Villegas-Torres, MF;
Martinez-Torres, RJ;
Cázares-Körner, A;
Hailes, H;
Baganz, F;
Ward, J;
(2015)
Multi-step biocatalytic strategies for chiral amino alcohol synthesis.
Enzyme and Microbial Technology
, 81
pp. 23-30.
10.1016/j.enzmictec.2015.07.003.
Preview |
Text
1-s2.0-S0141022915300296-main.pdf - Published Version Download (790kB) | Preview |
Abstract
Chiral amino alcohols are structural motifs present in sphingolipids, antibiotics, and antiviral glycosidase inhibitors. Their chemical synthesis presents several challenges in establishing at least two chiral centres. Here a de novo metabolic pathway using a transketolase enzyme coupled with a transaminase enzyme has been assembled. To synthesise this motif one of the strategies to obtain high conversions from the transaminase/transketolase cascade is the use of hydroxypyruvate (HPA) as a two-carbon donor for the transketolase reaction; although commercially available it is relatively expensive limiting application of the pathway on an industrial scale. Alternately, HPA can be synthesised but this introduces a further synthetic step. In this study two different biocatalytic strategies were developed for the synthesis of (2S,3R)-2-amino-1,3,4-butanetriol (ABT) without adding HPA into the reaction. Firstly, a sequential cascade of three enzymatic steps (two transaminases and one transketolase) for the synthesis of ABT from serine, pyruvate and glycolaldehyde as substrates. Secondly, a two-step recycling cascade where serine is used as donor to aminate erythrulose (catalysed by a transketolase) for the simultaneous synthesis of ABT and HPA. In order to test the novel pathways, three new transaminases are described, two ω-transaminases able to accept a broad range of amine acceptors with serine as amine donor; and an α-transaminase, which showed high affinity towards serine (KM: 18mM) using pyruvate as amine acceptor. After implementation of the above enzymes in the biocatalytic pathways proposed in this paper, the two-step recycling pathway was found to be the most promising for its integration with E. coli metabolism. It was more efficient (10-fold higher conversion), more sustainable and cost-effective (use of low cost natural substrates and only two enzymes), and the reaction could be performed in a one-pot system.
Type: | Article |
---|---|
Title: | Multi-step biocatalytic strategies for chiral amino alcohol synthesis |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1016/j.enzmictec.2015.07.003 |
Publisher version: | http://dx.doi.org/10.1016/j.enzmictec.2015.07.003 |
Language: | English |
Additional information: | © 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
Keywords: | Cascades, Chiral amino alcohols, Recycling system, Transaminase, Transketolase |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Biochemical Engineering UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Chemistry |
URI: | https://discovery.ucl.ac.uk/id/eprint/1475244 |
Archive Staff Only
View Item |