Lakhdar, K.;
(2006)
Production planning of biopharmaceutical manufacture.
Doctoral thesis , University of London.
PDF
U592222.pdf Download (5MB) |
Abstract
Multiproduct manufacturing facilities running on a campaign basis are increasingly becoming the norm for biopharmaceuticals, owing to high risks of clinical failure, regulatory pressures and the increasing number of therapeutics in clinical evaluation. The need for such flexible plants and cost-effective manufacture pose significant challenges for planning and scheduling, which are compounded by long production lead times, intermediate product stability issues and the high cost - low volume nature of biopharmaceutical manufacture. Scheduling and planning decisions are often made in the presence of variable product titres, campaign durations, contamination rates and product demands. Hence this thesis applies mathematical programming techniques to the planning of biopharmaceutical manufacture in order to identify more optimal production plans under different manufacturing scenarios. A deterministic mixed integer linear programming (MILP) medium term planning model which explicitly accounts for upstream and downstream processing is presented. A multiscenario MILP model for the medium term planning of biopharmaceutical manufacture under uncertainty is presented and solved using an iterative solution procedure. An alternative stochastic formulation for the medium term planning of biomanufacture under uncertainty based on the principles of chance constrained programming is also presented. To help manage the risks of long term capacity planning in the biopharmaceutical industry, a goal programming extension is presented which accounts for multiple objectives including cost, risk and customer service level satisfaction. The model is applied to long term capacity analysis of a mix of contractors and owned biopharmaceutical manufacturing facilities. In the final sections of this thesis an example of a commercial application of this work is presented, followed by a discussion on related validation issues in the biopharmaceutical industry. The work in this thesis highlighted the benefits of applying mathematical programming techniques for production planning of biopharmaceutical manufacturing facilities, so as to enhance the biopharmaceutical industry's strategic and operational decision-making towards achieving more cost-effective manufacture.
Type: | Thesis (Doctoral) |
---|---|
Title: | Production planning of biopharmaceutical manufacture. |
Identifier: | PQ ETD:592222 |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Thesis digitised by ProQuest |
UCL classification: | UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Chemical Engineering |
URI: | https://discovery.ucl.ac.uk/id/eprint/1444912 |
Archive Staff Only
View Item |