Griffin, M;
Kalaskar, D;
Seifalian, A;
Butler, PE;
(2016)
An update on the Application of Nanotechnology in Bone Tissue Engineering.
The Open Orthopaedics Journal
, 10
(S. 3 M4)
pp. 836-848.
10.2174/1874325001610010836.
Preview |
Text
Kalaskar_TOORTHJ-10-836.pdf - Published Version Download (973kB) | Preview |
Abstract
BACKGROUND: Natural bone is a complex and hierarchical structure. Bone possesses an extracellular matrix that has a precise nano-sized environment to encourage osteoblasts to lay down bone by directing them through physical and chemical cues. For bone tissue regeneration, it is crucial for the scaffolds to mimic the native bone structure. Nanomaterials, with features on the nanoscale have shown the ability to provide the appropriate matrix environment to guide cell adhesion, migration and differentiation. METHODS: This review summarises the new developments in bone tissue engineering using nanobiomaterials. The design and selection of fabrication methods and biomaterial types for bone tissue engineering will be reviewed. The interactions of cells with different nanostructured scaffolds will be discussed including nanocomposites, nanofibres and nanoparticles. RESULTS: Several composite nanomaterials have been able to mimic the architecture of natural bone. Bioceramics biomaterials have shown to be very useful biomaterials for bone tissue engineering as they have osteoconductive and osteoinductive properties. Nanofibrous scaffolds have the ability to provide the appropriate matrix environment as they can mimic the extracellular matrix structure of bone. Nanoparticles have been used to deliver bioactive molecules and label and track stem cells. CONCLUSION: Future studies to improve the application of nanomaterials for bone tissue engineering are needed.
Type: | Article |
---|---|
Title: | An update on the Application of Nanotechnology in Bone Tissue Engineering |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.2174/1874325001610010836 |
Publisher version: | http://dx.doi.org/10.2174/1874325001610010836 |
Language: | English |
Additional information: | © Griffin et al.; Licensee Bentham Open open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. |
Keywords: | Bioceramics, Bone regeneration, Bone tissue engineering, Composite, Nanofibres, Nanoparticles |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci > Department of Ortho and MSK Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/1514182 |
Archive Staff Only
View Item |