UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

An origin-of-life reactor to simulate alkaline hydrothermal vents.

Herschy, B; Whicher, A; Camprubi, E; Watson, C; Dartnell, L; Ward, J; Evans, JR; (2014) An origin-of-life reactor to simulate alkaline hydrothermal vents. J Mol Evol , 79 (5-6) 213 - 227. 10.1007/s00239-014-9658-4. Green open access

[thumbnail of art_10.1007_s00239-014-9658-4.pdf]
Preview
PDF
art_10.1007_s00239-014-9658-4.pdf

Download (8MB)

Abstract

Chemiosmotic coupling is universal: practically all cells harness electrochemical proton gradients across membranes to drive ATP synthesis, powering biochemistry. Autotrophic cells, including phototrophs and chemolithotrophs, also use proton gradients to power carbon fixation directly. The universality of chemiosmotic coupling suggests that it arose very early in evolution, but its origins are obscure. Alkaline hydrothermal systems sustain natural proton gradients across the thin inorganic barriers of interconnected micropores within deep-sea vents. In Hadean oceans, these inorganic barriers should have contained catalytic Fe(Ni)S minerals similar in structure to cofactors in modern metabolic enzymes, suggesting a possible abiotic origin of chemiosmotic coupling. The continuous supply of H2 and CO2 from vent fluids and early oceans, respectively, offers further parallels with the biochemistry of ancient autotrophic cells, notably the acetyl CoA pathway in archaea and bacteria. However, the precise mechanisms by which natural proton gradients, H2, CO2 and metal sulphides could have driven organic synthesis are uncertain, and theoretical ideas lack empirical support. We have built a simple electrochemical reactor to simulate conditions in alkaline hydrothermal vents, allowing investigation of the possibility that abiotic vent chemistry could prefigure the origins of biochemistry. We discuss the construction and testing of the reactor, describing the precipitation of thin-walled, inorganic structures containing nickel-doped mackinawite, a catalytic Fe(Ni)S mineral, under prebiotic ocean conditions. These simulated vent structures appear to generate low yields of simple organics. Synthetic microporous matrices can concentrate organics by thermophoresis over several orders of magnitude under continuous open-flow vent conditions.

Type: Article
Title: An origin-of-life reactor to simulate alkaline hydrothermal vents.
Location: Germany
Open access status: An open access version is available from UCL Discovery
DOI: 10.1007/s00239-014-9658-4
Publisher version: http://dx.doi.org/10.1007/s00239-014-9658-4
Language: English
Additional information: �© The Author(s) 2014. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Biochemical Engineering
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Chemistry
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Science and Technology Studies
URI: https://discovery.ucl.ac.uk/id/eprint/1457133
Downloads since deposit
195Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item