Martin, ACR;
Jayaram, N;
Usvyat, D;
(2016)
Evaluating tools for transcription factor binding site prediction.
BMC Bioinformatics
, 2016
, Article 1298. 10.1186/s12859-016-1298-9.
Preview |
Text
Martin_art%3A10.1186%2Fs12859-016-1298-9.pdf Download (639kB) | Preview |
Abstract
Background: Binding of transcription factors to transcription factor binding sites (TFBSs) is key to the mediation of transcriptional regulation. Information on experimentally validated functional TFBSs is limited and consequently there is a need for accurate prediction of TFBSs for gene annotation and in applications such as evaluating the effects of single nucleotide variations in causing disease. TFBSs are generally recognized by scanning a position weight matrix (PWM) against DNA using one of a number of available computer programs. Thus we set out to evaluate the best tools that can be used locally (and are therefore suitable for large-scale analyses) for creating PWMs from high-throughput ChIP-Seq data and for scanning them against DNA. Results: We evaluated a set of de novo motif discovery tools that could be downloaded and installed locally using ENCODE-ChIP-Seq data and showed that rGADEM was the best performing tool. TFBS prediction tools used to scan PWMs against DNA fall into two classes — those that predict individual TFBSs and those that identify clusters. Our evaluation showed that FIMO and MCAST performed best respectively. Conclusions: Selection of the best-performing tools for generating PWMs from ChIP-Seq data and for scanning PWMs against DNA has the potential to improve prediction of precise transcription factor binding sites within regions identified by ChIP-Seq experiments for gene finding, understanding regulation and in evaluating the effects of single nucleotide variations in causing disease.
Type: | Article |
---|---|
Title: | Evaluating tools for transcription factor binding site prediction |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1186/s12859-016-1298-9 |
Publisher version: | http://dx.doi.org/10.1186/s12859-016-1298-9 |
Language: | English |
Additional information: | Copyright © The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
Keywords: | PWMs, motif discovery, performance evaluation, motif scanning tools |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Structural and Molecular Biology |
URI: | https://discovery.ucl.ac.uk/id/eprint/1524263 |
Archive Staff Only
View Item |