Fritzsche, M;
Erlenkämper, C;
Moeendarbary, E;
Charras, G;
Kruse, K;
(2016)
Actin kinetics shapes cortical network structure and mechanics.
Science Advances
, 2
(4)
, Article e1501337. 10.1126/sciadv.1501337.
Preview |
Text
Actin kinetics shapes cortical.pdf Download (1MB) | Preview |
Abstract
The actin cortex of animal cells is the main determinant of cellular mechanics. The continuous turnover of cortical actin filaments enables cells to quickly respond to stimuli. Recent work has shown that most of the cortical actin is generated by only two actin nucleators, the Arp2/3 complex and the formin Diaph1. However, our understanding of their interplay, their kinetics, and the length distribution of the filaments that they nucleate within living cells is poor. Such knowledge is necessary for a thorough comprehension of cellular processes and cell mechanics from basic polymer physics principles. We determined cortical assembly rates in living cells by using single-molecule fluorescence imaging in combination with stochastic simulations. We find that formin-nucleated filaments are, on average, 10 times longer than Arp2/3-nucleated filaments. Although formin-generated filaments represent less than 10% of all actin filaments, mechanical measurements indicate that they are important determinants of cortical elasticity. Tuning the activity of actin nucleators to alter filament length distribution may thus be a mechanism allowing cells to adjust their macroscopic mechanical properties to their physiological needs.
Type: | Article |
---|---|
Title: | Actin kinetics shapes cortical network structure and mechanics |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1126/sciadv.1501337 |
Publisher version: | http://dx.doi.org/10.1126/sciadv.1501337 |
Language: | English |
Additional information: | 2016 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution Non Commercial License 4.0 (CC BY-NC) (https://creativecommons.org/licenses/by-nc/4.0/). Published article: Fritzsche, M; Erlenkämper, C; Moeendarbary, E; Charras, G; Kruse, K; (2016) Actin kinetics shapes cortical network structure and mechanics. Science Advances, 2 (4), Article e1501337, 10.1126/sciadv.1501337. |
Keywords: | Actin cytoskeleton, actin cortex, cell mechanics, filament lengths |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > London Centre for Nanotechnology |
URI: | https://discovery.ucl.ac.uk/id/eprint/1492897 |
Archive Staff Only
View Item |