of copper species was determined with nanometre precision. The results are highly relevant for copper-binding and copper-releasing materials in seawater.
Type: | Article |
---|---|
Title: | Unhindered copper uptake by glutaraldehyde-polyethyleneimine coatings in an artificial seawater model system with adsorbed swollen polysaccharides and competing ligand EDTA |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1080/08927014.2017.1284204 |
Publisher version: | http://doi.org/10.1080/08927014.2017.1284204 |
Language: | English |
Additional information: | Copyright © 2017 informa UK limited, trading as Taylor & francis group. This is an Accepted Manuscript of an article published by Taylor & Francis in Biofouling on February 2017, available online: http://dx.doi.org/10.1080/08927014.2017.1284204 |
Keywords: | Antifouling, biocidal metals, copper chelation, kinetics, polyethyleneimine, selective binding |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/1541218 |



1. | ![]() | 14 |
2. | ![]() | 6 |
3. | ![]() | 2 |
4. | ![]() | 1 |
5. | ![]() | 1 |
6. | ![]() | 1 |
7. | ![]() | 1 |
8. | ![]() | 1 |
9. | ![]() | 1 |
10. | ![]() | 1 |
Archive Staff Only
![]() |
View Item |