Garcia Trillos, CA;
Probabilistic numerical methods : multi-scale and mean-field problems.
Doctoral thesis , UNSPECIFIED.
Abstract
This Ph.D. thesis deals with the numerical solution of two types of stochastic problems. First, we investigate the numeric solution to strongly oscillating SDEs, i.e. systems in which some ergodic state variables evolve quickly with respect to the remaining ones. We propose an algorithm that uses homogenization results and consists of an Euler scheme for the slow scale variables coupled with a decreasing step estimator for the ergodic averages of the fast variables. We prove the strong convergence of the algorithm as well as a generalized central limit theorem result for the normalized error distribution. In addition, we propose an extrapolated version applicable under stronger regularity assumptions and which satisfies the same properties of the original algorithm with lower asymptotic complexity. Then, we treat the problem of solving decoupled Forward Backward Stochastic Differential equations of McKean-Vlasov type (MKV-FBSDE) which appear in some stochastic control problems in an environment of a large number of particles with mean field interactions. As a first step, we propose a new algorithm, based on the cubature method on Wiener spaces, to weakly approach the solution of a McKean-Vlasov SDE. It is deterministic and can be parametrized to obtain any given order of convergence. Using this first forward approximation algorithm, we construct two procedures to solve the decoupled MKV-FBSDE and show that they converge with orders one and two under appropriate regularity conditions. Finally, we consider the problem of reducing the complexity of the presented method while preserving the presented convergence rates.
Type: | Thesis (Doctoral) |
---|---|
Title: | Probabilistic numerical methods : multi-scale and mean-field problems |
Publisher version: | https://tel.archives-ouvertes.fr/tel-00944655 |
Keywords: | Numerical methods, multi-scale system, McKean Vlasov equations, FBSDE, Recombination |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Mathematics |
URI: | https://discovery.ucl.ac.uk/id/eprint/1514034 |
Archive Staff Only
![]() |
View Item |